Hibonite-spinel-corundum-hematite assemblage in plagioclase-clinopyroxene pyrometamorphic rock, Hatrurim Basin, Israel: chemical composition, genesis and temperature estimation

Victor V. Sharygin

Supplementary data

Supplementary data

Fig. S1 A-B.

A. Generalized geology of the Dead Sea Transform area with locations of the Mottled Zone complexes, gas fields, asphalt shows, and oil wells, after (Nissenbaum and Goldberg, 1980; Gardosh et al., 1996, 2008; Hall et al., 2005; Sokol et al., 2010, 2014).

B. Generalized geological map of Hatrurim Basin. Geology simplified after the 1:200,000 Geological Map of Israel (Bentor et al., 1965; Picard and Golani, 1965; Shen et al., 1998), after (Hall et al., 2005), as well as after (Burg et al., 1991; 1999; Sokol et al., 2007, 2010).

1 - Pleistocene sand, carbonate, and clay marine sediments (Q);

2 – Maastrichtian organic-rich marine chalk (K₂m);

 $3 - Campanian (K_2k)$, Santonian (K_2kk), and Turonian (K_2t) limestone, chalk, and dolomite with chert and phosphorite intercalations;

- 4 Cenomanian (K₂c₃, K₂c₂) limestone, dolomite, and chalk;
- 5 Hatrurim Formation rocks;
- 6 observed (a) and inferred (b) faults;
- 7 folds;
- 8 stratigraphic boundaries;
- 9 Gurim anticline;
- 10 fragment of map, shown in Fig. S1 C.

- Bentor, Y.K., Vroman, A., Zak, I. (Eds.), 1965. Geological Map of Israel. Scale 1:250,000. Southern Sheet, Geol. Surv. Isr., Jerusalem, sheets 1–2.
- Burg, A., Starinsky, A., Bartov, Y., Kolodny, Y., 1991. Geology of the Hatrurim Formation ("Mottled Zone") in the Hatrurim basin. Isr. J. Earth Sci. 40, 107–124.
- Burg, A., Kolodny, Ye., Lyakhovsky, V., 1999. Hatrurim-2000: The "Mottled Zone" revisited, forty years later. Isr. J. Earth Sci. 48, 209–223.
- Gardosh, M., Kashai, E., Salhov, S., Shulman, H., Tannenbaum, E., 1996. Hydrocarbon explosion in the southern Dead Sea area. In: Niemi, T.N., Ben-Avraham, Z., Gat, J.R. (Eds.), The Dead Sea: the Lake and its Setting. Oxford Press, Oxford, pp. 57–72.
- Gardosh, M., Druckman, Y., Buchbinder, B., Rybakov, M., 2008. The Levant Basin Offshore Israel: Stratigraphy, Structure, Tectonic Evolution and Implications for Hydrocarbon Exploration. Revised edition. Geological Survey of Israel Report GSC/4, Jerusalem, 119 p.
- Hall, J.K., Krasheninnikov, A., Hirsch, F., Benjamini, C., Flexer, A., 2005. Geological framework of the Levant. Volume II: The Levantine Basin and Israel. Historical Productions - Hall, Jerusalem, pp. 826.
- Nissenbaum, A., Goldberg, M., 1980. Asphalts, heavy oils, ozocerite and gases in the Dead Sea Basin. Org. Geochem. 2, 167–180.
- Picard, L.Y., Golani, U. (Eds.), 1965. Geological Map of Israel. Scale 1:250,000. Northern Sheet. Geol. Surv. Isr., Jerusalem, sheets 1–2.
- Shen, A., Bartov, Y., Rosensaft, M., Weissbort, T. (Eds.), 1998. Geological Map of Israel. Scale 1:200,000. Geol. Surv. Isr., Jerusalem, sheets 1–4.
- Sokol, E.V., Novikov, I.S., Vapnik, Ye., Sharygin, V.V., 2007. Gas fire from mud volcanoes as a trigger for the appearance of high temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Dokl. Earth Sci. 413A, 474–480.
- Sokol, E.V., Novikov, I.S., Zateeva, S.N., Vapnik, Ye, Shagam, R., Kozmenko, O.A., 2010. Combustion metamorphism in Nabi Musa dome: New implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Res. 22 (6), 414–438.
- Sokol E., Kozmenko O., Tomilenko A., Sokol I., Smirnov S., Korzhova S., Kokh S., Ryazanova T., Reutsky V., Vapnik Ye., Deyak M. Geochemical assessment of hydrocarbons migration phenomena: Case studies from the south-western margin of the Dead Sea Basin // Journal of Asian Earth Sciences, 2014, v. 93, p. 211-228

- **Fig. S1 C.** Geological map of NW part of Hatrurim Basin, modified after the 1:50.000 Geological Map of Israel (Hirsch et al., 2010).
- 1 Pleistocene terrace conglomerates (Q₁, Q₂, Q₃);
- 2 Maastrichtian organic-rich marine chalk (K₂m);
- $3 Campanian (K_2k)$, Santonian (K₂kk), and Turonian (K₂t) limestone, chalk, and dolomite with chert and phosphorite intercalations;
- 4 Cenomanian (K₂c₃) limestone, dolomite, and chalk;
- 5 Low-grade Hatrurim Formation rocks;
- 6 Larnite rocks (High-grade Hatrurim Formation rocks);
- 7 the "Olive rocks" (Hatrurim Formation);
- 8 Spurrite marbles (Medium-grade Hatrurim Formation rocks);
- 9 Pseudoconglomerates;
- 10 Faults;
- 11 Road;
- 12 Wadi;
- 13 Sampling site.
- Hirsch, F., Burg, A., Avni, Y. (Eds.), 2010. Geological Map of Israel. Scale 1:50,000. Geol. Surv. Isr., Jerusalem, Arad sheet 15–IV.

Fig. S2. Mineral association in plagioclase-clinopyroxene rock, Hatrurim Basin, BSE images. Symbols: An – anorthite; Cpx – clinopyroxene; Qu – SiO₂ polymorph; Ap – fluorapatite; Ttn – titanite; Hem – hematite, Adr – Tiandradite; Cc – calcite; Zeol – zeolite-supergroup minerals; Hyl – "hyalophane"; Brt – baryte; vs – vesicle.

