Banner appropriate to article type will appear here in typeset article

Supplementary Material Captions for

2 Resistive-force theory of slender bodies in viscosity

3 gradients

- 4 Catherine Kamal†, and Eric Lauga‡
- 5 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3
- 6 0WA, United Kingdom
- 7 (Received xx; revised xx; accepted xx)
- 8 Movie 1: The long-time behaviour of a filament with aspect ratio $b/a = 10^{-4}$ settling under
- 9 a constant viscosity gradient with $\tilde{\kappa}_x = 0.01$, $\tilde{\kappa}_y = 0.01$.
- Movie 2: The long-time behaviour of a filament with aspect ratio $b/a = 10^{-4}$ settling under
- 11 a constant viscosity gradient with $\tilde{\kappa}_x = 0.01$, $\tilde{\kappa}_y = -0.01$.
- Movie 3: The long-time behaviour of a filament with aspect ratio $b/a = 10^{-4}$ settling under
- 13 a constant viscosity gradient with $\tilde{\kappa}_x = 0.01$, $\tilde{\kappa}_y = 0$.