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Appendix: (Not intended for inclusion in published paper)

Evaluation of the resistance matrix for almost uniform gaps
Recall that the resistance matrix Rij is given by

RiJ =12 J. J G(zga; Z*.,gt) Wl(z,ﬁ) WJ (2‘.*,!9*) ds d.S* - Sij W’i (Al)
SJS*

where §&; denotes the Kronecker delta and W, are given in Table 1 (with &, replaced by &8£,,;). We

expand ¢ _; and h, as Fourier series:
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where X, and H, are complex for p # 0, wit}} )_Lp = fp and H , = }_Ip
We now expand the resistance matrix in powers of §, using the expansion |of the Green’s

function in section 5. At leading order, we find:

RO =R = -«,, RY=RY = -«,, RY =RY = -4r¢, (A3)
where &, = -1272 [[ g (z,2*) dz dz* = 24r [£, - tanh{]
and k, = -121% [[ 8,(z,7%) z z* dz dz* = 247, [£,%/3 - Locotht, + 1] | (A4)

where the integrals here and throughout the Appendix are over [-£,,¢,]. All other elements of RO
vanish. At leading order, R(0) is diagonal.
At the next order (6!), we find contributions from the W’; terms:
RY=RY =7 [H,dz, RY=0; (A5)
contributions involving G
R(Y +iRY = [J, dX,/dz dz, R +iR{Y=-ifJ, X, dz,

REY +iRY =ifJ, dX,/dzdz, RY +iREY =1, X, dz (A6)
where J,(z) = -1272 [ g,(z,2%) dz* = 127 [1 - coshz/coshf],
1,(2) = -1272 [ g,(z,2*) z* dz* = 127 [z - £, sinhz/sinh{,]; (A7)

and contributions involving G

R +iRY = [(M, H, + M_; H,) dz, RE -iR{) = [(M, H, - M_; H,) dz,

RY +iRY = [(M, H, + M, H,) dz, R - iR{) = [(-M, Hy+ M, H,) dz,

RY +iRY = [(M, H, - Mg Hy) dz, R - iR = [(M; H, + M3 H,) dz, (A8)
where M, (2) = 18z [[ T, (2,27 dz dz* =[(d],/dz)* £ J,%}/8n,



-2

M,,(z) = 1872 [ Ty (z,z,2*) 7 dz’ dz* = [dJ,/dz dJ,/dz £ ] 1,]/8n,
M,3(2) = 1872 [T, (2,2,2%) 2 2* 2’ dz* = [(d),/dz)* £ ,?)/8n (A9)
Several conclusions may be drawn concerning the O(6) expansion of the resistance matrix:
(i) R() is independent of third and higher Fourier components of the particle shape.
(i1) The transverse forces and torques (F,, Fy, T, Ty) resulting from axial motion of the particle
(V,) depend only on the first Fourier coefficient of &,;. If the particle is axisymmetric, these forces
and torques depend on the position of the particle but not on its shape.
(iii) From (A8), the transverse forces and torques resulting from transverse particle motion (Vy, Vy,
Q, ;) depend only on the zeroth and second Fourier coefficients of the gap width h,. These forces
and torques depend on the shape of the particle, but, from (4.2), are independent of its position.
From the resistance matrix, we may compute the motion of a non-axisymmetric particle
driven by an axial pressure difference, for which
X, =X - () + 2,2) - i(b," + B,'2)]/2 (A10)
where Xpl(z) is the first complex Fourier coefficient of the particle shape £, and af = éa,’, etc. At
first order in §, (6.8) and (A6) give
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In this approximation, the particle rotates with a constant angular velocity, and moves transversely
with a velocity that depends linearly on its angle to the tube axis, giving a parabolic trajectory. If the
particle is axisymmetric (X, = 0), it moves in a straight line along the bisector of the particle and
tube axes, independent of particle shape. The motion is neutrally stable with regard to exponential
solutions. In general, the particle would eventually collide with the wall, in the absence of higher
order effects. These findings indicate the need to pursue the expansion to O(62). In particular, we
are interested in the effects of a particle’s shape on its trajectory [cf. (ii) above].

We consider the case of an axisymmetric particle driven by an axial pressure difference. We
assume that the particle has radius r[1 - € + €6s(z)] where s(2) is a prescribed function describing the
particle shape, with zero mean. Then

§p1 =(z) and &y; =[a; + a,(z - )] cos + [b, + By(z - ¢)] sind (A12)
The only non-zero Fourier components of h, and £, are then
H,,(2z) =[a, + o(z - €)] 2 i[b, + B,(z - ©)] = 2X4;(2)
H(z) = -2s(z) = -2X(2) ' (A13)



The components of R(}) take simpler forms:
R%} =aK,/2, R&.’g) = Byk4/2, Rﬁs} =K,/2, Rg? = B1K,/2
R{Y = (b, - B,0)x,/2, REY = - (a, - &,0)%,/2
RY=RY=-RY=RY=RYP =0 (A14)
R - REY = -2, R =R =2,
RE R -2, RY-RY-RY-RY -0 (a19
where v; = [M;(2) s(2) dz, i=1,2,3 (A16)
At second order in §, only the components Rgl are required in order to compute up to O(§2)
the motion of particle driven by an axial pressure difference. Using (A1) and (5.10), we find that
R%} = -AK,(a, - a,C) - (V] + AsK,)ay, R%} = =X K,(b; - B,C) - (v, + AKy)B,
Rﬁ) = A,K,(b; - B,C) + (v, + A K,)B,, R&? = -A\,K,(a, - ,C) - (v, + A K,)a,

RY) = -« (a,b, - B,a,)/4 (A17)
Whel'e A‘i = l/ﬂl JlK.l(Z*) dS/dZ* dz*g i = 1529334

with &, = k,, £, = k,, and
K,(z*) = 1873 [[T,(z,2',z¥) dz dz’= 187 [I - coshz*/cosh¢ ] ,
K,(z*) = 187 [[T,(2,7,7*) z dz d’ = 18 [z* - ¢, sinhz*/sinh¢ ] ,
K,(z*) = 1873 [[T,(z,7,7%) Z dz dz’ = z*K(z*) - tanh¢, K,(z¥)/4, ,
K (z*) = 1873 [[T,((2,7,2¥) z 2 dz dZ’
= Z*K(z*) - £,K(z¥)/tanhe, + 9n(¢ 2 - Z*2) . (A18)



