A detailed derivation of the amplitude equation that apply in the Weakly Non-
linear Oscillations of Nearly Inviscid Liquid Bridges (J.A. Nicolds and J.M. Vega,
Journal of Fluid Mechanics, vol. 328 (1996 ), pp. 95-128, to be referred to as NV).

A more detailed derivation than that in [NV, §§3.1-3.4] is given below. In order to make the derivation
self-contained, some equations in [NV, §§ 2-3] are first listed:

ur +r w4 w, =0, (1)
U + w(uz —_ wf) = —gr + C(urr + T'_lur - r—2u + uzz]: (2]
we + u(we — U;) = —¢; + C(Wrr + 771wy + w33), (3)
u=0, w=hi(t) at z=xA+hi(t), (4)
v=w,=¢ =0 at r=0, (5)
u=fi+ fiw at r=f, (6)
(wr + ) (1 = f2) + 2(ur —w3)f: =0 at r=f, (7)
u2+w2 ffu—-l—ff t‘\’!'_(W +uz)fz+wfz2
=3 tiavoer 0 ° STy =l ®)
f=1 at z=3A+ hy(t). (9)
Athy
f f(z,t)%dz = 2A. (10)
—A+h_
hy(t) = Bepexpli(Q +wid)i] +cc., (11)
C«kl, p<kl and éK1, (12)
u = e(AUse™™ + c.c.) + eVCu +€%uy + e2v/Cuz + eCuq + £2us + pug + HOT
(13)
w=---, q_]__—_:..., f—l:’
0<exl (14a)
2w/ A f1 )
/ f [ (Uouk + Wowg)e "¥rdrdzdt =0  forall k > 1, (14b)
0 —-AJO
edA/dt = — [(1 +1i)a; VC + azc] A + iazeB AlAP + ip (of Bye+% — af B_e“-%) + HOT, (15a)
dedA/dr = H1eV/C + Hqe® + H3eC + Hye?V/C + Hse® + Hep + HOT, (15b)
T =6t (16)

1 The solution in the bulk

We shall only need to calculate the first three terms in the expansions (13). The (linear) inviscid eigenmode
(Uo, Wo, Qo, Fo) is given by

Uor + 7~ 0o + Woz = iQUs + Qor = iQWo + Qo: = 0, (17)
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Wo=0 at z==A, Uy=Wy =0 at r=0, (18)

Uo—iﬂFg:Qa-i—Fo-{-Fé’:U at r=1, (19)
A

Fo(£A) = j Fo(z)dz = 0. (20)

The terms of orders ¢v/C and €? in (13) are given by

Uy + 77 Uk + Wiz =0, : (21)
Ukt + Qhr + (HeUo€™ + c.c.) = wie + ghs + (HxWoe™ +c.c.) =0, (22)
wy, =G at z==%A, Uy =Wy =@ =0 at r=0, (23)
ug = Ok, g =Y at r=1, (24)
fe=0 at z==A, /ifkdz+7g =0 (25)

for k =1 and 2, where
A
1n=0  72= f (A2F2e"™ +c.c. + 2|AFo?)dz/2. (26)
o
Egs. (21), (22) and (25) and the boundary conditions at r = 0 are obtained upon substitution of (13) and (15b)
into (1)-(3), (5) and (10), when taking into account that Uy, = Wo,. The remaining boundary conditions (and
the functions Gf, é% and ;) will be obtained below by applying matching conditions with the Stokes and the

interface boundary layers.

2 The solution in the Stokes boundary layers
For the sake of brevity we give details only for the boundary layer near z = A, where we use the stretched

coordinate

£=[z—A-he(0]/VC,
with hy as given in (11). We seek the expansions

u = eAUe"™ + c.c. + eV/Ciy + €%y + HOT,
w= Ky +VC (eAWoe'™ + c.c.+ HOT) (27)
g —1=¢eAQ0e'™ + c.c. + eVCi1 + €232 + HOT + O(p).

