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Appendix C. Conservation laws

Equation of change for the singlet distribution function fi=f(X, v1, @, #) in the absence of

the external forces can be written in the form

af1+v o _9of en
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where df1/Jt denotes the rate of changz of f; due to particle collisions. In particular, this rate is
equal to the difference between the gross rates at which collisions increase and diminish the
number of particles within the space element dxdvide in the vicinity of the prescribed dynamic
state. We can relate the former of these rates with the inverse collisions (A.8), while the latter
rate is connected with the direct collisicns (A.7).

Define the pair distribution function f=A2)(x;, V1, ©1; X3, V2, Wy, 7) in such a way, that
F2dv;dmidx;dvodm,dx; is the number of pairs of particles, located at a time ¢ in the volume
elements dx; and dx,, centered at x; ani x, with velocities lying in the volume elements (dvy,
do;) and (dv,, dw,), centered at (vq, ©-) and (v,, @) in the velocity space. Noting, that in the
moment of collision the center of the second particle is located in the point xp=x;-ko (Fig. Al),
and that the “collisional cylinder” voltme dx,=0%(k-v2;)dkds (Chapman & Cowling, 1970),
with dk being the solid angle about the unit vector k, one can show that the gross particles’

diminution rate from the state (X, vy, © ) is _
N_= j vy d>©,d%kS (k- V1) FB(xq, v, 013 %) — OK, V2, 0331). (C.2a)

Here S(k-V5;) = 620(k- v4;)(K - V1) and @is the Heaviside function.
In an analogous fashion one can obtain the probability of inverse collisions (A.8)
FOx;, v, 0% - ok , v, m;;r)c.’vzd(n;dxldv;dw;dx;, |
where dx; = az(k" . v&l)ak“dr. Simila:ly, the gross rate of particle gain to the state (X1, V1, @1)
may be obtained from the above expression by integrating it over the effectively infinite
domains of variables vy, @y, k:

¥ 3 3 2 (Dl o™ T ol 2 a(";’ h;,ﬁ);,&);)
N, = | d’vrd’w,d“(-k X,V 05X + 0k, vy,09;1)S(—k - v
* _[ Y2 2 B . 141 25372 )S( 21)8( 1 V2,01, 2)

= [ vy dPoyd?lf Pxy, v 03 %1+ 0k, v, 028 (k- vaDA, (C2b)

A ==3(V;, V3,01, 09) / V1, ¥2,01, @2)E (C.2¢)
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Formula (C.2b) was obtained usiag the relations K'=-k (see Fig. Al) and S(-k-v,;")=
S(k-vyy) /€ [see (A9)].

From (C.2a,b) it follows that

BJ = N, —N_= [d*d0,d*kS (k- vyl A D x, tiéx + 0k, 1500)

— FBx, 1% — 0k, 130)]. (C.3)

To derive the conservation laws, 1ultiply (C.1) with r.h.s. given by (C.3) by an arbitrary

function Wi= W(vy, ®;) and integrate over v;- and ©;- domains, to obtain

§< yx>+%-< vy >=Jy(f,.5) (€4
where
<y >=j dét fv, (€3

Jy(f.f)= j dﬁflz_{ Wi =J- a5t 45,0 kS (k- Vo) Y AF (X, 7% + Ok, T331)
- fOx, Tp;x — oK, T5;1)], (C.6)
and ds'r‘- = d3v,-d3m;- is the element of the phase space T; = (V;, ®;). In the first term appearing
in the square brackets of (C.6) interchaige double primed and unprimed variables and replace k

with -k". The resulting expression can be rewritten with the help of the relationship
a2 dS T dP ToS(K - vay) = dkd® r1d® 1,8 (k- VoA
and recombined with the second term of (C.6), to obtain
Iy(f. )= d®ed® tad®kS (k- v o) (Y= y0) FPx, 15X — ok, 150). (C.72)

After interchanging subscripts 1 ind 2 and replacing vectors Vo3, k by -v21, -k one can
rewrite (C.7a) in the form '
Iy(F 0= d*rd®nd k& p)(y5 - ) f D% ix+ ok, 130). (C.7b)

Combining (C.7a,b) and using the idenity
fO(x, t1; x- ok, T2: 1) - fAx + ¢k, T, X, 12, 1) =

3

oA [f m(x + ok(1—A4),T;;x— Lok, Ty; r)]dl =

= s L

1
_Ok"a% [ FP(x+ ok(1 - )t~ Aok, 150)d, (C3)
0

one can show that
T f)—— T+ I(y) (C.9)

where
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1
c C )
JOy) = Zjdﬁﬁdﬁ@dzk{ Sk -v,PkA wfPx + ok(1- A),7;;x — Aok, 15;1], (C.100)

