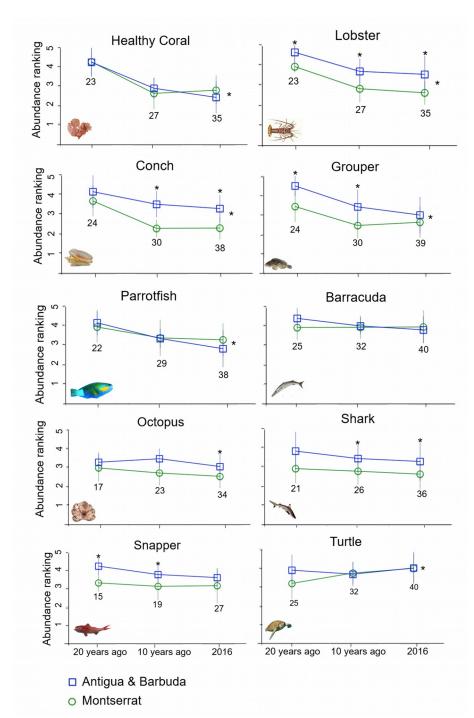
Shifted baselines and the policy placebo effect in conservation

SAMANTHA LOVELL, AYANA ELIZABETH JOHNSON, ROBIN RAMDEEN and LOREN McCLENACHAN

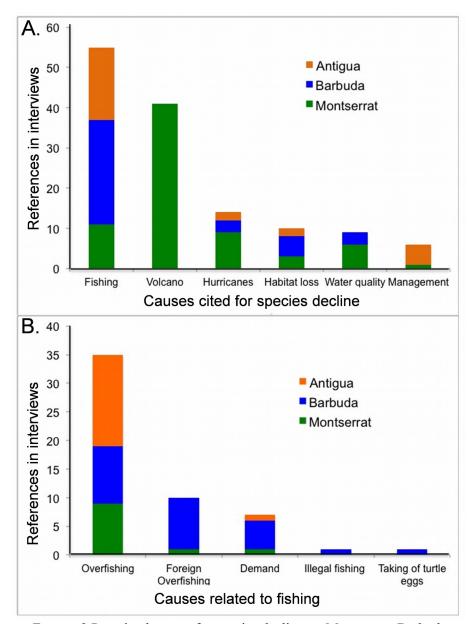
SUPPLEMENTARY TABLE 1 Number of interviewees in each age, experience and profession

category, and gender across the three islands.

	Antigua	Barbuda	Montserrat	Total
Number of interviewees	5	15	20	40
Age				
Young (<35 years)	2	5	7	14
Middle-Age (35–55 years)	2	6	6	14
Old (>55 years)	1	4	7	12
Experience				
Low Experience (<15 years)	0	4	8	12
Medium Experience (15–30 years)	2	6	8	13
High Experience (>30 years)	3	5	4	13
Profession				
Fisherman (≥75% income)	2	9	7	18
Other Income (<75% income)	3	6	13	22
Gender				
Male	5	15	17	37
Female	0	0	3	3


SUPPLEMENTARY TABLE 2 Marine taxa reported as decreasing, increasing, or recently increasing but declining overall. Numbers are total number of interviewees who reported a change in each taxa. Taxa of interest specifically inquired about are noted with an asterisk.