Substitution of (27) and (15b) into (1)-(4) yields

QUE = iQfTD — {}05,5 + Qc,- — ﬁﬂr + T'_lf}o'l‘ Wae

= @3¢ — fh1ge + fur + (Hz Uoe™¥ + c.c.) =qie =0, (28)
drg — (ADoe™ + c.c.) (ADge™ +cc.) =0, (29)
G — it G 3 (Hgffgemt + c.c.) g (AWDe““ ¥ c.c.) (A(Zfofe‘“‘ T c.c.) =0, (30)
Jo=Wo=t =i;=0 at £€=0, (31)
and integration of (28)-(31) leads to
G0 =KfmQ-T),  Wo= - (dK$/dr++7K) [+ -1 -T) VR, (32)

g = [Kf‘(l —T) - (1~ ) H, K3 €T/2V20) 4™ + c.c., (33)
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s =Una(r, &, \)e*™ + [K5 (1 - T) = (1 - i) oK €7/2v/20]
+|APRE (dKT Jdr + v K] [i (TE-1) +20-2)(T-1)+(1+ f)\/ra“ﬁgf] / 20
+|APK§ (dKS /dr) [T =14 2T - T)]/ 22+ c.c. (34)

where overbars and c.c. stand for the complex conjugate, K} = K} (r) is an arbitrary function for s = 0, 1 and
2, that is to be calculated, the function ' = I'(£) is given by

L(¢) = exp [(1+1)V072], (35)

and the function Uy is not calculated (because it will be not needed in the sequel).

Now, the functions K, K} and K7, and the functions G} and G} appearing in the boundary conditions
(23) are obtained by applying matching conditions between the solutions in the bulk (13) and in this boundary
layer (27). After applying a similar procedure to the boundary layer near z = —A we obtain

Uo(r,2A) = KE(r),  wi(r,£A) = AKE(r)e™ +cc., (36)
GE = + [(1 - i) AW, (r, 2A)e*™ +cc.] V20, GF =0, (37)

up = Ky (r)e™™ + K*(r)e?® +c.c.

— A [3(1 = ) UoUor +c.c. +4r71|Up[?] /20, at z==A, (38)

where the first continuity equation (17) has been taken into account and uj has been also obtained for convenience.

Again the functions K* will not appear in the sequel and are not considered here.

3 The solution in the interface boundary layer

Here we use the stretched coordinate
n= [1" e f(z,t,‘r)]/\fé,
and seek the expansions

u=fi+8fr+ frw+VC (eAUge"“‘ +cc. +eVCul + HO’I‘) ,
w = AW '™ + c.c. + eVCw} + €*w} + €2V Cwj + HOT, (39)
g—1=(u®+ w?)/2+ (AP} ™ + c.c.) + eV/Cp} + €2p} + 2VCp} + HOT.

Substitution of (39) and (15b) into (1)-(3) and (6)-(8) yields the following equations

Py, = QW5 — Wo,, + Po, = Ug, + W, +iQF, =0, (40)
i, = (ARe™™ +cc.), (41)
wy, — i, + 9%, + [(Hi W5 — AWg, )™ +c.c] =0, (42)
Uiy + i, + fie + [(Hi Fo — iQnAFy + AU )™ +c.c] = p3, =0, (43)
Way — Wayy + P2, + (HaWse'™ +c.c.) + (AUGe™ + c.c.)(AWg,e™ +c.c.)

+ (AW ™ c.c.)(AWS, ™ + c.c.) — Q2 (AFe™™ + c.c.) (AFoe™™ +c.c.) =0, (44)

Pay + (2IQH2Foe™™ + c.c.) + four + 2(AW3 € + c.c.)(iQAFy ™ +c.c.)
+ (AR} +c.c.) [A(IQWS — Wy, ) +c.c] =0, (45)
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w3y — Whoy + P3, — Wy + [H1(0w3/0A) + Ha(dwi/0A) + HiW5e'™ +cc]
+ ul (AW, e + c.c.) + wi, (AUs '™ +c.c.) + wi(AWge ¥ fcc) + wl, (AWS e ™ 4 c.c.)
+ (AF}e + cc.) [A(IQUS — Ugyy + 2W5.p)e™™ + c.c.] + [A(Fo + F§)e*™ + c.c.] (AW, ™ + c.c)
+ (AF}e® + c.c) free — Q2 f1; (AFoe'™ +c.c.) + (AF§e™ + c.c.)) (2iQFoH e +cc.) =0 (46)

