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Supplement to the paper ”Singular modes of the Rayleigh instabil-
ity in three-dimensional streamwise-vortex flows” by S.N.Timoshin &
F.T.Smith.

This is an extended version of section 4 of the paper containing a more detailed
analysis of the three model examples of the vortex flow.

4. Some specific examples.

Given the vortex curvature distribution K, solution of the amplitude equation
(3.8) of the previous section becomes a more or less routine computational task,
the matter being somewhat complicated by the fact that the wave parameters
&, ¢ enter the equation in a non-straightforward manner involving, most crucially,
ntegral properties of the vortex as a whole and also, in the case of neutral dis-
turbances, local curvature at the critical level, on account of (3.9). This section
presents three examples of computations and analysis in model vortex flows with
significantly different properties of the curvature. Attention will mostly be paid
to the changes in wave characteristics caused by variations in the spanwise period
of the flow, and to possible deviations from the short-/long-scale limit properties
described in section 3. In all the cases below the vortex field is assumed to be
symmetric with respect to the origin in ( so that the relevant wave modes can be
divided into families of even and odd solutions. For brevity only, the results are
presented for the even family; properties of the odd modes examined on several
occasions were found to be similar.

In order to illustrate the possibility of a continuous connection between the
large- and small-f limit solutions introduced earlier in section 3, for our first
ezample we take a smooth curvature distribution, namely

Ku(Y,0) = (u+weos ()L + Y)Y, (1)
with constants p,v. The equation (3.8) then acquires the form

B2A¢ + (81 + Szcos ()A =0, (4.2)
where

Sy =éa+ (81 +182)¢ — prsa(E+14)71, S = —vws3(E+1) . (4.3)

Solutions of (4.2) satisfying the periodicity conditions A(0) = A(2x), A'(0) =
A'(2m) were obtained numerically using a second-order accurate finite-difference
approximation for the equation with the explicit normalization A(0) = 1 in the
case of even modes ( A'(0) = 1 for the odd ones ). Properties of the first four




even neutral-wave solutions with the mode numbers n = 0-3 are illustrated in Figs.
2,3a-d. The computation based on Newton’s search for the couple of real & a,cfora
given spanwise wavenumber 3 starts at a suitably large B, where the initial guesses
are made using the asymptotic behaviour (3.11). Marching along the S-axis back-
wards with a reasonably fine step (on several occasions as small as —2 - 1072) we
were then able to extend the neutral-wave parameters into the domain of smaller
8, hence verifying the limit form as 8 — 0 with the core of the amplitude centred
around one of the two stationary points, in our case at ¢ = 0 with the limit values
a = —0.2167,¢ = 0.6823, or at { = 7 with & = 0.2589,¢ = 1.2134 following from
the conditions (3.17) Wlth (4.2), (4.3). The limit values are also marked in Fig.
2.

The most peculiar feature of the solution is the continuation of the third mode,
n =2 in Fig. 2, towards the small- 3 limit with the larger phase speed, with the
core near { = m,as opposed to the limit of the modes 0, 1, 3 centred at ¢ = 0, 2m;
see also Figs. 3a-d. This is obviously a consequence of the complex coefﬁczents
in the Mathieu equation (4.2), cf. the case of real coefficients in Abramowitz &
Stegun (1970). It was verified, by refining the (-grid and taking smaller steps in
8, that modes 1 and 2 have no common points, although the paths of the two
roots in (&, ¢, ﬁ) space become very close when 8 ~ 0.4-0.5. The approach of the
large-B solutions in Figs. 3a-d to simple harmonics, the appearance of concen-
trated amplitudes at smaller B, and a fairly accura.te reproduction of the limit
values at 8 = 0 in Fig. 2, all this is in favourable agreement with the conclusions
drawn in section 3 for a general smooth vortex field.