Fig. S3. Mineral relations in leucocratic zone of plagioclase-clinopyroxene rock, Hatrurim Basin, BSE images and photo in polarized light.

Symbols: An – anorthite; Hem – hematite; Cc – calcite; vs – vesicle; OS – opaque corundum-bearing segregation; Cpx - clinopyroxene; Ap – fluorapatite; Qu – SiO₂ polymorph; Zeol – zeolite-supergroup minerals; Kfs – K-feldspar; Anh – bassanite-anhydride.

Fig. S4. Opaque minerals in leucocratic zone of plagioclase-clinopyroxene rock, Hatrurim Basin, BSE images. Symbols: An – anorthite; Hem – hematite; Ilm – hemoilmenite; Tnt – titanite; Cc – calcite; vs – vesicle; Cpx - clinopyroxene; Ap – fluorapatite; Qu – SiO₂ polymorph; Zeol – a zeolite-supergroup mineral; Kfs – K-feldspar; Prv – perovskite; Cr-Hem-Cr-Spl – Cr-rich hematite and spinel.

Fig. S5. BSE images and elemental maps for individual intergrowths in opaque isolation from host plagioclaseclinopyroxene rock, Hatrurim Basin, Israel. Crn – corundum, Spl – spinel, Hem – hematite, Hib – hibonite, An – anorthite, Ap – fluorapatite, Ilm – ilmenite.

Fig. S6. Raman spectra for mineral intergrowth in anorthite from the opaque segregation, plagioclase-clinopyroxene rock, Hatrurim Basin (BSE image and chemical composition). Symbols: Hem – hematite, Crn – corundum, Hib – hibonite, Cc – calcite, Spl – spinel, An – anorthite; fi – fluid inclusions in corundum.

	SiO ₂	TiO ₂	Cr ₂ O ₃	V_2O_3	Al ₂ O ₃	FeO	MnO	MgO	CaO	SrO	BaO	Na ₂ O	K ₂ O	P ₂ O ₅	SO ₃	F	Cl	Sum
Anort	hite																	
	42.96	n.a.	n.a.	n.a.	35.54	0.55	n.a.	n.a.	19.50	n.a.	n.a.	0.26	0.00	n.a.	n.a.	n.a.	n.a.	98.81
	44.03	n.a.	n.a.	n.a.	35.69	0.64	n.a.	n.a.	19.42	n.a.	n.a.	0.39	0.10	n.a.	n.a.	n.a.	n.a.	100.27
	43.51	n.a.	n.a.	n.a.	35.09	1.34	n.a.	n.a.	19.28	n.a.	n.a.	0.23	0.00	n.a.	n.a.	n.a.	n.a.	99.45
	45.44	0.00	0.00	n.a.	33.34	1.87	0.00	0.00	18.37	0.00	0.00	0.71	0.24	n.a.	n.a.	n.a.	n.a.	99.97
Clino	pyroxen	e																
c	43.73	1.68	0.00	0.00	8.84	12.68	0.00	8.71	23.87	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	99.51
r	40.22	2.89	0.00	0.00	11.03	16.93	0.00	4.93	23.06	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	99.06
c	44.88	1.25	0.47	0.00	7.84	11.93	0.00	9.04	23.49	n.a.	n.a.	0.19	n.a.	n.a.	n.a.	n.a.	n.a.	99.09
r	41.85	1.72	0.00	0.00	8.26	17.55	0.19	6.52	23.25	n.a.	n.a.	0.27	n.a.	n.a.	n.a.	n.a.	n.a.	99.61
c	46.38	0.82	0.38	0.25	7.33	9.92	0.00	9.88	24.11	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	99.07
r	41.70	2.34	0.00	0.19	10.11	15.73	0.00	6.37	23.25	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	99.69
c	46.68	1.27	0.18	0.00	7.44	9.94	0.00	10.07	23.77	n.a.	n.a.	0.18	n.a.	n.a.	n.a.	n.a.	n.a.	99.53
c	39.31	2.32	0.18		10.11	18.29	0.12	5.92	23.05	n.a.	n.a.	0.19	n.a.	n.a.	n.a.	n.a.	n.a.	99.49
с	44.67	1.50	0.00	0.19	8.28	11.99	0.00	8.84	23.88	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	99.35
с	41.76	2.35	0.00	0.22	8.33	17.37	0.00	5.67	23.30	n.a.	n.a.	0.19	n.a.	n.a.	n.a.	n.a.	n.a.	99.19
Fluorapatite																		
	6.91	n.a.	n.a.	0.00	0.55	0.67	n.a.	n.a.	52.02	1.89	0.44	0.00	n.a.	37.10	0.00	2.33	n.a.	101.91
	6.10	n.a.	n.a.	0.26	1.32	0.48	n.a.	0.30	51.36	1.65	0.45	0.00	n.a.	35.78	1.15	1.00	0.15	100.00
	6.14	n.a.	n.a.	0.00	1.10	0.42	n.a.	0.22	51.21	1.60	n.a.	0.00	n.a.	36.24	1.00	1.49	0.11	99.53
	6.89	n.a.	n.a.	0.00	1.10	0.42	n.a.	0.27	51.25	1.70	n.a.	0.00	n.a.	36.74	0.97	1.00	0.12	100.46
	5.61	n.a.	n.a.	0.00	0.94	0.36	0.00	0.00	52.08	1.84	n.a.	0.00	n.a.	38.08	0.00	1.50	0.00	100.41
	6.89	n.a.	n.a.	0.19	1.04	0.33	n.a.	0.27	51.90	1.66	n.a.	0.00	n.a.	35.97	1.15	0.77	0.14	100.31
	6.72	n.a.	n.a.	0.00	0.79	0.55	n.a.	0.25	52.46	1.68	n.a.	0.00	n.a.	35.75	1.02	1.11	0.10	100.43
	5.65	n.a.	n.a.	0.00	0.30	0.29	n.a.	0.27	51.47	1.75	0.36	0.00	n.a.	38.04	0.00	3.08	n.a.	101.21
	4.60	n.a.	n.a.	0.00	0.49	0.58	n.a.	n.a.	51.84	1.84	n.a.	0.00	n.a.	40.03	0.00	3.29	n.a.	102.67
	5.01	n.a.	n.a.	0.00	0.40	0.84	n.a.	n.a.	51.42	1.99	n.a.	0.00	n.a.	39.60	0.00	3.57	n.a.	102.83
	4.06	n.a.	n.a.	0.00	0.66	0.30	n.a.	n.a.	52.12	1.89	n.a.	0.00	n.a.	39.61	0.00	3.60	n.a.	102.24
Andra	adite																	
c	32.97	4.65	0.00	0.00	3.68	23.16	0.00	0.70	31.58	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	96.74
m	32.95	4.34	0.00	0.22	3.97	22.27	0.22	0.78	31.65	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	96.40
r	31.77	6.22	0.19	0.24	3.51	23.22	0.00	0.83	31.50	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	97.48
"Hyal	lophane'	,																
	42.02	n.a.	n.a.	n.a.	26.38	0.44	n.a.	0.00	2.38	n.a.	24.43	0.00	4.37	n.a.	n.a.	n.a.	n.a.	100.02
	41.80	n.a.	n.a.	n.a.	26.23	0.51	n.a.	0.00	2.78	n.a.	25.17	0.20	3.81	n.a.	n.a.	n.a.	n.a.	100.50
	42.68	n.a.	n.a.	n.a.	24.63	0.36	n.a.	0.00	0.99	n.a.	26.22	0.30	4.70	n.a.	n.a.	n.a.	n.a.	99.88
	42.10	n.a.	n.a.	n.a.	24.78	0.46	n.a.	0.00	1.04	n.a.	26.52	0.28	4.35	n.a.	n.a.	n.a.	n.a.	99.53
	42.72	n.a.	n.a.	n.a.	24.70	0.46	n.a.	0.00	0.92	n.a.	26.16	0.35	4.72	n.a.	n.a.	n.a.	n.a.	100.03
_	38.19	n.a.	n.a.	n.a.	24.85	0.23	n.a.	0.00	1.37	n.a.	30.47	0.00	3.14	n.a.	n.a.	n.a.	n.a.	98.25