and the following boundary conditions at 7 =0

Pi+F +Fo=Wg,=U; =0 (47)
Pt + fi + fros = wl, + (QAFe™ +cc) =uf =0 (48)
P+ fo+ faze — (AFoe™™ +c.c)? + (AF3e™™ +cc)?/2 = w3, =0, (49)
P+ fa+ faze = 2f1(AFoe™™® + c.c.) — f1, (AF5e™™ +c.c.), (50)
wh, + far: + (HoF§e'™ + c.c) + (AFg ™ + c.c.)(AWg e +c.c)

+ (AFe™™ + c.c) [A(Us, — W5, )e¥™ +cc] =0. (51)

Integration of (40)-(51) yields

Py=—(Fo+F), Wi=-iF+F"/Q Us=iF+F —QF)n/Q,
Pt = — fi — frez + Q¥ (AFoe® +c.c)n,
w} = — V2R [(1+ i) AFT(n)e’™ + c.c.] + (iQAFge ¥ 4 c.c.)n+ POL
u} =2[AF{T(n)e*® +c.c]+ POL
Pt = — fa = fazz + (AFoe™™® + c.c.)? — (AF§e'™ +c.c.)?/2,
wj, =nPOL,  p3=POL
wh, =i|A? [3(2F +2F3® — Q*Fo) Fy + (Fy + F¢")Fy']/ @
— 2i|A|? [(2Fy + 2F3" — Q2 Fo)Fy + (Fg + Fy")Fy'] T(n)/ @
— (1= i)V2/QAP (FY + F3¥ — Q*Fy) F{nI'(n) + c.c.+ nPOL + OT,

where the function I is as defined in (35), POL stands for a polinomial in the 1 variable (whose coefficients may
depend on the remaining variables) and OT stands for oscillatory terms in the short time variable, of the type
OT= W31, (n, 2, 7)e"¥ + Wiy, (1,2, 7)e* ™ + c.c.. In fact, when taking into account the actual expressions for
POL and some results below, it may be seen (after a careful, involved analysis that is omitted for the sake of
brevity) that POL identically vanishes in the expressions giving w3, and t3,; but this assertion is not essential
to obtain the results in this Section.

Now, in order to apply matching conditions between the solution in the bulk (13) and the solution in this
boundary layer (39), we take into account that the solution in the bulk satisfies

q(f,z;t,‘.") = Q(liz;ts T) + (-f_ l)q"(l:z;t’r) +O(€3)
u(f!Z;t!T)=---: wr(.f!z;tar)z
to obtain, at r =1,

é1 = uy =1 + (H1 Foe'™ +c.c.), h =q=—f1— fiz, (52)
d2 = up =for + (HzFoBint'-}'C.C.) - (AFne'lm+c.c.)(AUu,-e"m+c.c.)



WEAKLY NONLINEAR OSCILLATIONS 5

+ (AF3e™™ fc.c.) (AWoe™ +c.c.), (53)

Yo = qa =— fo— fazz — (AFe™™ + c.-:.)(f'th,.e"m +c.c.)+ (A;F‘ge‘m +c.c.)?
— (AFLE™ +c.c)2/2 + (AWoe'™ + c.c.)?/2 + (iQAFoe'™ + c.c.)? /2, (54)
war =i|A|? [3(2FEY + 2FY — Q2 Fo)Fy + (F§' + F) 31/  — |A*Worr Fo + c.c. + OT, (55)

where wo, has been also obtained for convenience and OT stands for oscillatory terms in the short time scale, of
the type ki (z)e’® + ky(2)e*® + c.c., where the functions k; and k; need not being calculated.