In the second ezample the curvature remains smooth across the boundary layer
with, however, piecewise continuity along the span, thus providing a model of the
three d1mens1ona,1 velocity field with abrupt spanwise changes in the magnitude
and/or direction of the streamwise vorticity. The curvature function is defined in

this case by )
Ki = 9(0)(1+7?), (44)

with the new scaled spanwise variable ( = (3~ introduced for convenience. The
spanwise modulation of the vortex is taken in the form

&(() = 24, if0§5<c-oa-ndé1+fo<Q:SE1+2EU; (4.5)

({)=-%_,if&<{<b+0G, (4.6)




over the first period 0 < { < {; + 2(o, with constant parameters (o, (;, ®5. The
amplitude equation rewrites then as

Agi + [&+ (51 +155)E — sam(28.)(G + i) 4 =0, (4.7)

where the choice of the sign depends on the spanwise location in accordance with
(4.5), (4.6) above. Periodic solutions for A(C) are constructed explicitly using the
continuity of A and Az at the vortex discontinuities; this yields the dispersion
relation

(ma + ma) [exp(2malo) — exp(~mai)] = —(m; — m) 11— exp(2mafo — mafy)|

(45)
for the even modes, and the same expression but with the opposite sign to the
right-hand side for the odd ones. The wave parameters are contained in m; » given
by

M1z = [~G = (o1 +is2)é +sam(2 @)@+ )], [arg(mua) < 7/2. (49)

The non-smoothness of the curvature distribution in this model has only minor
effect on the properties of shorter-scale flows with small 6 490 Assuming that
{1 — 0 and the geometric ratio 2, /(; is kept constant it then follows from (4.8),
(4.9) that &,¢ are finite and related by means of the equation

&+ (s1+1282)C + samg(c + §57% =i, (4.10)
in the limit for the first even mode, with the constant
i= (62 —20%.)/(G + 26o) (4.11)

being a characteristic of the total vorticity in the flow, cf. (3.13) withn = 0, AE,O) =
1. Separating of the real and imaginary parts yields

&+ 518 — 526 + G5 (@ + (G + 1) =0, (4.12)

516 + 826 = é(ai + 1)[53 T (Ei * 1)2J—1’ (4'13)

in turn, and hence, for any fixed growth rate &, including &; = 0, the phase speed
¢ and the wavenumber & are uniquely determined by (4.13), (4.12) respectively.
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Provided that s, is positive (as in the computational example to be discussed
shortly) instability corresponds to disturbances with shorter wavelength, on ac-
count of the limit relation

G =s3a(s?+55) M + ..., as & — oo, (4.14)
also stemming from (4.12), (4.13).

For even modes with higher numbers we write, in the same shorter-scale limit,
& =4n’r¥ (b +20) 2+ & + ..., (81,8 =0(1),n=1,2,..., (4.15)

and derive, on substituting into (4.8), (4.9), the limit relation between & and ¢
in the following form

&y + (s1 4 982)E + 83+ 1) [,,Tg — (2n)7}(®4 + ®_)sin [4m§0 Hlr zfu)H — 0,
(4.16)
which is also a consequence of (3.13) in section 3.

The larger-scale limit behaviour of the roots of (4.8), (4.9) is noticeably dif-
ferent from the stationary-point limit of the previous example because reduc-
tion to the Weber equation locally is not possible now, yet there exist certain
similarities between the two problems. The dispersion relation (4.8) suggests
that both & and ¢ are O(1) when (1,80 — o0, so that either Real(m;) > 0
and then exp(—m;(;) — —1 in the limit, or, alternatively, Real(m;) > 0 and
exp(2m1{o) — —1. This yields two families of solutions with the behaviour

—&y — (81 4+ 182)E + sam(E+3) 1By = (20 4 1)27%(26) 2 + ..., (4.17)

