
Supplementary file:
Pertussis immunity and epidemiology:

mode and duration of vaccine-induced immunity

F.M.G. Magpantay1, M. Domenech de Cellès1,
P. Rohani1,2,3 and A.A. King1,2,3,4,5

S1 Model equations

Here we present the stochastic and deterministic forms of the Full Model. The Restricted Models

are easily derived from these by fixing the values of some of the vaccine parameters, as described

in the text.

Stochastic model

The Full Model tracks the movement of individuals among eight compartments (vaccinated V,

susceptibles S1 and S2, exposed E1 and E2, infected I1 and I2, and recovered R). The fluxes

between compartments are illustrated in Figure 2 in the main text. The exposed and infected

classes are further subdivided into subcompartments (Ek1, Ek2, Ik1, Ik2, for k = 1, . . . ,K). The

stochastic model is a continuous-time, discrete state Markov process. Its state variables are

the numbers of individuals in each of the aforementioned compartments. We let V denote

the number in the V compartment; S1, that in the S1 compartment, and so on. We let

X =
(
V, S1, S2, E

1
1 , . . . , E

K
1 , E

1
2 , . . . , E

K
2 , I

1
1 , . . . , I

K
2 , R

)
denote the vector of state variables. The

process itself is most straightforwardly defined in terms of counting processes, i.e., non-negative,

non-decreasing, integer valued processes. Let ZAB(t) denote the total number of individuals that

have passed from compartment A to compartment B between time t0 and time t, where t0 is some

arbitrary starting time prior to the first data point. We define the stochastic process in two steps.

First, we specify the probability of every possible change in ZAB for all A and B. Then, we describe

how the state variables (the numbers of individuals in each compartment) depend on the counting

processes, ZAB.

The first step is accomplished by the following statements, where t is an arbitrary time, h > 0 is

an arbitrary time increment, and ∆ZAB = ZAB(t+ h)−ZAB(t) is the change in the ZAB counting
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process over the time interval [t, t+ h).

Prob [∆ZV S2 = 1 | X] = αV h+ o(h)

Prob [∆ZV E2 = 1 | X] = εL λV h+ o(h)

Prob
[
∆ZSiE1

i
= 1 | X

]
= λSi h+ o(h)

Prob
[
∆ZEk−1

i Ek
i

= 1 | X
]

= K σEk−1
i h+ o(h)

Prob
[
∆ZEK

i I
1
i

= 1 | X
]

= K σEKi h+ o(h)

Prob
[
∆ZIk−1

i Iki
= 1 | X

]
= K γ Ik−1

i h+ o(h)

Prob
[
∆ZIKi R

= 1 | X
]

= K σ IKi h+ o(h)

(1)

where i = 1, 2 and k = 2, . . . ,K. In the above, λ is the force of infection with multiplicative noise,

as discussed in the main text.

λ(t) =

(
β(t)(I1 + θI2) + β1ι

N(t)

)
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(
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β2
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, scale =
β2
sd

h

)
. (2)

The mean transmission rate is given by the parameter β1, the amplitude of seasonality by β2 and

the peak timing in transmission by ϕ,

β(t) = β1(1 + β2 cos(2π(t− ϕ))). (3)

In addition, all events of the form {∆ZAB > 1 | X} and {∆ZAB > 0 & ∆ZCD > 0 | X} for (A,B) 6=
(C,D) have probabilities that are o(h). The changes in the sizes of the compartments and

subcompartments over the [t, t+ h) interval obey the following equations.
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where k = 2, . . . ,K − 1. In the above, N denotes the total population size, µB the birth rate, and

p the vaccination coverage. In this paper, we have taken K = 3.

Numerically, the stochastic process above is simulated using a multinomial version of the tau-

leap algorithm (He et al., 2010). To ensure that the simulations maintain the observed rate of

population growth, at each time step all compartments and subcompartments Xj are adjusted to

reflect the death rate (µ) and immigration rate (r). This is done via,

Xj ←
[
Xje

−(µ+r)∆t
]
, (5)

were [·] stands for the operation of rounding to the nearest integer value.

Simulations were performed using a stepsize of h = 0.01 yr, equal to 3.65 da. Such a stepsize

has the effect of distorting the latent and infectious periods. Using the discrete time formula in He

et al. (2010), the effective of latent period is lengthened from 8 da to 9.96 da, and the infectious

period from 14 da to 15.9 da.