I(y)= %Jd‘srldsrzdz}a?(k Vo)A B x + ok, 1;;%,151), (C.10b)

and where A’y = Ay - Ay, Ay=Ayn + Ay, Ayi= Wi-

The first term in r.h.s. of (C.9) may be identified with the collisional transfer contribution
to the flux of quantity v, whereas the second one is the source (sink) term, which clearly
vanishes if yis one of the summationzl invariants. For the collisional model (A.4) the particle
mass, m and momentum, mv are conserved. Replacing yin (C.4), (C.10a) by the above

properties, we, therefore, obtain

P, 0 L Dy

2 T PE0 T g (C.11a,b)
Using in (C.4), (C.9), (C.10) y=E = mv2/2 + Ie*/2 we similarly get an equation

3 ot D y

2, ok, TR = c12

ar[neo+ 5 ]+8x q(x, f) =i(E), ( )

clearly stating that the total mechanica. energy is not a conserved property. In the above, p, u
and eg are the mean density, linear velocity and total energy of particle random motion
p=mn=<m>, pu= < mv >, neg =<mlv - uf® +10® > /2= ney, + neg, -

It follows from (C4), (C.9) that he momentum flux £;(X, = tg‘ g rfj") and the energy
flux g;(x,0)=¢;® + g;(©) are each composed of the kinetic part and the collisional - transfer part,
labeled respectively with the superscripts k and c. In turn, each part of these fluxes consists of
macroscopic (convective) and microscopic (diffﬁsivc) contributions. Denote the microscopic
contributions to the momentum flux a; P (pressure tensor) and the comparable contributions to

the kinetic energy flux as j (heat diffusion flux):
(% f) = puu;+ Bi(x, f), (C.13a)
2

mu .
4i(x. f)=wn(eq +——) +u;F;(x, N+ Jjix, ). (C.13b)
The kinetic parts of the pressure tensor and of the heat flux vector are independent of

particle collisional properties
PP=m<CCi>  jB= % <C(C?+ 1%/ m)>, (C.14a,b)
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where C=v-u denotes the peculiar velocity of translation. The collisional-transfer parts of these

values are determined by J© [cf. eq. (C.10a)], with the concomitant replacement of y by mv:

(c) o[ mC*  o*) o ©
P N=T" =+ PY(x, f) =T (mv), (C.15a,b)
where
A(mv) = 2m{no[v9; —%k X (@1 + @)1+ (11 = M2)k(Va1-K)} , (C.15¢)
(mC?* Iw®
A[Eé_+7] = m{(n; = 1) (k- € ~ k- CY] 4 m[CF - CF -
2
k- (wyx Cy+ 0y % Cl)]} +m1, %{wi -0 - (k-0,)?+(k -ml)Z], (C.15d)

and Ci=vj-u, i=1,2.

Appendix D. Existence and uniqueness of the hydrodynamic solution

In section 3.2 it was shown that the hydrodynamic solution (23) of the Boltzmann -
Enskog equation, describing spatially homogeneous state of a system composed of perfectly
smooth granules, is fully determined by function F; = F(V;2, ). This function must be found
as a solution of eq. (27), rewritten here in the form

3 20 | _ . ..
- e(F,F)[EFi'i'V W}_‘I(II’F)’

i {.1)
where K, J are the following operators:
z(1-é?
Ke(F,F)= —(—16—2] PPV FE RV, D.22)
J(f,8)= [ dyd®k0(k- Vap) (k- Vaple “(figa + fag1) — fig2 ~ Fag) (D.2b)
F, is subjected to the normalizaticn conditions
[PviR=1, [PvRW=2. D.3)

We will prove the existence and uniqueness of solution for egs. (D.1) - (D.2) with
conditions (D.3) for the case of slightly inelastic collisions, characterized by e=1-e << 1.

Solution F; will be constructed by series expansion in terms of small parameter £

oo

F =3¢ D.4)
i=0
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Introducing (D.4) into eq. (D.1) ind expanding both sides of the latter equation in series
with respect to €, one obtains the following nonlinear homogeneous integral equation governing
the zero-order function F(O)

JFOFO =0,
and linear nonhomogeneous equations for the higher order functions in (D.4)

JEOFhy = =i,
where W1()= Wi}y, FM), n=0,1, ...,i-1.

Expansion (D.4) and normalization conditions (D.3) may be used to obtain the following

(D.5)

(D.6)

subsidiary conditions for F1(®)
J PVEO = 1 J PV =1
b2 1 (D.7a)
J dsvlFl(Dz_[ d3V1V12Fl(i)=0 i=1,2,... -

JUF,E )[ o1 is the collisional integral appearing in the kinetic equation, describing the
dilute smooth elastic spheres gas (3=-1, e=1). Therefore, (see Chapman & Cowling, 1970), eq.
(D.5) subject to conditions (D.7a) possesses a unique solution which is the Maxwell-

Boltzmann function, written here in the form

FO = (na)™! 2c:s:p(—Vl2 / a,), 08

where o = 4/3. It follows, thus, that the expressions J(F (0)=F (i))L:I are identical to the
linearized collisional integrals obtaining in the case (=1, e=1).

