Supplementary material

Firn cold content evolution at nine sites on the Greenland ice sheet since 1998

B. Vandecrux^{1,2}, R. S. Fausto¹, J.E. Box¹, D. van As¹, W. Colgan¹, P. L. Langen³, K. Haubner^{1,4}, T. Ingeman-

Nielsen², A. Heilig⁵, C. Max Stevens⁶, M. MacFerrin⁷, M. Niwano⁸, K. Steffen⁹

¹ Geological Survey of Denmark and Greenland, Copenhagen, Denmark.

² Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark.

³ Research and Development, Danish Meteorological Institute, Copenhagen, Denmark

⁴ Université Libre de Bruxelles, Brussels, Belgium

⁵ Department of Earth and Environmental Sciences, LMU, Munich, Germany

⁶ Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO USA

⁷ Department of Earth and Space Sciences, University of Washington, WA USA

⁸ Climate Research Department, Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

⁹ Swiss Federal Institute for Forest, Snow, and Landscape Research (WSL), Birmensdorf, Switzerland

Correspondence to: B. Vandecrux (bav@geus.dk)

Station	Gap-filling dataset	Statistic	Meteorological variable							
			Ta ₁ (oC)	Ta ₂ (°C)	$SW\downarrow (W m^{-2})$	P (hPa)	RH ₁ (%)	RH ₂ (%)	$WS_1 (m s^{-1})$	$WS_2 (m s^{-1})$
CP1		Part of the dataset (%)	4.14	4.14	10.95	10.07	4.14	2.60	3.82	4.06
	CP2	RMSE	2.44	2.46	24.53	2.29	3.94	2.55	1.85	1.84
		R ² (-)	0.96	0.96	0.99	0.92	0.81	0.92	0.62	0.66
CP1	Swiss Camp	Part of the dataset (%)	21.85	17.31	0.00	35.64	15.25	19.42	16.56	17.68
		RMSE	4.32	4.27	-	3.04	7.17	7.32	2.69	2.63
		R ² (-)	0.85	0.85	-	0.78	0.40	0.42	0.27	0.30
CP1	RACMO2.3p2	Part of the dataset (%)	5.11	11.14	42.06	8.88	19.31	21.67	10.01	11.78
		RMSE	4.36	4.31	51.21	2.29	6.23	5.91	2.50	2.37
		R ² (-)	0.85	0.85	0.94	0.88	0.51	0.54	0.35	0.40
Dye-2	KAN_U	Part of the dataset (%)	0.00	6.62	4.97	24.38	0.00	24.21	0.00	6.53
		RMSE	-	1.87	58.60	3.37	-	6.53	-	2.59
		R ² (-)	-	0.97	0.95	0.94	-	0.53	-	0.73
Dye-2	RACMO2.3p2	Part of the dataset (%)	20.22	6.14	25.50	38.02	22.94	14.46	25.77	20.11
		RMSE	2.80	2.76	43.48	2.63	6.19	6.05	1.92	2.14
		R ² (-)	0.94	0.94	0.97	0.95	0.59	0.54	0.77	0.76
		Part of the dataset (%)	21.00	18.65	38.72	16.24	37.80	41.34	36.90	40.73
NASA-SE	RACMO2.3p2	RMSE	3.43	3.31	46.27	2.74	6.05	5.96	2.19	2.28
		R ² (-)	0.90	0.91	0.97	0.96	0.53	0.55	0.62	0.52
NASA-U	RACMO2.3p2	Part of the dataset (%)	41.95	44.57	36.58	78.69	41.79	59.61	42.24	44.85
		RMSE	3.42	3.41	42.26	2.60	5.88	5.85	1.69	1.72
		R ² (-)	0.92	0.92	0.96	0.95	0.60	0.61	0.64	0.66
	RACMO2.3p2	Part of the dataset (%)	25.39	18.21	29.45	10.53	38.03	38.52	37.45	27.75
Saddle		RMSE	3.22	3.21	43.41	1.27	6.17	6.52	2.23	2.27
		R ² (-)	0.92	0.92	0.97	0.99	0.62	0.60	0.68	0.67
South Dome	RACMO2.3p2	Part of the dataset (%)	29.61	31.04	43.72	86.47	48.78	56.27	38.65	36.12
		RMSE	2.87	2.92	58.69	2.28	7.46	7.80	2.45	2.38
		\mathbb{R}^2	0.92	0.91	0.94	0.85	0.51	0.48	0.68	0.70
NASA-E	RACMO2.3p2	Part of the dataset (%)	11.69	16.33	49.03	13.19	35.14	16.56	30.95	23.97
		RMSE	4.60	4.59	53.86	3.97	6.71	6.44	2.69	2.47
		R ²	0.87	0.86	0.93	0.86	0.58	0.60	0.32	0.37
Summit	NOAA	Part of the dataset (%)	6.69	5.64	2.83	0.00	4.07	1.90	9.61	7.16
		RMSE	1.73	1.72	34.16	-	5.62	5.23	1.58	1.25
		\mathbb{R}^2	0.98	0.98	0.98	-	0.78	0.78	0.72	0.83
Summit	ETH	Part of the dataset (%)	0.00	0.00	2.50	0.00	0.00	0.00	0.00	0.00
		RMSE	-	-	31.31	-	-	-	-	-
		\mathbb{R}^2	-	-	0.98	-	-	-	-	-
Summit	RACMO2.3p2	Part of the dataset (%)	17.45	11.53	21.83	99.79	21.44	17.11	20.12	16.07
		RMSE	4.30	4.23	40.47	5.93	7.60	7.31	1.81	1.78
		\mathbb{R}^2	0.90	0.89	0.97	0.34	0.58	0.58	0.60	0.65
Tunu-N		Part of the dataset (%)	12.39	12.38	32.20	11.74	12.77	25.31	14.63	13.17
	RACMO2.3p2	RMSE	3.21	3.19	35.55	2.00	5.68	5.23	1.34	1.37
		R ²	0.94	0.94	0.97	0.97	0.65	0.70	0.61	0.62