Table S1. Chemical composition (EDS+WDS, wt.%) of principal minerals in host plagioclase-clinopyroxene rock, Hatrurim Basin, Israel.

c, m, r – core, middle and rim of grain, n.a. – not analysed.

	SiO ₂	TiO_2	Cr_2O_3	V_2O_3	Al ₂ O ₃	FeO	MnO	MgO	CaO	Ce_2O_3	SrO	BaO	Na ₂ O	K ₂ O	P_2O_5	SO ₃	F	Cl	Sum
Lei	Leucocratic zone																		
An	orthite																		
	43.83	0.00	0.00	n.a.	34.82	0.85	0.00	0.00	19.99	n.a.	n.a.	0.00	0.15	0.03	n.a.	n.a.	n.a.	n.a.	99.68
	43.90	0.00	0.00	n.a.	35.36	0.61	0.00	0.00	19.80	n.a.	n.a.	0.00	0.17	0.00	n.a.	n.a.	n.a.	n.a.	99.83
	43.41	n.a.	n.a.	n.a.	35.64	0.63	n.a.	n.a.	19.43	n.a.	n.a.	n.a.	0.44	0.11	n.a.	n.a.	n.a.	n.a.	99.66
	43.22	n.a.	n.a.	n.a.	35.79	0.41	n.a.	n.a.	19.46	n.a.	n.a.	n.a.	0.27	0.00	n.a.	n.a.	n.a.	n.a.	99.15
	44.07	n.a.	n.a.	n.a.	35.77	0.68	n.a.	n.a.	19.35	n.a.	n.a.	n.a.	0.38	0.00	n.a.	n.a.	n.a.	n.a.	100.25
	43.39	n.a.	n.a.	n.a.	34.82	1.12	n.a.	n.a.	19.11	n.a.	n.a.	n.a.	0.26	0.12	n.a.	n.a.	n.a.	n.a.	98.82
	43.59	n.a.	n.a.	n.a.	35.09	0.86	0.00	n.a.	19.31	n.a.	n.a.	n.a.	0.30	0.00	n.a.	n.a.	n.a.	n.a.	99.15
	43.60	n.a.	n.a.	n.a.	35.48	0.81	n.a.	n.a.	19.09	n.a.	n.a.	n.a.	0.32	0.00	n.a.	n.a.	n.a.	n.a.	99.30
	44.11	n.a.	n.a.	n.a.	35.81	0.69	n.a.	n.a.	19.23	n.a.	n.a.	n.a.	0.35	0.00	n.a.	n.a.	n.a.	n.a.	100.19
	43.54	n.a.	n.a.	n.a.	35.58	0.49	n.a.	n.a.	19.57	n.a.	n.a.	n.a.	0.23	0.00	n.a.	n.a.	n.a.	n.a.	99.41
	43.62	n.a.	n.a.	n.a.	35.43	0.89	n.a.	n.a.	19.85	n.a.	n.a.	n.a.	0.24	0.00	n.a.	n.a.	n.a.	n.a.	100.03
	43.75	n.a.	n.a.	n.a.	34.37	1.08	n.a.	n.a.	19.82	n.a.	n.a.	n.a.	0.51	0.18	n.a.	n.a.	n.a.	n.a.	99.71
	43.69	n.a.	n.a.	n.a.	36.05	0.78	n.a.	n.a.	19.63	n.a.	n.a.	n.a.	0.13	0.00	n.a.	n.a.	n.a.	n.a.	100.28
	43.73	n.a.	n.a.	n.a.	35.96	0.58	n.a.	n.a.	19.52	n.a.	n.a.	n.a.	0.30	0.00	n.a.	n.a.	n.a.	n.a.	100.09
	43.79	n.a.	n.a.	n.a.	35.54	0.76	n.a.	n.a.	19.42	n.a.	n.a.	0.00	0.32	0.00	n.a.	n.a.	n.a.	n.a.	99.83
K.	eldsna	r	ma	inai		0170	mai	mai	171.2	mai	inai	0.00	0.02	0.00	mai	mu	mu	mu	////00
	57 29	na	na	na	23 27	0.77	na	0.00	6.06	na	0.00	1 98	0.23	10.67	na	na	na	na	100.27
	57.29	n.a.	n 9	n a	22.27	1 18	n a	n a	5 54	n 9	n a	2.47	0.23	10.07	n 9	n.a.	n.a.	n 9	100.27
Cli	nonvro	vono	11 . a.	n.a.	22.47	1.10	n.a.	n.a.	5.54	11.a.	n.a.	2.77	0.45	10.71	n.a.	11.a.	11.a.	n.a.	100.07
CII	AA 5A	1 40	0.43	na	8 60	11.26	0.03	9.76	24 17	na	na	na	0.07	ng	na	na	na	na	100.26
	44.04	1.40	0.43	n.a.	8.00	11.20	0.03	0.66	24.17	n.a.	n.a.	n.a.	0.07	n.a.	n.a.	n.a.	n.a.	n.a.	00.33
	44.23	1.45	0.04	n.a.	8.40	10.59	0.04	9.00	23.90	n.a.	n.a.	n.a.	0.07	n.a.	n.a.	n.a.	n.a.	n.a.	99.55
	43.10	1.42	0.07	n.a.	10.30	12.02	0.02	9.04	24.54	n.a.	n.a.	n.a.	0.07	n.a.	n.a.	n.a.	n.a.	n.a.	08 25
	42.30	1.57	0.00	n.a.	8 60	12.02	0.00	0.19	23.52	n.a.	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	90.23
	44.72	1.1/	0.52	0.00	6.00	10.38	0.00	9.70	23.30	n.a.	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	96.75
	42.09	0.00	0.00	0.18	0.40	12.20	0.25	7.00	23.33	n.a.	n.a.	n.a.	0.55	n.a.	n.a.	n.a.	n.a.	n.a.	100.13