It has been proven in the kinetic theory of dilute gases (see e.g., Chapman & Cowling,
1970) that each of the equations of the type (D.6) subject to conditions (D.7b) possesses a
unique solution if and only if W;(®), appearing in 1. h. s. of (B.6) are orthogonal to all
summational invariants (in our notation 1, Vi, V12).

Note, that egs. (27) and (D.1) possess the property, that for any F, multiplication of both
parts of this equation by 1, V1, V12 and integration over the velocity space convert them to
identities. Consequently, eq. (D.6), obtained by expanding (D.1) in power series of &, are
characterized by the same property. Bearing in mind that the operator J(F Wz (i)) =] 1S
orthogonal to 1, V;, V2, one can provs that functions W;® appearing in r.h.s. of eq. (D.6) also

possess the same orthogonality propery. The existence of the integrals
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may be proven by showing that (i) all function F1() possess infinite number of derivatives and
(i) integrals of the type [ a*V"F® exist for n.=0,1,.... Since F1(9), given by formula (D.8)
satisfies the above properties (i) and (ii), the same is true for F1® (i=1, 2, ...), which may be

easily proven by invoking the mathemarical induction arguments.

Appendix E. Estimation of the Maxwell-Boltzmann approximation
The goal of this appendix is the estimation of the accuracy of the Maxwell-Boltzmann
approximation (D.8) of eq. (27) with ncrmalization conditions (29). Towards this end expand

function F in the Sonine polynomials series (30) and restrict ourselves by the following

approximation
R =Ea,SR070) + a S0 + &SR0 E1)
where
15 55, 15
Sin(i) = ISS;(V)— -V SH =5 SV oW 5

Upon introducing approximation (E.1) into condition (29) and using normalization
conditions (31) imposed on S, ,(,': )(x), one obtains the first two coefficients :

ag=1, a1=0. (E.3)
The coefficient a7 in the approximation (E.1) will be found by method moments (see Condiff ez.
al., 1965) using assumption ap<<1 together with following moment equation:

—KG(F,F)Jd’le[%FI +V255 J ; j d3Vd3V2FFJ'd2/cq(k V)k-V)Ay.  (E.4)

wherein K(F,F) is given by eq. (24), Ay=y1—y2—w1'-y»' andy is an arbitrary function of V;
(i=1,2). The latter equation follows frora egs. (27), (28) and the properties (C.7a,b) of the
collisional integral J(F,F).

Equations (27), (28) were constructed such a way that the choices yi1=1, V12 tum
equation (E.4) into identity. Due to the linearity of eq.(E.4) with respect to y;, the latter is also
true for an arbitrary linear combinations of 1 and V 12 and, consequently, (see eq. (E.2)) it is true
for SShOVE), SEU( V?). Following the muin idea of the moment method (see Condiff ez. al., 1965)
we will choose @7 in such a way, so as to satisfy eq. (E.4) with F1 given by the approximation

E.1) by ¥, =S (V?), or, bearing in mind the above properties of eq. (E.4), by the
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functiony, = V{‘. Using egs. (A.4), (A.5) for the particular case of smooth particles (3=-1),

considered now, one obtains:
AV = (1 e B (%K) + (V) [ 200+ eic T V2T, k) = (9, k) ]+

O A ARCLIC IR ®

Upon integrating the latter value over tie k space, one obtains:

B R AN AENE (AR ) ST AT A% E6)

where ‘-‘}21 = ‘?2_ {rp ‘? = (vz +{71)/2) = 4 /3, and where
C=rn(l+e)e-3)/2, C=-n(1-7*)e*+2)/24, Ci=n(l+e)(2e-1)/3. (E7a,bc)

Equations (E.1), (E.3) together with assumptions of smallness of a7 yield:

FF,= FOE®{1+ oSBT + 530D} (E8)
After substituting egs. (E.6), (E.8) into r.h.s. of eq. (E.4), one evaluates:

[ PVdVRE[ d*ka(k- Vo) (k- V,)AV* =, [%(CA Ay g E.9)
where

&:4-}-%&2, A,=96+570a, A3=12+%?-a2. (E.10)

The Lh.s. of eq. (E.4) is the product of two integrals. For their evaluation it is necessary to
introduce approximation (E.8) into eq. (24) (see eq. (34)):

The second integral is evaluated by invoking the following identity:

~ 3 2 dF | _ et
Javy, [Emw Ev?}“‘zj A=y 0t a) &2

Equations (E.4), (E.7), (E.9) - (E.12) after some algebraic transformations yield a linear equation

with respect to ap, the solution of which is (cf. eq. (33))
_ 16(1-e)(1-2¢)
. e)|(1+ 5190 +147] E.13)