4 Solvability conditions

Here we shall calculate the coefficients in the amplitude equation (15b) by eliminating secular terms in the
short time scale, ¢ ~ 1. To this end, we first obtain an integral solvability condition as follows. First, introduce into
(1)-(8) the time scales t ~ 1 and T = &t by replacing in (2)-(4) and (6) the time derivative by 8/8t+60/97. Then
multiply (2) by rUse=*¥, (3) by riWoe*¥, the second and third equations in (17) by —rue~ " and —rwe™*™
respectively, add, integrate in 0 < r < f, —A+ h_ < z < A+ hy, integrate by parts and take into account the
boundary conditions (4) and (6)-(9) to obtain

gf (e_iﬂzfl) -+ e_intfg = E_int(f3 =+ I4 + I%I- - f{), (56)

where

Athy pf AL
L= ] ks /0 (ulUo + wWp)rdrdz —f Qo(f,2)f(f — 1)dz,

Ath_ —Atho

A+h+ I A+fl+
T f ] 5(us Up + wy Wo)rdrdz — f 57, FQo(f, 2)dz,
0

A+h_ —A+h_

Athy oS
I3 _f ] (uWo — wlp)(u, — wy)rdrdz
Ath_

A+hy  of
-C f f [(Uorttr + Uoztz + Worw, + Wo,w;)r + Upu/r]drdz,
A+h_ JO

A+hy
fo= [ b+ wWo)f = £(7 = D)Qer = (7 = D]y fide

—A+h_

A+hy 1—f2  law?
+[ [m(f—l)@w(va—fzwu)(1+”” s +w)+CUo(ﬂr—fzuz)] fd

aon O T 2 =t
A+hy up — (wr + ;) fz + wzfz]
= s+ fow, + 2fi—— ) + 2(Uo — f. W = dz,
I :/ [(%Wo Qo) Ohs +35Qt:u§?'li — Wo(g — 1) + C(Uou. + WD“"Z)] L
5 ot z=+A+hy

Now, secular terms are eliminated by integrating (56) in the short time scale in the interval ]0,¢[, dividing by t,
letting ¢ — co and requiring I; to be bounded as ¢t — co. Then we obtain the following solvability condition

t
lim ¢~ /0 e ¥ ([ — I3 — s — I} + I )dt = 0. (57)

t—00

In order to apply (57) we first take into account egs. (6), (11) and (17)-(19), and the structure of the
solution in the bulk and in the Stokes and the interface boundary layers to obtain
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sk j i ]0 (ot Wit
~6 [ [1Q0+ (= D5:Qor = (7 = DU + o))
+ 266’{1:(18‘“‘ f 1 f ’ Uo(r, A)[Uo(r,€) = Uo(r, A)]rdrd€ + c.c.} +HOT (58)
Is =2¢2V/C / j gwnx (r, A)To — Us(r, A) Wi ) it +-c.c.] (Ar}nfef“‘ i c.c.) rdrd¢
_2C fu f_ U ) [Ale(r, €)™ + c.c.] rdrdg
— CeAe™™ f i fu 1 [(U2. + U3, + W5, + W3,)r + Ug/r]drdz
— CeAeH¥ f ‘; fu ' [(IUor I + |Uo: [ + [Wor |* + |Wo:|*)r + [Uo|?/r] drdz + HOT, (59)

I,

A
f_ﬁ {e(fWo(1,2) + (f = \)Wor(L, 2)) (AW (0, 2)'™ +c.c.) +iQ(1L — f/2) Fof:
(f = ) [fe(Uor (1,2) + Uo(1,2)) — fQor(1,2) + Fo + Fg| = (f = 1)*(Fg + F") } fedz

o T 3 &2 o ?
FZQfA{(f_ 1)2(1 _sz) +(f_1)fzz + §fz(1+fxz) +Ef (WJ(O:Z)E‘ +C-C-) }ngl

A .
+ [ [0l =) = 18] {1 £t 32 - 3[4 (AW 0,20 )] L

92 A A
B A(f - 1)%Uor(1,2)dz+ /A [Uorr (f = 1)2/2—=Wor o (f = 1)],_, (F — 14 fz)dz
A g A
- / fe:Wo(1, 2)dz+C / [f: +¢ (AWG, (0, 2)e*™ +c.c.)] Uo(1, z)dz + HOT, (60)
—A —A