	42.00	2.05	0.00	0.00	9.22	13.29	0.17	7.00	23.00	n.a.	n.a.	n.a.	0.55	n.a.	n.a.	n.a.	n.a.	n.a.	99.04
	41.08	2.20	0.00	0.18	10.00	14.24	0.00	7.08	23.42	n.a.	n.a.	n.a.	0.49	n.a.	n.a.	n.a.	n.a.	n.a.	99.29
	43.58	1.98	0.00	0.00	8.94	12.12	0.00	8.11	23.60	n.a.	n.a.	n.a.	0.26	n.a.	n.a.	n.a.	n.a.	n.a.	98.59
	43.47	1.20	0.50	0.00	8.45	12.35	n.a.	9.02	23.18	n.a.	n.a.	n.a.	0.27	n.a.	n.a.	n.a.	n.a.	n.a.	98.44
Flu	orapat	ite		2 20		0.00	0.00		50.10	0.00	1 (1		0.00		27.62	0.42	2.52	0.00	101.00
	2.63	n.a.	n.a.	2.29	n.a.	0.00	0.00	n.a.	53.13	0.00	1.64	n.a.	0.00	n.a.	37.62	0.42	3.53	0.00	101.26
	6.27	n.a.	n.a.	0.22	0.17	0.54	0.00	n.a.	52.21	0.00	1.86	n.a.	0.00	n.a.	37.83	0.00	1./1	0.00	100.81
	5.50	n.a.	n.a.	0.00	0.36	0.44	0.00	0.00	52.11	0.00	1.81	0.00	0.24	n.a.	38.31	0.00	2.05	0.00	100.82
	5.69	n.a.	n.a.	0.00	0.28	0.49	0.00	0.00	52.01	0.00	1.64	0.35	0.00	n.a.	37.83	0.00	2.52	0.00	100.81
	3.79	n.a.	n.a.	0.78	n.a.	0.41	n.a.	n.a.	53.72	n.a.	1.77	n.a.	0.00	n.a.	37.97	1.55	1.79	0.00	101.78
	4.98	n.a.	n.a.	0.00	0.00	0.57	n.a.	n.a.	51.53	n.a.	1.87	n.a.	0.00	n.a.	38.66	0.00	2.49	0.00	100.10
с	6.65	n.a.	n.a.	0.00	0.31	0.75	n.a.	n.a.	52.34	0.42	1.82	0.00	0.00	n.a.	37.69	0.00	1.61	0.00	101.58
r	3.63	n.a.	n.a.	0.62	0.00	0.37	n.a.	n.a.	53.50	0.00	1.77	0.00	0.00	n.a.	38.08	1.66	2.43	0.00	102.05
Ор	aque se	grega	tion																
An	orthite																		
	44.47	0.00	0.00	n.a.	34.32	0.58	0.00	0.00	19.61	n.a.	n.a.	0.00	0.28	0.18	n.a.	n.a.	n.a.	n.a.	99.44
	44.37	0.00	0.00	n.a.	34.90	0.53	0.00	0.00	19.76	n.a.	n.a.	0.00	0.26	0.04	n.a.	n.a.	n.a.	n.a.	99.87
	44.19	0.00	0.00	n.a.	34.78	0.59	0.00	0.00	19.81	n.a.	n.a.	0.00	0.18	0.07	n.a.	n.a.	n.a.	n.a.	99.62
	44.11	n.a.	n.a.	n.a.	35.45	0.48	n.a.	n.a.	19.45	n.a.	n.a.	n.a.	0.00	0.00	n.a.	n.a.	n.a.	n.a.	99.49
	44.27	n.a.	n.a.	n.a.	34.99	0.44	n.a.	n.a.	19.70	n.a.	n.a.	n.a.	0.00	0.00	n.a.	n.a.	n.a.	n.a.	99.40
	44.09	n.a.	n.a.	n.a.	35.30	0.68	n.a.	n.a.	19.69	n.a.	n.a.	n.a.	0.00	0.00	n.a.	n.a.	n.a.	n.a.	99.76
	44.01	n.a.	n.a.	n.a.	35.54	0.73	n.a.	n.a.	19.66	n.a.	n.a.	n.a.	0.15	0.11	n.a.	n.a.	n.a.	n.a.	100.20
	43.66	n.a.	n.a.	n.a.	35.82	0.95	n.a.	n.a.	19.46	n.a.	n.a.	n.a.	n.a.	0.25	n.a.	n.a.	n.a.	n.a.	100.14
	44.02	n.a.	n.a.	n.a.	35.63	0.57	n.a.	n.a.	19.90	n.a.	n.a.	n.a.	0.16	0.00	n.a.	n.a.	n.a.	n.a.	100.28
	43.95	n.a.	n.a.	n.a.	35.79	0.49	n.a.	n.a.	19.39	n.a.	n.a.	n.a.	0.26	0.00	n.a.	n.a.	n.a.	n.a.	99.88
K+	feldspa	ır																	
	63.65	0.00	n.a.	n.a.	17.63	0.78	n.a.	0.00	1.13	n.a.	n.a.	n.a.	0.00	16.18	n.a.	n.a.	n.a.	n.a.	99.37
Cli	nopyro	xene																	
	42.80	2.35	0.69	n.a.	9.22	13.12	0.03	7.83	23.58	n.a.	n.a.	0.00	0.15	0.00	n.a.	n.a.	n.a.	n.a.	99.78
	42.95	1.63	0.64	n.a.	9.57	11.68	0.00	8.61	23.70	n.a.	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	98.78
	42.72	1.52	0.60	n.a.	9.43	11.99	0.00	8.82	23.66	n.a.	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	98.74
	42.44	1.67	0.67	n.a.	9.66	12.36	0.00	8.14	23.80	n.a.	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	98.74