—&; — (81 +185)¢ — sam(64+14)710_ = (2n + 1)%2@;2 F ora (4.18)

as (50,51) — o0, with integer n. It can be shown by taking the limit solutions
of the equation (4.7) that the leading-order amplitude distribution corresponding
to (4.17) has the oscillatory form A = cos[jm| ({ — N({ <+ 20o) )] in the inter-
vals of length 2(, centred at the end-points of the periods (=N (G + 2(0) N =
0,41,42,... . In the gaps between the ranges of oscillations the amplitude |A|
turns out to be exponentially small so that (4.17) is equivalent to the requirement
of having the nodes of the oscillatory functions at the junction points, or cos(|m]|
Eg) = 0, at the main order. Similarly, the set of roots (4.18) corresponds to an




exponentially weak wave when |¢ — N(& + 26)| < o and spanwise oscillations
in the amplitude in the remaining part of the flow. So, by analogy to the pre-
vious example, the larger-scale waves are dominant near the extremum points in
the vortex curvature spanwise, cf. the second condition (3.17) for a smooth vortex.

For the neutral disturbances the relations (4.17), (4.18) predict two limit values
of the phase speed given by the roots of

sp¢ £ ws3(& 4+ 1)8. = 0, (4.19)
with the limit wavenumbers provided by the real part of (4.17), (4.18).

In Figs. 4a-c we plot the neutral wavenumber & against the length parameter {;
for the first six even modes computed from (4.8), (4.9) for the case &, = s;_3 = 1.

The spanwise intervals of constant curvature were taken to be of equal length,

2y = (1, whereas the period-averaged vorticity varies in accordance with the
values ®_ = 0;0.8;1. As the quantity &, — ®_ decreases from 1 to 0 the well-
behaved pattern of the neutral curves in Fig. 4a becomes nonmonotonic for the
modes n = 1,3,5 ( Fig. 4b) and eventually splits into almost disconnected loops
formed by the branches with odd and even numbers, Fig. 4c. The high symmetry
in the flow in the latter case introduces several interesting features in the solution.
So, the phase speed turns out to be zero on branches 0-5; this property follows
from (4.8), (4.9) and also reflects itself in the limit solutions (4.13), (4.16). Along
the branches denoted as 0-5’ the phase speed is non-zero in general, see e.g. the
limit relations (4.19), although our computations point to the existence of a com-
mon point with equal & and ¢ = 0 (dots in Fig. 4c) for each pair of the intersecting
loops. If we add the third coordinate & to the axes (1, & then the solutions of
(4.8), (4.9) can be interpreted as an infinite sequence of surfaces which cross the
plane ¢ = 0 along the neutral curves. The mode coupling then turns out to be
structurally unstable to small changes in the growth rates, as illustrated in Fig.
5 which also suggests a saddle point in the shape of the instability surfaces in the
51,65, ¢; space near the common points.

In our third ezample the vortex curvature has discontinuities along the span
as before and, in addition, jumps across the layer, specifically we define

K=3)ifY, <Y<V, (4.20)

and K1y = 01ifY > Y, or Y < Yp, where Yy, are constants and @(6) is given
by (4.5), (4.6). This model has certain although fairly loose similarities with the
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concentrated nonlinear Gortler vortices of Hall & Lakin (1988). The dispersion
relation for the even modes is again of the form (4.8) but with

ms = {8 = (81 +i82)6 F 520 10 [(% — /(2 — Vo) + in}2, | arg(mas)] < /2.
(4.21)

in the case of neutral disturbances. The solution discussed below turns out to
be such that the phase speed of the disturbance remains bounded in the range

Yo < ¢ < Y3, where the argument of the logarithm in (4.21) is positive.

The neutral wavenumbers for the first several modes are shown in Fig. 6a.
The short-scale branches of the neutral curves in that figure originating at a finite
limit wavenumber for the first mode and going upwards to infinity for the higher
modes are qualitatively similar to those in the previous examples, cf. Figs. 2,4,
and the corresponding asymptotic formulae can be found readily using the pro-
cedure which had earlier led to (4.10), (4.16). The most striking property of the
current solution, compared to the other examples, is the reversal of the neutral
curves into the region of shorter spanwise scales after reaching a certain threshold,
with a trend to an unbounded growth in the magnitude of the wavenumber as the
flow period decreases. The plots of the neutral curves in the plane of the param-
eters ¢, a in Fig. 6b indicate a fast approach of the phase speed to one of the two
limit values ¢ = +2, with the location of the critical layer being shifted towards
the normal boundaries of the vortex at ¥ = Y, ; = +2. Hence the reversal of the
plots in Fig. 6a and consequently non-existence of larger-scale neutral modes is
due to the logarithmic singularities in the integral term in the equation (3.8).