1
Iz :(iﬂpﬁie‘(“‘+”*r)+c.c.) f rQo(r, £A)dr
]

1
+/Ce f Uo(r, A) [AUog(r,O)eim+c.c.+x/5ﬁ15(r,0)+sﬁ2,5(r,0)] rdr+HOT, (61)
0

where u and w (the velocity components in the bulk) and f are as given in (13), i Wg, i1, Uy and W§ are as
given in (32)-(34) and the second equation below (51) and HOT stands for

HOT = o(ps + ¢C + €2VC + €%) (62)

Also, in order to obtain (58) and (59) we have used the solution in the Stokes boundary layer near z = —A (not
given in §2), and the fact that the functions UZ and U; W), are even in the z variable; in order to obtain (60) we

have taken into account the equation
A+hy A
0 [ (7 - 07Qult, s =~ [ [~ 1)+ 272 + 2F ~ Dl Fods + ofew)
—A+h_ A

that is obtained upon substitution of (9), (11), (19) and (20), and integration by parts.
Now, H;, H, and Hg are readily calculated upon substitution of the resulting equations into (57) and
setting to zero the coefficients of £V/C, €2 and p, to obtain

Hi=—-(1+i)mAd, Hy=0, Hs=i(afBse+ —aff-e™-7), (63)
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where
1 A i
a =] Qo,.(r,A)zrdr [VQSF[ Fg(z)Qo(l,z)dz] , (64)
0 2N
a¥ = -Q / 1 Qo(r,A)rdr [2 f ' Fo(z)Qg(l,z)dz] (65)

and we have taken into account (17) and the following equations

A
A

A 1
f_A/U (U§+W§)rdr=—[ Fo(2)Qo(1, z)dz, (66)
f Uo(r, A)Uoe(r, 0)rdr = —(1 + s)\/smf: Uo(r,A)?dr

Eq. (66) is obtained when multiplying the second and third equations (17) by rUp and rW, respectively, adding,
integrating, integrating by parts and taking into account the first equation (17) and (18)-(19); the second equation
is readily obtained when taking into account (32) and (36).

In order to calculate a; and i we need the nontrivial eigenfunctions of (17)-(20) that were first calculated
in a semianalytical form by Sanz [1985]; we simply collect his results here. The eigenfrequencies Q are exactly

the (real) solutions of one of the following equations

AtanA = Z QnTn or Acot A+ z anrn =0 (67)
n odd n even
where
a =1, an = 202/(92‘?!! —s,) f n2>1, (68)
g =Iolln), ra=g /=1, sa=k(l-1)h(.), h=nr/2A if n2>0, (69)

and I, and I; are the first two modified Bessel functions. If the first equation (67) holds (odd modes), Qo and Fy

are defined (up to a constant factor) by
Qo= Z anlo(lar) cos[ln(z + A)], Fy=Asinz/cosA + Z antn cosfly(z + A)]: (70)
n odd n odd
while if the second equation holds (even modes), then
Qo= Z anlo(lnr) coslln (2 + A)], Fo = Acosz/sinA + Z anTa cosfin(z + A)]. (71)
n even n even

Us and W, are readily calculated by means of the second and third equations (16).
Now, a; and ai are readily calculated. Notice that these constants are real and that af = of and

af = —af for even and odd modes respectively, i.e., for the m-th mode we have
o] =(-1)"af. (72)

The coefficients Hs and Hs of the amplitude equation (15b) will depend on the terms of orders £v/C and
€? in the expansions (13), that are considered now. When taking into account (26), (37), (52)-(54) and (63), the
solutions of (14b), (17)-(25) for k = 1 and 2 are seen to be given by

u = AU e +cc.,, w = AW e tcc., g = AQ1e™ +cc., fr=AR e 4 c.c., (73)
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Uy = A2Upe® ™ 4 cc. +ugg, wy = A2Waee®™ 4 c.c. 4 wog, (74)

g2 = A%Q00e®™ 4 c.c. 4+ |AQa0, fo = A2F0e™¥ +coc. + |A|*Fa, (75)

where the nonoscillatory (in the short time scale) components of the velocity field, uzo and wag, will be considered
in §4, while (U1, W1, Q1, F1), (U22, Waz,Q22, F22) and (Q20, F2o) are given by

