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Supplemental Information:
Thermal controls on ice stream shear margins
by Pierce Hunter, Colin Meyer, Brent Minchew, Marianne Haseloff, and Alan Rempel

S1. CONSISTENCY CHECK ON ADVECTIVE TRANSPORT ASSUMPTIONS

Haseloff and others (2019) present an approximation for in-plane lateral and vertical advection from a supplying ice ridge on

a two-dimensional cross-section of variable thickness. An example advection profile using this approximation applied to an ice

stream of uniform thickness H is shows in fig. S1. This approach approximates these smaller velocity components effectively,

thereby significantly simplifying numerical computations. The analytical solution relies on the depth-averaged mass balance,

assuming incompressibility, with uniform ice thickness H, so that
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H
, (S1)

which requires downstream velocity u. However, since downstream velocity is not known a priori, while the lateral and vertical

advective transport approximations we seek are expected to be relatively insensitive to minor errors in the u profile, we

approximate this velocity component as negligible within the ridge and use the free-slip solution within the stream, which

assumes homogeneous ice rheology, (e.g. Raymond, 2000)

Fig. S1. The combined lateral and vertical advection profile for an idealized stream assuming spatially uniform 20 cm yr−1 accumulation

and δy = 2. We specify no slip under the ridge (−W ≤ −y ≤ −Wm), and fixed basal friction under the stream (−Wm ≤ −y ≤ 0). Lateral

velocity v is much greater than vertical velocity w through the majority of the cross-section.
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0 for Wm ≤ |y| ≤W.
(S2)

Figure S2 shows that the approximation for u used in the derivation of v and w is in good agreement with calculated values

of downstream velocity for present-day conditions at the three Bindschadler Ice Stream cross-sections examined in the main

paper. The approximation differs from the modeled velocity output most significantly near the margin, and most drastically

when temperate ice is present (i.e. Downstream-S). The maximum error is between 5 and 10% of the stream center maximum

uc, which is around 400 m yr−1 for Upstream-N and Upstream-S, and closer to 700 m yr−1 for Downstream-S. The tendency,

in the presence of temperate ice, for flow near the margin to be underestimated by a plug flow approximation is consistent

with the expectation that temperate ice leads to significant softening within the margin, thus allowing much higher strain

rates, and much higher velocities on the stream side of the domain, near the margin. Because lateral advection is driven by

flow from the ridge (where our approximation holds more clearly), we do not expect this slight under-estimation in stream

velocity near the margin to cause any significant change to our modeled temperature profiles.
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Fig. S2. Here, we show—for each of three BIS cross sections: Upstream-N (column 1), Upstream-S (column 2), Downstream-S (column

3) (see fig. 6 for locations)—(a) approximate velocity profiles using equation (S2) under present day conditions, (b) velocity profiles taken

from simulation output, and (c) the difference between the approximate and modeled velocities. The maximum error within each profile

is between 5 and 10% of the stream center maximum velocity uc.
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S2. SCALING ANALYSIS

Shear heating vs. advection

We want to analyze the behaviors between the nondimensional parameters found in fig. 5 of the main text, which estimate

the requirements for the development of temperate ice, corresponding to a fundamental change in shear margin behavior from

cold and rigid, to warm and soft. We look, first, to the energy balance equation where conduction is balanced by advective

heat transport and shear heating,
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which we will use to estimate the behavioral trends between shear heating and advection. This relationship, as seen in fig. 5

of the main text, is not dependent on driving stress. This point is evidenced by taking the plots from fig. 3 of the main text,

and overlaying them on top of one another. We stack the plots with the lowest accommodated driving stress (leftmost) on

top, and plot contour lines corresponding the same temperate fraction in each panel. The results of this analysis are found in

fig. S3, with (a) δy = 2 corresponding to the top row of fig. 3, and (b) δy = 3 corresponding to the bottom row of fig. 3.

Fig. S3. The plots from fig. 3 overlaid on top of each other with (a) δy = 2 and (b) δy = 3, plotted in Br–Pe space (see table 2 for

definitions). Each panel from fig. 3 is represented by a unique contour line shade. We find that each contour line is nearly continuous, an

indicator that—for each set of geometric bounds—temperate volume is almost entirely controlled by Pe and Br and much less sensitive

to driving stress.