Table S2. Chemical composition (EDS+WDS, wt.%) of silicates in leucocratic zone and opaque segregation of plagioclase-clinopyroxene rock, Hatrurim Basin, Israel.

n.a. - not analysed.

	Phase	n	SiO ₂	TiO ₂	Al_2O_3	Cr_2O_3	V_2O_3	FeO	MnO	MgO	CaO	NiO	ZnO	Nb_2O_5	Y ₂ O ₃	La ₂ O ₃	Ce ₂ O ₃	Sum
Leucoc	ratic zone	e																
Lz-1	Hem	1	n.a.	3.72	2.10	0.00	0.00	84.90	0.31	0.71	0.35	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	92.09
	H-Ilm	2	n.a.	35.35	3.91	0.00	0.00	53.38	0.22	0.75	0.48	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	94.07
	Tnt	1	29.72	35.06	4.36	0.00	0.00	5.38	0.00	0.00	24.88	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	99.40
Lz-2	Hem	4	n.a.	7.76	3.29	0.00	0.19	80.59	0.29	0.56	0.31	0.30	n.a.	n.a.	n.a.	n.a.	n.a.	93.27
	H-Ilm	1	n.a.	35.36	6.41	0.00	0.00	52.04	0.00	0.66	0.49	0.00	n.a.	0.00	n.a.	n.a.	n.a.	94.96
	Tnt	1	29.91	33.41	5.33	0.00	0.00	3.30	0.00	0.00	25.40	n.a.	n.a.	2.57	n.a.	n.a.	n.a.	99.92
Lz-2	Hem	3	n.a.	7.85	3.31	0.00	0.00	80.23	0.26	0.52	0.32	0.11	n.a.	n.a.	n.a.	n.a.	n.a.	92.59
	H-Ilm	2	n.a.	36.22	4.52	0.00	0.17	52.96	0.00	0.48	0.32	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	94.66
Lz-3	Hem	2	n.a.	3.19	0.82	0.00	0.00	86.96	0.12	0.43	0.34	0.38	n.a.	n.a.	n.a.	n.a.	n.a.	92.22
	Tnt	1	29.84	37.13	1.51	0.00	0.00	4.43	0.00	n.a.	25.76	n.a.	n.a.	1.40	n.a.	n.a.	n.a.	100.07
Iso-2-7	Hem	1	n.a.	7.36	2.40	0.00	0.00	79.36	0.00	0.90	0.28	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	90.30
c	Prv	2	0.80	45.35	1.38	0.00	0.00	3.58	0.00	0.00	37.09	0.00	n.a.	9.23	0.33	0.50	0.75	98.99
r	Prv	2	0.29	55.00	1.32	0.00	0.50	2.08	0.00	0.10	38.01	0.00	n.a.	1.07	0.00	0.00	0.00	98.35
Lz-x1	Hem	2	0.00	2.95	1.68	0.00	0.00	84.93	0.21	0.66	0.22	0.30	n.a.	n.a.	n.a.	n.a.	n.a.	90.94
	H-Ilm	1	n.a.	35.31	2.29	0.00	0.34	54.12	0.00	0.68	0.45	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	93.19
Lz-x2	Hem	3	n.a.	3.94	1.70	0.00	0.00	83.65	0.18	0.48	0.37	0.00	n.a.	0.00	n.a.	n.a.	n.a.	90.31
	H-Ilm	3	n.a.	35.16	2.46	0.00	0.25	53.88	0.00	0.59	0.45	0.00	n.a.	0.60	n.a.	n.a.	n.a.	93.39
Lz-x7	Hem	2	0.00	3.47	2.87	0.00	0.00	82.63	0.00	1.03	0.45	0.00	n.a.	0.00	n.a.	n.a.	n.a.	90.44
	H-Ilm	2	0.00	35.93	4.49	0.00	0.64	51.22	0.00	1.14	0.29	0.00	n.a.	0.00	n.a.	n.a.	n.a.	93.70
iso4-6	Hem	2	0.00	3.52	1.57	0.00	0.00	84.21	0.30	0.70	0.31	0.00	n.a.	0.00	n.a.	n.a.	n.a.	90.60
	H-Ilm	1	n.a.	34.94	2.83	0.00	0.37	53.49	0.19	0.46	0.48	n.a.	n.a.	0.43	n.a.	n.a.	n.a.	93.19
	Tnt	1	27.75	34.56	1.53	0.00	1.90	2.75	0.00	n.a.	26.58	n.a.	n.a.	3.13	n.a.	n.a.	n.a.	98.20
iso4-6	Hem	1	n.a.	3.52	1.23	0.00	0.00	84.30	0.35	0.46	0.22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	90.08
	H-Ilm	2	0.00	34.96	1.85	0.00	0.21	56.39	0.00	0.42	0.32	0.00	n.a.	0.00	n.a.	n.a.	n.a.	94.14
iso-7	Cr-Hem	3	0.00	2.28	7.00	18.09	0.62	62.62	0.00	0.47	0.36	0.00	0.00	n.a.	n.a.	n.a.	n.a.	91.45
	Cr-Spl	1	n.a.	0.00	32.93	22.46	0.00	24.84	0.79	13.08	0.27	0.69	1.41	n.a.	n.a.	n.a.	n.a.	96.47
Host ro	ock																	
h-1-2	Hem	2	0.00	3.97	2.04	0.00	0.00	83.77	0.22	0.58	0.38	0.00	n.a.	0.00	n.a.	n.a.	n.a.	90.96
	Tnt	3	29.82	38.30	0.71	0.00	0.26	1.24	0.00	0.00	27.32	0.00	n.a.	1.40	n.a.	n.a.	n.a.	99.05
h-2	Hem	4	n.a.	5.08	0.64	0.00	0.06	83.53	0.08	0.39	0.41	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	90.18