Upr + 77U + Wy, = Upgr + 77 U + W, =0, _ (76)
QUL + Q1r — (1 + 2)arUo = 2iQUa2 + Q227 = Q20r =0, (77)
QW) + Q1 — (1 4+ i)asWo = 2iQWas + Q22 = Q20- = 0, (78)
Wi=+(1-)Wo,/V2Q,  Wa=0 at z==z=A, (79)
Uy —iQF; + (1 + i)ay Fo = Upy — 2iQFp0 + FoUop, — FsWo =0 at r=1, (80)
Qi+ Fi+ F!' = Qoo+ Fag + Fih + FoQor — FE + (Fy? —WE+ Q?F3)[2=0 at r=1, (81)
Q20 + Foo + Fiby + (FoQor + c.c.) = 2| Fo|® + |F§|? — |[Wo|® — Q*|Fo|> =0 at r=1, (82)
Fi(£A) = Fp(£A) = Fao(£A) = f ! Fidz = j ' (Fao+ F§ [2)dz = f ' (F20+|Fol|*)dz = 0, (83)
N 1 —-A —-A -A :
f_ ) /ﬂ (UoUs + WoWs)rdrdz = 0. (84)

Notice that us has no oscillatory terms with frequency 2 in the short time scale; this is a consequence of condition
(14b) for k = 2. Then K3 = 0 in (34) (see (38)); since, in addition, H, = 0 (see (63)), we have

1
/ Uo(r, A)tige (r, 0)rdr = independent of £. (85)
0

Also, the problem posed by (76)-(81) and (83)-(84) giving (U1, W1, Q1, F1) possesses a solution if and only if the
constant «; is as given in (64), as is readily seen (upon multiplication of (77), (78) and the second and third
equations in (17) by rUs, rWo, —rU; and —rW; respectively, addition, integrationin —A < z < A, 0 < r < 1,
integration by parts and substitution of (17)-(20), (76), (79)-(81) and (83)).

If (64) holds then (76)-(81) and (83)-(84) uniquely define Uy, Wi, Q; and Fj, that may be obtained in a

semianalytical form. In particular, J; and Fj are given by

Q1 =~ (1-1)[bQo +8Qo/0A]+ Y balo(lnr) coslln(z + A)]/V2Q (86a)
n odd
Fy = — (1—i)[bFo + 8Fy /A + 2A(09/0A — 01V/29) sin z/(Q cos A)]
+ Z bnrn cos[ln (z + A)]/V29, (87a)
n odd

if Q is a solution of the first equation in (67), or

Q1=—(1-14)BQo +8Qo/0Al+ D balo(lnr)coslla(z + A)]/V2Q (86b)

n even

Fy =— (1—1)[bFo + 8Fo/0A + 2A(09/0A — a1 V29) cos z/(Q2sin A)]
+ D barncoslin(z +A)]/V20, (87b)

n even

if Q is a solution of the second equation in (67); U; and W; are given by

U, = [inr + (1 - i)ﬂ}_Uo]/Q, Wi = [iQIz + (1 = z')aqu]/Q- (88)
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Here the constant b, is given by
b, = 2Q(8Q/OA — a1V2Q)gnan/(Q%gn — sn) forn=0,1,...,

and the constants an, In, gn, rn and s, are as given in (68)-(69). The results below do not depend on the constant
b, that is uniquely determined by (84).

Similarly, if neither Q; = 2Q nor Q; = 0 are solutions of the second equation (67), then (76)-(83) uniquely
define (Uszz, Waa, Q22, F22) and (Q20, F2o), that may be written in a semianalytical form as

Q22 = 20%co + 492 _ carIo(2Ukr) cos[2k (2 + A)] (89)
k=1
Fao = i[F3(2)Wo(1, z) — Fo(2)Uor(1,2)]/2Q + 2 Z corli Iy (2k) cos[20k (z + A)], (90)
k=1
Usa = iQ22-/2Q,  Wap = iQ22:/29, (91)
Q20 = D3 — g0/2, (92)
Fyo= Dscosz—Ds— Y goi(1— 41) ™" cos[2lx (z + A)), (93)
k=1

where

A =]
D, = f Fo(2)2dz/4A+ Y [saxear +2(1 — 417)d2x g2k ] / (49%q2x — s2:) (1 - 413),
-A k=1