Common				Recent increase/
name	Scientific name/group	Decline	Increase	overall decline
Coral*	Scleractinia	21	0	0
Spiny lobster*	Panulirus argus	19	Ö	3
Conch*	Strombus gigas	17	0	1
Parrotfish*	Scarus spp.	16	3	2
Grouper*	Epinephelus striatus,	15	1	2
(Nassau, coney, red	Épinéphelus guttatus,			
hind, graysby, goliath)	Cephalopholis fulvus,			
	Cephalopholis cruentata,			
	Epinephelus itajara			
Grunt	Haemulon spp.	7	2	0
Seagrass	Thalassia testudinum	6	2	0
Angelfish	Holacanthus spp.	6	1	0
Barracuda*	Sphyraena barracuda	5	2	0
Octopus*	Octopus briareus	4	0	0
Snapper* (mangrove,	Lutjanus griseus, Etelis	4	2	2
queen, mutton, dog,	oculatus,Lutjanus analis,			
cubera, red)	Lutjanus jocu, Lutjanus			
	cyanopterus Lutjanus campachanus			
Jack	Caranx hippos	4	1	0
Striped croaker	Bairdiella sanctaeluciae	4	0	0
Sea urchin	Diadema antillarum	3	0	0
Surgeonfish	Acanthurus coeruleus,	3	1	0
(blue tang, ocean	Acanthurus bahianus,	3	•	· ·
surgeon, doctorfish)	Acanthurus chirurgus			
Turtle*	Chelonia mydas,	3	20	0
	Eretmochelys imbricata			
King mackerel	Scomberomorus cavalla	2	0	0
Mahi mahi	Coryphaena hippurus	2	2	0
Remora	Remora remora	2	0	0
Saltwater catfish	Ariidae	2	1	0
Shark* (nurse, lemon,	Ginglymostoma cirratum,	2	5	0
tiger, reef)	Negaprion brevirostris,			
	Galeocerdo cuvier,			
	Carcharhinus perezii,			
Tuna	Thunnus spp.	2	0	0
Wahoo	Acanthocybium solandri	2	0	0
Trunkfish	Lactophrys spp.	2	0	0
Whelk	Cittarium pica	1	1	0
Pufferfish	Sphoeroides nephelus	1	0	0
Rays	Batoidea	1	0	0
Swordfish	Xiphias gladius	1	0	0
Goatfish	Mullidae	1	0	0


				Recent
Common				increase/
name	Scientific name/group	Decline	Increase	overall decline
Needlefish	Belonidae	1	0	0
Triggerfish	Balistidae	1	1	0
Land crab	Gecarcinus ruricola	1	0	0
Helmet shells	Cassidae	0	1	0
Jellyfish	Cnideria	0	2	0
Sargassum	Sargassum spp.	0	3	0
Filefish	Monacanthidae	0	1	0
Lionfish	Ptserois volitans	0	17	0
Porgies	Sparidae	0	1	0

SUPPLEMENTARY TABLE 3 Descriptions of species exploitation from archaeological and historical material.

Reference/ archaeological evidence	Year	Location	Source
Archaeological evidence of turtle, reef fish, mollusk,	2000-500	Antigua and	Fitzpatrick &
and manatee exploitation from Archaic and Lithic	BCE	Barbuda	Keegan, 2007
civilizations			
Four species of turtle are found on the shores of this	1790	Antigua and	Riddell, 1792
island, the green turtle, the hawk's billthe loggerhead,		Barbuda	
and the land-tortoise The green turtle is reckoned one			
of the greatest delicacies in the West Indies.			
The coast is beset with shoals and reefs under water	1825	Antigua and	Coleridge,
		Barbuda	1825
A stray barracoutamay occasionally take his pastime	1825	Antigua and	Coleridge,
thereinall menshould make a point of murdering		Barbuda	1825
and exterminating these barbarous brutes by all means			
in their powerWhen the net became contractedwe			
had chiefly barracoutas.			
I have a grateful recollection of the turtle at the Court	1825	Montserrat	Coleridge,
House			1825
Plenty of turtell	<1884	Antigua and	Lanaghan,
		Barbuda	1884

SUPPLEMENTARY FIGURE 1 Differences in mean perceived abundance for the 10 species of interest among islands. Mean perceived abundance on Montserrat (green circle) were consistently lower than those on Antigua and Barbuda (blue square). Error bars represent standard deviation. Significant differences (P <0.05) in perceived abundances between the islands are represented with an asterisk above the island icons. Values were significant (P <0.05) after Bonferroni corrections for multiple testing.

SUPPLEMENTARY FIGURE 2 Perceived causes for species decline on Montserrat, Barbuda, and Antigua (Fig. 3). (a) Causes grouped into categories. The category 'fishing' includes five responses (b); 'water quality' also includes sedimentation, 'habit loss' includes loss of coral reefs due to pathogens and bleaching, and 'management' includes lack of enforcement and lack of regulations. Only causes cited three or more times in the interviews are included here. (b) All fishing-related causes of decline cited by interviewees.