The asymptotic form of the reversed branches can be found as follows. Suppose
that 2¢p = (1 = € — 0, and expand m; ; in (4.8) in the form

my2 =€lia+elia+..., as e — 0. (4.22)

Substitution into (4.8) yields

(L1 + Lz) [exp(L1) — exp(—La)] = —(Lz — L1) [1 —exp(L1 — L)),  (4.23)

I [exp(L1) — exp(—La) + (L1 + L) exp(Ly) — 1 + (14 Ly — Ly)exp(L; — L,)] =

L2 [exp(L1) — exp(—La) + (L1 + La) exp(—La) + 1 — (1 4 Ly — Lz) exp(L; — L,)]
(4.24)




in the first two approximations respectively. The accompanying expansions for
the wave parameters are

G=e"q+a+..,é=b+...,n[(Y1 - 8)/(E—Y5)] = € 2ko+ k1 + ..., (4.25)

where the leading-order phase speed & will be subsequently equal to 2 or —2,
depending on the branch of the solution, and ko, #; are real. It then follows from
(4.21), (4.22), (4.25) that

L2, = —ao F s3%1 k0, (4.26)

2":1121'1,2 = —&1 — (31 + 3'52)61 F 53q)i(f61 + ’L’J‘f) (427)

The important consequence of (4.23) with (4.26) is that depending on the signs of
G, o one of the two quantities Ly, must be real and the other purely imaginary
so that making the substitution

L, =2pcosp, Ly =12psingp (4.28)
for real L, or, alternatively,

L, =12psinp, Ly = 2pcos ¢ (4.29)
for real L, the equation (4.23) reduces to

exp(p cos @) cos(p + psin ) = exp(—p cos ) cos(ip — psin ), (4.30)
whereas (4.24) indicates that the ratio l;/l, is then purely imaginary,

L/l =1iQ(p, ), (4.31)
say, with the real @ given by

(e® + e®)sin(psin p) + pe~Fsin(p — psin ) + pefsin(p + psin ®)

Q== (eR + e~®) cos(psin @) + 2peF cos(y + psin ) :
(4.32)
0 - (e + e®) cos(psin p) + 2pe~F cos(p — psin )
(e® + e ®)sin(psing) + pe~Esin(p — psin @) + peRsin(p + psinp)’
(4.33)
for the cases (4.28), (4.29) respectively, where
R = pcos . (4.34)
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Denoting also

with P being a real function of ¢, the ratio l;/l; can be expressed in terms of the
wave parameters contained in (4.27), leading eventually to the relation

P(p,0)Qp, ) = (6132 + s2847) (G182 — 530 _). (4.36)

In order to establish the leading term &, in the wavenumber expansion in
(4.25) we first choose the limit value of the phase speed, & = 2 for instance, and
then, given the values of the other parameters on the right in (4.36), resolve the
system of two equations (4.30), (4.36) with respect to p, ¢, using (4.35) and either
(4.28) or (4.29). The required value Gq follows then eliminating ko between the
two relations (4.26) in the form

&o = —(L1®- + L38,)/(3+ + 8.), (4.37)

where (4.28), (4.29) should be used again to evaluate L; ;. An example of com-
putation is summarised in Fig. 7 and below. The solid lines in the upper part of
Fig. 7 represent solutions of (4.30) for ¢ as a function of p. The required branches
form a discrete set n(p) with the limit properties

1
On = (—2~ +n)rpt 4 ..., as p— oo, n=0,+1,42, ...; (4.38)
wo — T[4 as p — 0; (4.39)
1
O — sgn(n)(§7r —0)as p—nr+0,n#0. (4.40)