Dy =Acot A — 1+ 8Q? Z ror/ (492 ok — s2k),
k=0

tanAi(l —42)"1gy, +/ﬁ |Fo(2)|%dz/2 /(A— tan A),

k=1

D3=

k=1

o0 A
Ds= [A Y (1 —4) g + / |Fn(z)|2dz/2] / (AcosA —sinA),
—A
and for n > 0, the constants I,,, 7y, ¢, and s, are as given in (69), while c,,, dn, e, and g, are as given by

¢n =[2D1/Dy + (1 = 12)dn/2 + en] /(492°qn — 54),
A
d, = — i/ [F5(2)Wo(1, z) — Fo(2)Uor(1, z)] coslln (z + A)Jdz/(AQ),
-A
A
= / [(2 - 3Q%) Fo(2)? + Wo(1,2)? — Fg(z)*] coslla(z + A)]dz/2A,
-A
A
= [ 1@ =2) IFa(e) = Wo(L, ) + F§(2) ] cosln(z + A)de/A
-A
Now Hs, Hs and Hs are readily obtained upon substitution of (13) (with the terms of orders eV/C and ¢?
as given by (73)-(75)) and (15b) into (58)-(61), substitution of the resulting equations into (57) and setting to
zero the coefficients of C, €2+/C and €3, to obtain (after some algebraic manipulations)
Hy=—aA, Hy=0, Hs=iozA|A]% (94)

where the real constants a; and a3 are given by
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A
(2= 2-20/9) [ Fo(2)Qul1,2)dz = ~4F(M)FY (A) (95)
-A
1
+(1+i) f Qor (7, A) Q1 (, AYrdr /2P
0

+ [“1[2Q0(1,Z)2 - Qng(Z)z - (1 +£)01F1(2)Qg(1,z)]dz

A A
2(as/Q) f_ \ Fo(2)Qo(1,2)dz = f_ X (2 - 3Q%) FoFay — FyF3y + (2 — Q%) FoFao — FyFyg (96)
A
—2Wu(1, Z)ng(l, z) — (Fzz + F20)Qo(1, z)} Fodz + fA(ng — on)Wn(l, z)zdz

A
+ f [(111«}, + 1TFY)FL? + 4(Fo + F§')Fy Fo — (6 + Q%) F3 — FoWo(1, 2)2] Fodz/2.
—A

In order to obtain (93)-(96) we have taken into account that iUy, iWy, Qo and Fy are real (see (68)-(70) or (71));
also we have used (63), (66), (85) and the following equations

1 0 ~ 1
‘[D f Uo(r, A)[Uo(r,€) — Ug(r, A)]rdrdé = —(1 - i)fo rUs(r,A)%dr /\/ﬁ, (97)
Uos (r, A) = Wor(r, A) = 0 (98)
A 1 A
] f (UoUs + WoWi)rdrdz = f [—en(1 - i) FoQo(1,2)/Q — F1Qo(1,2)]dz (99)
—aJo —A

A p
[ [ (02 + U8+ W+ Wy + 03] dr
-AJo
A
= 4Fj(A)Fy (A) + [ [Q%F] + 2F;'Qo(1,2)] dz, (100)
-A
1 Q 1
/ Uo(r, )ty (r,0)rdr = |—(1 +£)J;/ Uo(r, A)Ur(r, A)rdr
0 0
1
+a; / Uo(r, A)?rdr / \/29] Ae 1 c.c. (101)
0
Egs. (97) and (98) readily follow from (18), (19), (32) and (35). Eq. (99) is obtained by multiplying the first
equation in (77) and (78) by rU, and rW, respectively, adding, integrating in —A < z < A, 0 < r < 1 and
integrating by parts. Similarly, (100) is obtained by multiplying the equations
Uorr + Upzz + r—lU[)r = 1"_ZUI‘J = Worr + Wo.: + r_lwﬂr =0

(that are readily obtained from (17)) by rUp and rW, respectively, adding, integratingin —~A <z <A, 0<r<1
and integrating by parts. Equation (101) is readily obtained when taking into account (33) and (36).