Table S2: Snow pits used for the calibration of the station-derived snow accumulation. SWE are given from the previous summer's horizon.

Station	Date	SWE (mm w.eq.)	Investigators	DYE-2	1-Oct-2016	60
CP1	11-May-1995	597		DYE-2	24-Apr-2016	313
CP1	11-May-1996	289		DYE-2	28-Apr-2016	394.7
CP1	11-May-1997	475		DYE-2	2-May-2016	400.1
CP1	11-May-1998	491		DYE-2	21-May-2015	312.8
CP1	26-May-1999	430		DYE-2	21-May-2015	283.5
CP1	11-May-2000	467	K. Steffen, J. Box, M. Albert, N. Cullen, R.	DYE-2	2-May-2016	304.4
CP1	28-May-2001	336	Hull, J. Webel, S. Starkweather, N. F. Molotch	DYE-2	12-May-2017	294.3
CP1	8-May-2002	340				
CP1	11-May-2003	471		South Dome	22-Apr-1999	549
CP1	5-May-2008	501		South Dome	15-May-2009	468
CP1	9-May-2010	362		South Dome	27-Apr-2015	677
CP1	26-May-2015	356.6				
CP1	17-May-2016	478.4	C. Max Stevens	Saddle	26-May-2005	408
CP1	17-May-2017	401.72	C. Max Stevens	Saddle	3-May-2008	422
				Saddle	22-May-2013	360
Summit	11-May-1996	212		Saddle	24-Apr-2015	435
Summit	11-May-1997	219		Saddle	30-Apr-2015	290
Summit	11-May-1998	153		Saddle	8-May-2017	409.6
Summit	12-May-1999	226		Saddle	6-May-2016	381.6
Summit	11-May-2000	205		Saddle	16-May-2015	347.7
Summit	10-Jun-2001	226	K. Steffen, J. Box, M. Albert, N. Cullen, R.			
Summit	10-Jun-2001	256	Hull, J. Webel, S. Starkweather, N. F. Molotch	TUNU-N	28-May-2013	96
Summit	11-May-2002	168			20 1149 2010	20
Summit	11-May-2003	212				
Summit	11-May-2004	245		NASA-SE	26-Apr-2015	445
Summit	26-Apr-2005	290		NASA-SE	4-May-2016	590.8
Summit	15-May-2016	246	C. Max Stevens	NASA-SE	4-May-2016	620.2
Summit	29-May-2015	208.9	C. Max Stevens	NASA-SE	4-May-2016	624.9
Summit	28-May-2015	201.4	C. Max Stevens	NASA-SE	5-May-2017	695
				NASA-SE	11-May-2015	548.3
DYE-2	18-Apr-1999	334				
DYE-2	12-May-2000	293		NASA-E	2-May-2008	133
DYE-2	26-May-2002	450		NASA-E	28-May-2013	145
DYE-2	3-May-2008	341	K. Steffen, J. Box, M. Albert, N. Cullen, R.			
DYE-2	16-May-2009	453	mun, J. weber, S. Starkweather, N. P. Molotch	NASA-U	2-May-2008	230
DYE-2	1-May-2010	172		NASA-U	22-May-2013	281
DYE-2	22-May-2013	217			-	

Achim Heilig Achim Heilig Achim Heilig

Achim Heilig, Baptiste Vandecrux Achim Heilig

K. Steffen, J. Box, M. Albert, N. Cullen, R. Huff, J. Weber, S. Starkweather, N. P. Molotch

K. Steffen, J. Box, M. Albert, N. Cullen, R. Huff, J. Weber, S. Starkweather, N. P. Molotch

Achim Heilig C. Max Stevens

K. Steffen, J. Box, M. Albert, N. Cullen, R. Huff, J. Weber, S. Starkweather, N. P. Molotch

K. Steffen, J. Box, M. Albert, N. Cullen, R. Huff, J. Weber, S. Starkweather, N. P. Molotch Aleah Sommers C. Max Stevens C. Max Stevens Achim Heilig

K. Steffen, J. Box, M. Albert, N. Cullen, R. Huff, J. Weber, S. Starkweather, N. P. Molotch

K. Steffen, J. Box, M. Albert, N. Cullen, R. Huff, J. Weber, S. Starkweather, N. P. Molotch

b) DYE-2

