Using mixed methods to understand sensitive wildlife poisoning behaviours in northern Cambodia

EMIEL DE LANGE, E. J. MILNER-GULLAND, VICHET YIM, CHANTHEAVY LENG, SITHAN PHANN and AIDAN KEANE

SUPPLEMENTARY MATERIAL 2 Additional details on other forms of pesticide misuses and hunting.

Hunting

168 respondents (36%) stated that they hunted wildlife in the past year. The most common method of hunting was using traps (56% of 168 hunters), followed by slingshots (12%). Twenty-four (1%) hunters used nets and 23 (1%) used dogs. Finally, four hunters stated that they used cross bows, and three hunters stated that they used guns to hunt, but this may refer to the homemade air guns commonly found. Most hunters used a single method, but 44 (26%) reported using a combination of methods. Younger respondents were more likely to hunt (effect = -0.04, z = -4.19, p < 0.01, Supplementary Table 3), but no effect was found for wealth or other variables.

Agricultural pesticide usage

Pesticides were reported as used in all villages except one. Overall, 15% of households surveyed stated in response to a direct question that they had used pesticides in the past year, but this varied by village between 0 and 47% (median 8%). Interviews with village chiefs and FGD data suggest that usage varies from year to year and usually occurs in response to observations of pests on crops intended for commercial sale, but not on rice grown for home consumption. According to informants, irregularly occurring 'worm' (常気) outbreaks are a major driver of usage, but this did not occur in the year of our study. These 'worms' are in fact a kind of caterpillar which occurs seasonally. Pesticides are also mixed with water in the wet rice paddy to kill crabs which may then be consumed.

Twenty-one different pesticide products were identified by respondents as used for these purposes. Farmers typically report learning how to use pesticides from sellers at local markets when seeking advice on pest management, or from agricultural middlemen. We found no relation between respondent age and pesticide use, but wealthier households were more likely to use pesticides (effect size = 0.25, z = 2.06, p = 0.04, Supplementary Table 3). 'Termite poisons' are also used to prevent termite damage by soaking the roots of cassava or cashew crops before planting.

Rice field poisoning

In addition to waterhole poisoning, several other practices make use of poisons or pesticides to kill wildlife. Firstly, following a traditional method, poison produced from tree bark is placed in a water source to stun fish. This is a common method but is not believed to be harmful to wildlife due to the weak effect of the poison. Secondly, poisons are sprayed on fruit trees to kill birds, but this was only reported in one village. Third, granular-form pesticides are mixed or boiled with rice and scattered in the rice field to kill birds that eat the rice crop. Poisoning at rice fields was thought by respondents across all types of questioning to affect only doves, parakeets, and sparrows. This was reported in six villages, and we

included this practice in our UCT questionnaire. The proportion of respondents allocated the treatment and control cards in this round did not differ significantly from 1:1 ($\chi^2 = 2.1$, df = 1, p = 0.15). The UCT results indicated that the proportion of households engaging in rice-field poisoning across 10 villages was not significantly different from zero with no design effect (p = 0.42, Supplementary Table 1). However, 4 respondents (1.7%) gave a maximal response for rice-field poisoning and when questioned directly, 10 respondents (2.2%) admitted to poisoning rice fields in the past year,

SUPPLEMENTARY TABLE 1 Summary of prevalence estimates for different behaviours using the Unmatched Count Technique, a method used to estimate prevalence of sensitive behaviours. This includes the results for the practice round which focused on fruit eating, and direct questioning estimates for poisoning practices. A significant design effect indicates sensitivity of the practice.

Behaviour	Practice: fruit eating	Poisoning in rice field	Poisoning at waterholes
Size of treatment group (total = 462)	221	241	254
Estimate % ± SE (p)	32% ± 14 (0.02)	-10% ± 12 (0.40)	-40% ± 12 (<0.001)
Design effect (p value)	0.67	0.42	<0.01
No. of maximal	22 (10.0 %)	4 (1.7 %)	6 (2.4 %)
responses in treatment			
group (%)			
Positive responses to	NA	10 (2.2%)	6 (1.3%)
direct question			

