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Appendix A: Particle orbits under the action of a strong (A»1) external field.

Here we look for an asymptotic solution of (3.1b) for 6(t). Substituting

S e
tan—=ge A.l
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into (3.1b), we obtain
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g=g,+8;, (8:3)
wherein g, satisfies the linear part of (A.2), namely
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which is readily integrated to yield
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when use is made of (3.1a). Eq. (A.2) is now formally integrated by variation of

parameters leading to
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From (A.2) it follows that ‘d_b <oag, where o is some positive constant. Hence,
T



0<g<g(0)e™. (A.7)
Making use of the latter relation and noting that g, =0 for all © (|B| <1), one can

readily establish for all T the bound

r Bg®(1))e>*" sin2¢ .

c
— T € — A.8
014 (1) 2™ go(ry) | A 5.8

in which C is some constant (independent of both A and t), thereby obtaining the
approximation (3.2). A similar, exponentially rapid convergence to the stable

equilibrium orientation 1s also expected in the presence of a strong (A»1) external field

acting in an arbitrary direction (8 = 0).

Appendix B: Nearly periodic motions

B.1 Slightly deformed spheres (B = o(1))

Following Hinch & Leal (1972), the scalar components of e in the Cartesian axes

(X,,X,,X;) are

1 y
Ae, = (Ecosa +Acosp)sina (B.1a)
|
he, =—551n'a+Acoscx cosB , (B.1b)
and

Ae; = Asinf . (B.1¢c)

The corresponding components of the equation of motion (2.1) are, respectively
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Taking the time derivatives of (3.1) and eliminating the components of € between the

resulting equations and (B.2), we obtain equations (4.12).

The O(B) balance in (4.12a) -esults in
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wherein e(”(i=12,3) are the expressions resulting from the substitution of o, and B,

into (B.1). In order that o, be a bounded function of T we require that
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in which T denotes the period of B, (uniform for all orbits). Substitute in the latter
condition the right-hand side of (B.3) while making use of the identity
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obtained from (B.1), together with the relation
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resulting from (4.15b) in conjunction with (B.1a), to obtain
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(Owing to the occurrence of e'” (cf. (B.1c)), the coefficient of cos2¢ on the right-hand

side of (B.3) is an odd function of B, with respect to B, = n and therefore disappears

(0)

after the integration (B.4).) Substitution of e{” and e{” and integration yield (4.16).

B.2 Weak external field (% = o(1))

In the O(A), we obtain from (2.7) the system of equations
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The general solution of the assoc ated homogeneous problem is
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(As usual in this type of problems, one of the solutions is proportional to R :
-

cf. Kevorkian & Cole 1981.) Cbviously, this general solution is t-periodic and thus
bounded in T. We seek a particu ar solution of the original inhomogeneous problem by

variation of parameters, 1.e.
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to obtain
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In order that (B.8) be periodic ir the fast time variable we require that
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when use is made of (5.4a) and he fact that the latter intergrand is odd with respect to

¢, = 7. The other coefficient in (B. 8) similarly satisfies

5 2cos 6, - =—d—Y[lBsinZE}osin%o)—id—CSiﬂ 26, +
dt (1+Bcos2¢,)~ dt 4 2C dr,

+ sin B :0s8, cos(d, — ) — cosBsinB,
5 : dy . ; :
Substituting the above expression for e while making use of the symmetry properties
;>

of the various functions we obtzin from the periodicity requirement imposed on 8(t)

the relation (5.6b).
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