Table S3. Chemical composition (EDS, wt.%) of opaque mineral associations in leucocratic zone and host plagioclase-clinopyroxene rock, Hatrurim Basin, Israel.

See Fig. S3. n – average; n.a. – not analysed. Hem – hematite; H-Ilm – "hemoilmenite"; Tnt – titanite; Prv – perovskite; Cr-Hem – Cr-hematite; Cr-Spl – Cr-spinel; c, r – core-rim of grain.

Table S4. Chemical composition (EDS, wt.%) of vesicle-related minerals in plagioclase-clinopyroxene rock, Hatrurim Basin, Israel.

Sample	Mineral	SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	SrO	BaO	Na ₂ O	K ₂ O	SO ₃	Cl	Sum
iso-1-g4	Calcite	n.a.	n.a.	0.00	0.00	0.00	55.37	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	55.37
Iso-3	Calcite	n.a.	n.a.	0.00	0.00	0.00	55.83	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	55.83
	Quartz	99.18	n.a.	n.a.	n.a.	n.a.	0.18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	99.36
	Quartz	99.87	n.a.	n.a.	n.a.	n.a.	0.25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	100.12
Lz-4	Calcite	n.a.	n.a.	n.a.	n.a.	n.a.	54.44	0.00	n.a.	n.a.	n.a.	0.67	n.a.	55.11
	Calcite	n.a.	n.a.	n.a.	n.a.	n.a.	55.23	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	55.23
	Quartz	99.89	n.a.	n.a.	n.a.	n.a.	0.55	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	100.44
	Quartz	100.10	n.a.	n.a.	n.a.	n.a.	0.50	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	100.60
	Bassanite	n.a.	n.a.	0.00	n.a.	n.a.	37.18	0.00	n.a.	n.a.	n.a.	55.56	0.37	93.11
	Bassanite	n.a.	n.a.	0.00	n.a.	n.a.	36.79	0.00	n.a.	n.a.	n.a.	54.76	0.36	91.91
Iso-2-3-g	Calcite	n.a.	n.a.	0.00	0.00	0.00	55.55	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	55.55
	Calcite	n.a.	n.a.	0.00	0.00	0.00	55.43	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	55.43
	Calcite	n.a.	n.a.	0.00	0.00	0.00	55.16	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	55.16
	Calcite	n.a.	n.a.	0.00	0.00	0.00	55.59	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	55.59
	Quartz	98.50	0.53	n.a.	n.a.	n.a.	0.42	n.a.	n.a.	n.a.	0.17	n.a.	n.a.	99.62
Iso-2-7	Ca-K-Zeolite	41.70	25.87	0.37	0.00	n.a.	10.65	0.00	1.17	0.55	4.94	n.a.	n.a.	85.25
Lz-x2	Calcite	n.a.	n.a.	0.00	0.00	0.00	55.29	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	55.29
Lz-x3	Calcite	n.a.	n.a.	0.00	0.00	0.00	55.44	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	55.44
	Calcite	n.a.	n.a.	0.00	0.00	0.00	55.42	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	55.42
	K-Na-Ca-Sr-Zeolite	50.06	22.20	0.00	n.a.	0.36	3.79	2.02	n.a.	3.38	5.38	n.a.	0.16	87.35
	K-Na-Ca-Sr-Zeolite	53.29	22.33	0.00	n.a.	0.43	3.71	1.49	n.a.	3.11	5.82	n.a.	n.a.	90.18
	Ca-Sr-K-Na-Zeolite	42.79	25.81	0.00	n.a.	0.00	5.96	4.61	n.a.	3.11	4.22	n.a.	0.36	86.86
	Ca-Sr-K-Na-Zeolite	44.31	24.64	0.18	n.a.	0.00	6.66	4.41	n.a.	2.55	3.98	n.a.	0.32	87.05
	Ca-Sr-K-Na-Zeolite	42.34	25.81	n.a.	n.a.	0.00	7.23	3.91	n.a.	3.19	3.23	n.a.	0.43	86.14
	Ca-Zeolite	37.25	29.61	0.28	n.a.	0.17	13.88	0.00	n.a.	0.42	1.26	n.a.	n.a.	82.87
	Ca-Zeolite	36.16	29.31	0.40	n.a.	n.a.	15.38	0.00	n.a.	0.20	0.23	n.a.	n.a.	81.68
Lz-x6	Calcite	n.a.	n.a.	0.00	0.00	n.a.	55.40	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	55.40
Lz-x8	Calcite	n.a.	n.a.	0.22	0.00	0.00	55.22	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	55.44
Lz-g3	Calcite	n.a.	n.a.	0.00	0.00	0.00	55.54	0.00	n.a.	n.a.	n.a.	n.a.	n.a.	55.54
host-3	Calcite	n.a.	0.00	0.00	0.00	0.00	55.37	0.00	n.a.	n.a.	n.a.	0.75	n.a.	56.12
	Calcite	n.a.	0.00	0.00	0.00	0.00	55.33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	55.33
	Ca-Sr-K-Na-Zeolite	40.69	23.56	0.00	n.a.	0.18	7.93	3.50	n.a.	0.69	1.13	n.a.	n.a.	77.68
	Ca-Sr-K-Na-Zeolite	41.20	22.13	0.44	n.a.	0.28	7.04	3.47	n.a.	0.75	1.70	n.a.	n.a.	77.01
	Ca-Sr-K-Na-Zeolite	39.90	23.39	0.00	n.a.	0.18	7.57	n.a.	n.a.	0.94	1.23	n.a.	n.a.	73.21
	Ca-Sr-K-Na-Zeolite	40.63	22.92	0.00	n.a.	0.00	7.78	n.a.	n.a.	0.96	1.29	n.a.	n.a.	73.58
	Ca-Zeolite	32.88	27.68	0.22	n.a.	n.a.	14.02	n.a.	n.a.	0.00	0.00	n.a.	n.a.	74.80
	Ca-Zeolite	34.47	27.42	0.19	n.a.	0.23	13.85	n.a.	n.a.	0.31	0.14	n.a.	n.a.	76.61
	Ca-K-Zeolite	37.14	28.91	0.73	n.a.	n.a.	12.94	n.a.	n.a.	3.33	0.17	n.a.	n.a.	83.22
	Ca-K-Zeolite	37.70	27.64	1.04	n.a.	n.a.	12.10	n.a.	n.a.	3.13	n.a.	n.a.	0.28	81.89
	Na-Zeolite	53.72	21.94	0.75	n.a.	0.00	0.39	n.a.	n.a.	12.19	0.10	n.a.	n.a.	89.09
	Na-Zeolite	53.95	21.45	0.71	n.a.	0.00	0.55	n.a.	n.a.	11.32	0.16	n.a.	n.a.	88.14
	Na-Zeolite	52.91	21.65	0.58	n.a.	0.00	1.06	n.a.	n.a.	12.16	0.12	n.a.	n.a.	88.48
	Na-Zeolite	51.79	20.46	0.69	n.a.	n.a.	2.00	n.a.	n.a.	9.87	0.00	0.47	n.a.	85.28
	Na-Zeolite	54.45	21.60	1.02	n.a.	n.a.	0.39	n.a.	n.a.	11.61	0.11	n.a.	n.a.	89.18
host-5	Ca-Sr-K-Na-Zeolite	41.42	23.96	0.00	n.a.	n.a.	6.88	n.a.	n.a.	0.66	1.07	n.a.	n.a.	73.99