Wildlife Species	IUCN Redlist status				
<u> </u>		Reports			
"Egrets"		13			
"Doves"		11			
"Parakeet"		9			
"Civets"		5			
"Doves"		3			
Red junglefowl	Loost concorn	3			
Gallus gallus	Least concern	3			
Black-winged kite		3			
Elanus caeruleus		5			
Green imperial pigeon	Loost concorn	3			
Ducula aenea	Least concern	5			
Sarus crane	Vulnerable	2			
Antigone antigone	vumerable	2			
"Sparrows"		2			
Chinese francolin	Loost concorn	3			
Francolinus pintadeanus	Least concern	5			
Giant ibis	Critically	2			
Thaumatibis gigantea	endangered	2			
Wild boar	Least concern	1			
Sus scrofa		Ţ			
"Monkeys"		1			
"Cobras"		1			
Lesser Mouse deer	Loost concorn	1			
Tragulus kanchil	Least concern	Ţ			
"Storks"		1			
Green peafowl	Endangorad	1			
Pavo muticus	Endangered	1			
Lesser adjutant	Vulnerable	1			
Leptoptilos javanicus	vuillerable	1			
"Eagles"		1			
"Snakes"		1			
"Drongo"		1			

SUPPLEMENTARY TABLE 2 Poisoned wildlife observed by informants, showing the number of informants who have observed the species poisoned.

Model	Descrip	tive noi	rms			Injunct			Combined norms						
	Linear r	nixed m	nodel			Linear ı	mixed n	nodel			Linear mixed model				
Variable/Coefficient	Estimate	Std.	T-value	95% C.I.	95% C.I.	Estimate	Std.	T-value	95% C.I.	95% C.I.	Estimate	Std.	T-value	95% C.I.	95% C.I.
		Error		lower	upper		Error		lower	upper		Error		lower	upper
				bound	bound				bound	bound				bound	bound
Intercept	3.878	0.335	11.57	3.223	4.508	4.612	0.320	14.41	3.995	5.229	8.478	0.514	16.49	7.477	9.479
Age (Years / SD)	-0.052	0.081	-0.649	-0.210	0.103	-0.231	0.077	-2.978	-0.380	-0.079	-0.283	0.125	-2.261	-0.527	-0.039
Agricultural Pesticide use	0.093	0.202	0.461	-0.300	0.481	-0.258	0.194	-1.330	-0.641	0.109	-0.175	0.313	-0.560	-0.784	0.433
Residence time (years / SD)	-0.042	0.082	-0.509	-0.199	0.118	-0.010	0.079	-0.123	-0.165	0.139	-0.053	0.127	-0.420	-0.300	0.193
Native Intervention village	0.136	0.162	0.836	-0.153	0.424	-0.484	0.151	-3.199	-0.766	-0.205	-0.346	0.231	-1.500	-0.796	0.103
VMN member	-0.164	0.176	-0.933	-0.496	0.184	-0.016	0.168	-0.092	-0.339	0.314	-0.169	0.272	-0.620	-0.698	0.361
Wealth score	0.150	0.060	2.526	0.039	0.270	-0.035	0.057	-0.621	-0.145	0.076	0.121	0.092	1.310	-0.059	0.300
Protected area (Kulen Promtep)	-1.129	0.167	-6.752	-1.433	-0.828	-0.756	0.157	-4.822	-1.051	-0.470	-1.891	0.242	-7.819	-2.362	-1.420

SUPPLEMENTARY TABLE 3 Fixed effect coefficients from linear mixed models. Effect size estimates are given relative to the intercept. Bolded variables have effect sizes larger than two times the standard error, or for generalised models have a p-value less than 0.05.

Model	Model Attitudes									Hunting					
	Linear	mixed	model			Genera	lised linea	ar mixed	model	Generalised linear mixed model					
Variable/Coefficient	Estimate	Std. Error	T-value	95% C.I. lower bound	95% C.I. upper bound	Estimate	Std. Error	z-value	P-value	Estimate	Std. Error	z-value	P-value		
Intercept	4.083	0.381	10.71	3.401	4.837	-2.673	0.865	-3.091	0.002	0.758	0.484	1.566	0.117		
Age (Years / SD)	-0.121	0.088	-1.379	-0.317	0.036	0.322	0.168	1.924	0.054	-0.522	0.128	-4.068	<0.001		
Agricultural Pesticide use	0.394	0.222	1.773	-0.048	0.782	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Residence time (years / SD)	0.052	0.090	0.581	-0.084	0.251	-0.218	0.177	-1.234	0.217	0.176	0.126	1.397	0.1624		
Native Intervention village	-0.294	0.229	-1.284	-0.619	-0.009	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
VMN member	-0.010	0.191	-0.052	-0.397	0.322	-1.132	0.477	-2.372	0.018	-0.367	0.264	-1.392	0.164		
Wealth score	-0.216	0.065	-3.335	-0.337	-0.093	0.250	0.138	1.816	0.069	0.057	0.088	0.654	0.513		
Protected area (Kulen Promtep)	-0.114	0.227	-0.502	-0.433	0.206	-1.400	0.658	-2.127	0.033	-0.322	0.218	-1.478	0.139		

SUPPLEMENTARY TABLE 4 Fixed effect coefficients from Cumulative Linked logistic mixed models for perceived behavioural control. Bold indicates an effect size greater than the two times standard error, or a p-value below 0.05.