The lower part of Fig. 7 contains plots of the function P - @ computed along
the branches ¢,(p),n = 0-3 (negative n do not add new solutions of the full
problem eventually ). The solid curves correspond to real L;, dashes are used for
the case of real L,. The right-hand side in (4.36) is equal to (P - Q); = —0.2529
when ¢, = —2 and (P - @), = —10.0172 when & = 2, using the values &, = 1,
®_ = 0.8,s;_3 = 1, as in the computation for Figs. 6a,b. Hence the sequence of
solutions (p, @) arises at intersections of the plots for P - Q against p with the




horizontal lines P - Q = (P - Q); 5. This produces for the case ¢ = —2 the values
(p, ) = (1.52,0.612), (4.5,0.977), (7.4, 1.137), and the corresponding wavenumber
coefficients & = —2.08,10.62,58.65 approximately . When & = 2, we obtain
(0, 0) = (2.22,0.495), (5.77, 0.754),(8.96,0.892), and then &, = —4.30, 3.18,57.74
- In agreement with the trends in Fig. 6a, the two sequences start with negative
&p, therefore @ — —oo in the short-scale limit for the first two branches after
reversal. By contrast, & is positive and & — +oo for higher modes. Note
also the much faster, exponential, approach to the limit implied in the phase-
speed expansion in (4.25) compared to the slower, algebraic, behaviour of the
wavenumber, in qualitative agreement with the &-& plots in Fig. 6b.

Captions for figures.

Figure 1. a, the sketch illustrates the typical scales of a longitudinal vortex
flow implied in the derivation of the inviscid instability equation (1.4); b, the
streamwise velocity profiles shown qualitatively for the case of a weak vortex con-
centrated at the inflexion point y. in the basic planar boundary layer, the scaled
thickness of the vortex ¢ serves as the small parameter in the perturbation anal-
ysis in sections 2,3.

Figure 2. Neutral parameters plotted against the spanwise wavenumber B,
from numerical solution of (4.2), (4.3) with s; = s3 = 1,5, = =l.p =2 =
—1/m, for the first four even modes of wave disturbances; — , the phase speed
¢ - - -, the wavenumber &/5; the values n = 0-3 refer to the mode number.
Crosses correspond to the stationary-point limit values & = 0.6823,& = —0.6823

and ¢ = 1.2134,& = 0.2589.

Figure 3. The absolute value (solid) and the real part (dashes) of the am-
plitude function A plotted against the scaled spanwise variable {=¢ /(27) for
various 3, from computations for figure 2. The solution functions are scaled to
have a unit maximum modulus over the period; figs. a-d correspond to mode
numbers 0-3 respectively; the values of § are indicated at the plots; a,b, the am-

plitude function shown for the first period; c,d, plots for small and large B are
shown on separate half-periods.

Figure 4. The neutral wavenumber & plotted against the spanwise length
parameter (;(=half-length of the period) for the second model flow with the dis-
persion relation (4.8), (4.9); even modes with s;_3 = &, = 1 and a, $_ = 0; b,




®_ =0.8; ¢, _ = 1; the mode numbers n = 0-5 are shown in the figures. The
mode splitting in the case c results in reconnections of the branches 0 and 1, 0
and 1’ etc., with the dots indicating the location of the mode intersections.

Figure 5. Contours of constant growth rate in the plane (i, & near the neutral
mode intersection point S; model flow (4.8), (4.9) with s;_3 = &, =1, 0,1, 0.1,
the neutral waves; I, growth rate & = 0.01; I, ¢; = 0.05.

Figure 6. a, the neutral wavenumber of the dispersion relation (4.8), (4.21)
plotted against the length parameter ¢; for the case 2{; = fy 810 = Py =19 =
0.8; the mode numbers are indicated at the plots. b, the neutral-wave phase speed
against the wavenumber with varying ¢; for the modes in figure a.

Figure 7. Plots of the solution of (4.30), ¢n(p), and the function P(p,0)Q(p, ¥)
defined by (4.35), (4.28), (4.32) for the solid curves and by (4.35), (4.29), (4.43)

for the dashed curves.
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