See Fig. S3. n.a. – not analysed.

Sample	Phase	n	TiO ₂	Cr_2O_3	V_2O_3	Al_2O_3	Fe ₂ O ₃	FeO	MnO	MgO	CaO	NiO Sun	n X _{Al2O3}	X_{Fe2O3}
iso-1-g4	Crn	1	0.00	0.26	n.a.	92.50	7.45	0.00	0.00	0.00	n.a.	n.a. 100.21	0.95	0.05
	Hem	1	2.69	0.35	0.99	5.57	88.52	1.04	0.00	0.65	0.17	0.00 99.98	8 0.10	0.90
iso-1-g4	Crn	1	0.00	0.00	n.a.	94.49	5.69	0.00	0.00	0.00	n.a.	n.a. 100.18	0.96	0.04
-	Hem	1	1.72	0.50	0.76	4.74	91.33	0.39	0.00	0.50	0.21	0.00 100.15	5 0.09	0.91
iso-1-g4	Crn	1	0.00	0.00	n.a.	95.74	4.43	0.00	0.00	0.00	n.a.	n.a. 100.17	0.97	0.03
0	Hem	1	1.17	0.47	0.82	5.73	90.95	0.46	0.00	0.33	n.a.	0.00 99.93	0.10	0.90
iso-1-g4	Crn	1	0.00	0.00	n.a.	94.89	5.18	0.00	0.00	0.00	n.a.	n.a. 100.07	0.97	0.03
0	Hem	1	4.10	0.29	0.59	4.21	88.06	1.89	0.00	0.90	0.15	0.00 100.19	0.08	0.92
iso-1-g4	Crn	1	0.00	0.00	n.a.	95.31	4.63	0.00	0.00	0.00	n.a.	n.a. 99.94	0.97	0.03
	Hem	1	3.00	0.41	0.65	2.72	90.80	1.25	n.a.	0.81	0.00	0.00 99.65	5 0.06	0.94
iso-2-9	Crn	1	0.00	0.00	na	94 77	4 99	0.00	0.00	0.00	na	na 99.76	5 0.97	0.03
150 2 5	Hem	1	1.67	0.35	0.47	3 85	92.91	0.06	0.00	0.65	0.22	0.00.100.18	3 0.07	0.93
iso_2_g	Crn	1	0.00	0.00	n a	94.81	5 19	0.00	0.00	0.00	n a	n a 100.00	0.07	0.03
130-2-g	Hem	1	5 30	0.00	0.00	4 70	85.65	2.60	0.00	1.04	0.24	0.00 99.70	0.07	0.03
iso_2_g	Crn	2	0.00	0.00	n a	95 19	1.46	0.00	0.00	0.00	n a	na 99.65	<u> </u>	0.02
150-2-g	Hom	1	1 55	0.00	0.10	5.03	4.40 02 3/	0.00	0.00	0.00	0.18		0.97	0.03
	Crm	1	1.55	0.33	0.19	04.60	5 02	0.00	0.00	0.00	0.16	0.00 100.25	$\frac{0.08}{0.07}$	0.92
180-2-g	Uni	1	0.00	0.00	n.a.	94.09	02.62	0.00	0.00	0.00	n.a.	n.a. 99.92	2 0.97	0.05
	Crm	1	0.95	0.34	0.44	4.97	92.05	0.48	0.00	n.a.	0.28	0.00 100.07	0.09	0.91
180-2-g	Crn	1	0.17	0.32	n.a.	90.98	8.21	0.15	0.00	0.00	0.00	n.a. 99.83	0.95	0.05
·	Hem	1	3.32	0.35	0.26	5.10	90.43	1.//	0.00	0.48	0.28	0.00 99.99	0.06	0.94
1so-2-g	Crn	1	0.00	0.00	n.a.	95.62	4.55	0.00	0.00	0.00	n.a.	n.a. 100.17	0.97	0.03
<u> </u>	Hem	1	2.20	0.00	0.50	4.08	91.35	1.08	0.00	0.41	0.13	0.00 99.75	0.07	0.93
1so-2-g2	Crn	1	0.00	0.16	n.a.	94.25	5.51	0.00	0.00	0.00	0.00	n.a. 99.92	2 0.96	0.04
	Hem	1	1.28	0.00	0.21	4.01	93.72	0.11	0.00	0.41	0.24	0.00 99.98	3 0.06	0.94
iso-2-g2	Crn	1	0.18	0.37	n.a.	92.55	6.62	0.16	0.00	0.00	n.a.	n.a. 99.88	3 0.96	0.04
	Hem	1	5.00	0.26	0.44	3.70	87.36	0.72	0.22	1.69	0.18	0.32 99.89	9 0.07	0.93
iso-2-g2	Crn	1	0.18	0.37	n.a.	93.49	5.78	0.16	0.00	0.00	n.a.	n.a. 99.98	3 0.96	0.04