Model:	PERCEIVED	BEHAVIOURAL	CONTROL 1:	EFFECTIVE	PERCEIVED BEHAVIOURAL CONTROL 2: EASY					
	CUMULATIN	/e linked (log	IT) MIXED M	ODEL	CUMULATIVE LINKED (LOGIT) MIXED MODEL					
VARIABLES/COEFFICIENTS	Estimate	STD. ERROR	Z VALUE	P VALUE	Estimate	STD. ERROR	Z VALUE	P VALUE		
Age (Years / SD)	-0.166	0.109	-1.524	0.128	-0.289	0.108	-2.674	0.008		
Agricultural Pesticide use	0.609	0.281	2.170	0.030	0.817	0.253	3.233	0.001		
Residence time (Years / SD)	0.013	0.112	0.116	0.908	-0.141	0.111	-1.262	0.207		
VMN member	0.091	0.247	0.366	0.714	0.519	0.231	2.244	0.025		
Wealth score	-0.025	0.081	-0.306	0.760	0.113	0.080	1.402	0.161		
Protected Area (Kulen Promtep)	1.634	0.501	3.258	0.001	-0.130	0.211	-0.617	0.537		
Class membership: 1 2	-1.299	0.569	-2.284	0.022	-0.510	0.438	-1.164	0.244		
Class membership: 2 3	-0.722	0.564	-1.279	0.201	0.136	0.437	0.312	0.755		
Class membership: 3 4	-0.224	0.563	-0.397	0.691	0.801	0.439	1.824	0.068		
Class membership: 4 5	1.158	0.567	2.041	0.041	1.537	0.448	3.433	0.001		

Model:	COMBINED		DESCRIPTIVE		INJUNCTIVE		ATTITUDE	Attitudes		BEHAVIOURAL	Perceived	BEHAVIOURAL	
	Norms		Norms	Norms		Norms		Mixed	CONTROL 1:	EFFECTIVE	CONTROL 2: EASY		
	LINEAR	MIXED	LINEAR	MIXED	LINEAR	MIXED	EFFECT N	10del	CUMULATIVE LINKED		CUMULATIVE	linked (logit)	
	E FFECT	Nodel	EFFECT N	NODEL	EFFECT N	10del			(LOGIT) MIXE	D MODEL	MIXED MODEL		
VARIABLES/COEFFICIENTS	VALUE	S.D.	VALUE	S.D.	VALUE	S.D.	VALUE	S.D.	VALUE	S.E.	VALUE	S.E.	
Village 1	0.000	0.000	-0.001	0.084	-0.014	0.068	0.114	0.152	-0.575	0.061	-0.055	0.009	
Village 2	0.000	0.000	0.014	0.087	0.020	0.069	0.283	0.169	0.092	0.092	0.025	0.009	
Village 3	0.000	0.000	-0.008	0.087	0.009	0.069	0.040	0.169	-0.087	0.081	0.0002	0.010	
Village 4	0.000	0.000	0.054	0.084	0.0003	0.068	0.017	0.153	1.191	0.076	0.041	0.010	
Village 5	0.000	0.000	-0.037	0.087	0.038	0.069	-0.164	0.171	-0.062	0.068	0.021	0.009	
Village 6	0.000	0.000	-0.046	0.086	-0.009	0.068	-0.058	0.160	-1.252	0.070	-0.062	0.010	
Village 7	0.000	0.000	0.038	0.084	0.011	0.068	0.097	0.152	-0.400	0.051	-0.034	0.009	
Village 8	0.000	0.000	-0.033	0.089	0.0002	0.070	-0.128	0.181	0.572	0.054	0.031	0.010	
Village 9	0.000	0.000	0.017	0.087	-0.035	0.069	-0.192	0.167	0.593	0.060	0.037	0.010	
Village 10	0.000	0.000	0.003	0.087	-0.020	0.069	-0.010	0.166	-0.112	0.075	-0.002	0.010	

SUPPLEMENTARY TABLE 5 Random effect coefficients for models of attitudes, perceived norms, and perceived behavioural control. Bold indicates a value greater than two times the standard error or deviation. S.D. = standard deviation, S.E. = standard error.