Figure 5 in the main paper demonstrates clear and consistent scaling relationships for Gamax and the corresponding value

of Br. To build further understanding of these relationships, we are drawn to examine how the energy balance scales near the

melting point. Accordingly, we define a scale for each variable as:

[k] = k0, (S4)

[c] = c0, (S5)

[v] =
ȧ

H
(W −Wm) , (S6)

[w] = ȧ, (S7)

[T ] = Tm − Ts = ∆T, (S8)

[y] = Wm, (S9)

[z] = H, (S10)
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Here, k0 = k (0 ◦C), c0 = c (0 ◦C), A0 = A (0 ◦C), W is the domain half-width, Wm is the ice stream half-width, H is the ice

thickness, ȧ is the average annual accumulation rate, uc is the stream center velocity, and L is a representative length scale.

We can now approximate the energy balance in equation (S3) using these scales while isolating shear heating, which yields
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where δy ≡ W/Wm. Dividing all terms by the vertical conduction and defining another aspect ratio δz ≡ H/Wm gives the

relation
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Plugging in Br and Pe where applicable (see table 2 in the main text) simplifies the expression to(
A∗
A0

)1/n

Br
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= Peδy − δ2z − 1; (S14)

and solving for Br, while recognizing that shear margin dimensions are comparable to ice depth so that L ∼ H, gives the

relationship

Br =
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A∗

)1/n [
Peδy − δ2z − 1

]
. (S15)

We prefer to give relations to δy in terms of the ridge extent (δy − 1), so the final form of the energy balance that emerges

from our scaling analysis becomes (using Ā ≡ A0/A∗)

Br = Ā1/n
Pe (δy − 1) + Ā1/n

Pe− Ā1/n
(
δ2z + 1

)
. (S16)

In fig. 5 of the main text we see the relation between Br and Pe (while holding δy constant), such that

Br = 2.60 Pe + 0.36; (S17)

and using the scaling analysis presented here we would expect the relationship

Br = 3.8 Pe− 1.9. (S18)

The scaling analysis matches the linear dependence and has coefficients with the correct magnitudes, though they do differ

from those produced by the numerical model; the offset may partly be ascribed to the thermoviscous feedback that is not fully

captured by the Brinkman number (which does not include the temperature dependence of viscosity). We also compare the

model results with the predicted relation between Br and (δy − 1). Our model predicted the linear relation

Br = 15.00 (δy − 1) + 0.59, (S19)

and the scaling analysis done here predicts the relation

Br = 11.2 (δy − 1) + 9.27. (S20)

Again, the scaling analysis performed here predicts the linear relationship between shear heating and the ridge extent, while

the coefficients differ somewhat.

Gravitational forcing vs. thickness-to-width ratio

We now turn to the thickness-to-width ratio (δz) and explore what control that has on the system, starting with the global

ice stream force equilibrium, expressed as

ρgH sinαWm = τbWm + η
∂u

∂y
H, (S21)

so that the net downstream driving force of gravity is balanced by basal friction and viscous lateral drag. A key feature of this

system is the large changes in viscosity with temperature over the model domain. To evaluate the scale of viscous stresses, we

focus on the near-margin region, where velocity changes dramatically over a horizontal length scale L (i.e. [∂u/∂y] ∼ uc/L)

and we approximate the characteristic viscosity as

[η] = A
−1/n
0

(
uc
L

)(1−n)/n
. (S22)

Expressing τb as a fraction fτb of the driving stress (fτbρgH sinα), and rearranging equation (S21) yields

(1− fτb)
A
1/n
0 ρgHL1/n sinα

u
1/n
c

= δz , (S23)
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Fig. S4. (a) Gaonset plotted against Gamax for each of the scenarios detailed in fig. 4 of the main text. (b) the same data zoomed in

on the region depicted by the black square, with the δz data excluded. (c) Br [Gaonset] plotted against Br [Gamax] for each of the three

scenarios. The 1:1 line for each plot is traced by the black dashed line.

so that upon substituting in for Ga (see table 2 in the main text) we obtain

(1− fτb)

(
A0L

A∗H

)1/n

Ga = δz . (S24)

Solving for Ga, while approximating the margin length scale as comparable to the ice depth so that L ∼ H and defining the

relation f̄τb ≡ (1− fτb), gives the final form

Ga = Ā−1/nf̄−1
τb δz . (S25)

The relation we find in fig. 5 of the main text is

Ga = 1.20 δz − 0.032, (S26)

and using equation (S25) we get the relationship

Ga = 0.75 δz , (S27)

so, much like in the advection vs. shear heating case, we are able to capture the overall behavioral trends inherent in the

system, but are unable to match the subtlety of the thermoviscous feedback.