	Hem	1	4.74	0.34	0.34	3.59	87.55	2.60	0.00	0.93	n.a.	0.00 100.09	0.07	0.93
iso-2-g2	Crn	1	0.00	0.20	n.a.	94.10	5.95	0.00	0.00	0.00	n.a.	n.a. 100.25	5 0.96	0.04
	Hem	1	4.09	0.25	0.40	2.82	89.88	0.99	0.00	1.40	0.15	0.00 99.99	0.05	0.95
iso-2-g2	Crn	1	0.00	0.32	n.a.	93.16	6.55	0.00	0.00	0.00	n.a.	n.a. 100.03	0.96	0.04
	Hem	1	4.70	0.39	0.24	1.70	89.42	2.21	0.00	1.03	0.14	0.00 99.83	0.04	0.96
iso-4	Crn	2	0.20	0.35	n.a.	92.96	6.30	0.18	0.00	0.00	n.a.	n.a. 99.99	0.96	0.04
	Hem	2	3.06	0.47	0.26	3.88	90.64	0.19	0.00	1.31	0.18	n.a. 99.99	0.07	0.93
iso-5	Crn	1	0.20	0.57	n.a.	94.02	5.05	0.18	0.00	0.00	n.a.	n.a. 100.02	2 0.97	0.03
	Hem	1	3.17	2.10	0.25	3.70	88.80	0.14	0.00	1.23	0.17	0.31 99.88	0.09	0.91
iso-6	Crn	1	0.00	0.22	n.a.	94.13	5.88	0.00	0.00	0.00	n.a.	n.a. 100.23	0.96	0.04
	Hem	1	1.92	0.57	0.29	4.01	92.03	0.37	0.00	0.51	0.35	0.00 100.05	5 0.07	0.93
iso-6	Crn	2	0.09	0.00	n.a.	95.37	4.53	0.08	0.00	0.00	n.a.	n.a. 100.06	5 0.97	0.03
	Hem	2	2.37	0.50	0.35	4.87	90.41	0.79	0.00	0.55	0.28	n.a. 100.11	0.09	0.91
iso-6	Crn	1	0.00	0.20	n.a.	93.78	6.29	0.00	n.a.	0.00	n.a.	n.a. 100.27	0.96	0.04
	Hem	1	2.32	0.44	n.a.	2.08	93.69	0.35	0.00	0.73	0.34	0.00 99.95	5 0.04	0.96
iso-6	Crn	1	0.00	0.35	n.a.	93.42	7.32	0.00	0.00	0.00	n.a.	n.a. 101.09	0.95	0.05
100 0	Hem	1	3.05	0.48	0.24	2.10	92.30	0.42	0.00	1.06	0.34	0.00 99.99	0.04	0.96
iso-6	Crn	1	0.00	0.00	n a	94 72	5 39	0.00	0.00	0.00	n a	na 100 11	0.96	0.04
150 0	Hem	1	2 29	0.00	0.35	5 29	89.96	1.01	0.00	0.38	0.29	0.00.100.01	0.09	0.01
iso-8	Crn	3	0.00	0.53	n 9	91 53	7 92	0.00	0.00	0.00	n 9	n a 00.07	7 0.05	0.05
100 0	Hem	1	2.00	0.55	0.63	1 72	93.88	0.03	0.21	0.65	0.17	0 22 100 13	3 0.04	0.05
iso-0	Crn	2	0.10	0.13	n a	03 21	6.52	0.05	0.21	0.00	0.00	n a 100.12	0.04	0.90
150-7	Ham	5 2	1 05	0.13	11.a. 0.00	95.21 7.15	0.52	0.17	0.00	1.62	0.00	$n_{2} = 00.22$	2 0.90) 0.04	0.04
iso 10	Crn	2	4.05	0.21	0.00	2.43	7 01	0.20	0.14	1.05	0.51	n o 100 04	× 0.04	0.90
180-10	Un	3	0.00	0.32	n.a.	91.91	1.84	0.00	0.00	0.00	11.a.		0.95	0.05
	Hem	1	2.65	0.39	0.20	4.44	90.75	0.30	0.27	0.98	п.а.	0.00 100.10	0.08	0.92
1SO-11	Crn	2	0.23	0.27	n.a.	90.63	8.90	0.20	0.00	0.00	n.a.	n.a. 100.23	0.94	0.06
	Hem	4	2.83	0.35	0.18	5.26	89.38	1.33	0.00	0.58	0.14	n.a. 100.05	0.09	0.91

Table S5. Chemical composition (EDS, wt.%) of coexisting corundum and hematite from opaque segregation in plagioclase-clinopyroxene rock, Hatrurim Basin, Israel.

n.a.-not analysed. Fe_2O_3 and FeO are calculated from charge balance.