Galilei number: Temperate onset vs. maximum value

In our idealized ice stream study, we present the best fit lines for the location of the maximum Galilei value under a series

of targeted parameter sweeps. Here we compare Gamax to the value for temperate onset Gaonset, denoted by filled markers in

fig. 4 from the main text. We note that in the colder regimes (i.e. high Pe, high δy, or low δz) Gaonset occurs before Gamax is

reached, with the opposite true for warmer regimes. This behavior suggests, in the case of a colder margin, a larger temperate

zone is required to initiate the shift in shear margin behavior from cold and rigid, to warm and soft; in the case of a warmer

regime this shift in behavior may occur before any temperate ice is present in the system. Figure S4 shows the linear relation

between Gaonset and Gamax when δz is varied; in this scenario Gaonset ≈ Gamax leading to the near perfect linearity. Plot (b)

zooms in on the boxed region within plot (a), and isolates the cases where advection rates are varied (i.e. Pe or δy). While

the relation here is still semi-linear in nature, Gamax does increase at a slightly higher rate as Gaonset increases. We also do

a similar comparison for the corresponding Brinkman values (Br [Gaonset] vs Br [Gamax]), which is presented in plot (c), and

find that the amount of shear heating required to reach Gamax increases drastically in the colder regimes, whereas the shear

heating to initiate temperate onset does not change as dramatically.

S3. RESOLUTION ANALYSIS

To examine the accuracy of our numerical approach we focus on the slip/no-slip transition point along the bed, which is the

only discontinuity in our model domain. We want to ensure that the discontinuity is resolved well enough for the primary

model outputs (T , u) to converge, but that the mesh is not so dense as to be computationally infeasible. To test accuracy we

looked at a series of built-in and custom resolutions. To illustrate this we pick three different resolutions in nondimensional

space, a low resolution (minimum element size 2 × 10−5, maximum size 6.4 × 10−3), a high resolution (5 × 10−6 minimum,

1.6×10−3 maximum), and a variable resolution (1×10−5 minimum, 1×10−2 maximum). For the low and high resolution cases

we allow COMSOL to choose the resolution throughout the domain, and in the variable case we force higher resolution near
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Fig. S5. Shear melt rates from the Upstream-S cross section of Bindschadler under emissions scenario RCP 8.5 conditions predicted at

the year 2300. The top image is zoomed into the slip/no-slip transition with 250 m on either side of the singularity, and a vertical extent

of 250 m shown. We would not expect to see temperate ice in this region under these conditions, however, when the data is interpolated

we do see shear melting. When vertically integrated these interpolated values give non-negligible shear melt rates. To remedy this we

instead use a moving average over 200 m increments for shear melt rate only (as opposed to melting from friction along the bed). We

also give the shear melt rate, integrated laterally across this 500 m region, suggesting that even with high resolution, the singularity is

integrable and provides a relatively small amount of meltwater to the subglacial system.

the discontinuity. For each resolution, we run a simulation on a model geometry from our BIS case study (Upstream-S) under

RCP 8.5 conditions predicted at year 2300. This simulation is useful for a resolution analysis because, although this simulation

produces temperate ice, we do not expect it to be concentrated at the slip/no-slip boundary. However, due to temperate ice

forming elsewhere in the domain, the strain rates under these conditions are high enough to give the appearance of temperate

ice having been produced at the transition point.

To get the shear melt-rate profile for each simulation we extract the data from the model, which is given as three column

vectors—one for y, one for z, and the last for the shear melt rate ṁs—and cast this to a regular grid, which can then

be integrated vertically for basal melt distribution, and both laterally and vertically for total meltwater supply. We utilize

interpolation techniques to get values within the domain, but this only works for grid points sufficiently far from the stress

singularity. As seen in fig. S5, where the top row is a natural interpolation (continuous under differentiation), the high strain

rates from the singularity produce a small, non-negligible temperate ice zone. When the values are integrated vertically to get

a melt distribution rate at the bed (shown in fig. S5, bottom row, solid black line) we see melt rates upwards of 2 cm yr−1,

which is comparable to the total melt distribution rates given in fig. 8. These values result from high strain-rates near an

integrable singularity that is characterized by a finite total rate of heat input. To reduce model sensitivity to grid resolution

near the singularity, we calculate moving averages over a fixed 200 m horizontal dimension, providing more representative melt

rates shown with the red lines in the bottom row of fig. S5. As expected, we find that the rate of melt input at the slip/no-slip

boundary is relatively small, and the total melt production near the singularity is nearly independent of the grid resolution.

When the same averaging procedure is followed away from the slip/no-slip transition, the results match the interpolated values.
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