The time-varying birth (µB), death (µ), and immigration rates (r) for each region were

calculated from EuroStat (European Commission, 2014) annual data on number of births, deaths

and population sizes. Throughout a simulation, the population sizes were calculated using log-linear

interpolation of the annual values, and the corresponding birth and death rates were calculated

using linear interpolation. The model was initialized in 1994 to coincide with the estimated start

of vaccination with aP. The vaccine coverage (p) from 1994–2000 were approximated by a linear

function starting at a vaccination rate of 30% in 1994 (based on information on national vaccination

averages) and the region-specific levels registered in the 2001 vaccine coverage data. The annual

vaccine coverage values from 2001–2010 were linearly interpolated from the available data (Ministero

della Salute, 2014).
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Deterministic model

Taking expectations of the stochastic model in (1)–(5), taking the limit as h ↓ 0 yields the following

system of differential equations.

dV

dt
= (1− εA)p µB N − αV − εLλV − (µ+ r)V,

dS1

dt
= (1− (1− εA)p)µB N − λS1 − (µ+ r)S1,

dE1
1

dt
= λS1 −KσE1
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1 ,
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dt
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1 −KσEk1 − (µ+ r)Ek1 ,
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dt

= KσEK−1
1 −KσEK1 − (µ+ r)EK1 ,
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1

dt
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1 ,

dIk1
dt

= KγIk−1
1 −KγIk1 − (µ+ r)Ik1 ,

dIK1
dt

= KγIK−1
1 −KγIK1 − (µ+ r)IK1 ,

dS2

dt
= αV − λS2 − (µ+ r)S2,

dE1
2
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= εLλV + λS2 − σE2 − (µ+ r)E2,
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dEK2
dt

= KσEK−1
2 −KσEK2 − (µ+ r)EK2 ,
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2

dt
= KσE2 − γI2 − (µ+ r)I2,

dIk2
dt

= KγIk−1
2 −KγIk2 − (µ+ r)Ik2 ,

dIK2
dt

= KγIK−1
2 −KγIK2 − (µ+ r)IK2 ,

dR

dt
= KγIK1 +KγIK2 − (µ+ r)R.

(6)

These equations can be solved using a discretization similar to that used in the stochastic system.

This is done by setting βsd = 0, and taking the transitions at each step to be equal to the rates from

(1) times h. Changes in the values of the components were then calculated using (4), and the sizes

of each component were rescaled according to (5). Thus, the deterministic form of the model is the

skeleton of the stochastic model minus the environmental stochasticity (stemming from βsd) and

demographic stochasticity (from the multinomial draws). It also experiences the same distortion

in the latent and infectious period due to the choice of stepsize.
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S2 Profiling

One dimensional likelihood profiles provide the values of the best likelihoods that can be obtained

at fixed values of the profile parameter by maximizing over all the remaining model parameters.

For each region, we started the profiling procedure by dividing the profile parameter’s given range

into equally spaced intervals (using a linear scale for β and ι and a logarithmic scale for all other

parameters). For each interval, we gathered all the points from earlier searches (i.e. points from

the initial search and those from prior profiling procedures) where the profile parameter had values

that fell within the interval, and selected the point with the highest likelihood. This yielded an

initial profile. To refine the profile, we created seven copies of the the initial and perturbed the

values of the profile parameter by multiplying it by 0.953, 0.952, 0.95, 1.00, 1.05, 1.052 and 1.053.

These provided the starting point for profiling, i.e. maximizing the likelihood over the remaining

model parameters. This procedure of generating starting points then profiling was iterated at least

two times for each profile parameter, and at least three times for each vaccine parameter. The

procedure was stopped when the points in the profile appeared to be converging to a curve.

The six regions were assumed to have independent dynamics. Once all profiles appear to

have converged for each of the six regions, aggregated profiles were generated using the following

procedure: A profile was generated for each region using 100 equally spaced intervals (in the linear

or logarithmic scale) over the entire allowable range of each profile parameter, and selecting the

points with the highest likelihood whose profile parameter falls within each interval. A function was

then fit through this collection of points using local regression. This function was used to estimate

the likelihood values at 101 equally spaced fixed points (the endpoints of the 100 intervals), for each

region. The aggregated profile could then be calculated by adding the estimated log-likelihoods at

each fixed point and fitting a function through those points.

S3 Akaike Information Criterion

The AIC with small sample size correction is given by the formula below,

AICc = −2 log(Likelihood) + 2K︸ ︷︷ ︸
AIC

+
2K(K + 1)

n−K − 1
,︸ ︷︷ ︸

small sample correction

(7)

where n is the number of data points and K is the number of parameters in a model (Burnham &

Anderson, 2002).

S4 Relative infectiousness and relative reporting probability

In most of the individual regions, the results of profiling over the vaccine parameters independently

support a high relative infectiousness (θ → 1) and low relative reporting probability (η close to

zero). Table S4.1 presents the confidence intervals of the parameter estimates.

In Figure S4.1 we compare the estimate of the transmission rate β1 for Sicilia to Lazio, a region

with more typical results. The profiles for Sicilia support β1 → 0, which suggests a disease that is
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Table S4.1: Region-specific MLEs for the stochastic Full Model

Region Relative infectiousness θ
Relative reporting

probability η

Lazio 0.74 (0.17, 1.00) 0.002 (0.000, 0.042)
Lombardia 0.54 (0.34, 1.00) 0.003 (0.000, 0.019)
Sardegna 1.00 (0.15, 1.00) 0.000 (0.000, 0.000)
Sicilia 1.00 (0.00, 1.00) 0.600 (0.000, 1.000)
Toscana 1.00 (0.01, 1.00) 0.035 (0.000, 1.000)
Umbria 1.00 (0.57, 1.00) 0.000 (0.000, 0.000)

not infectious at all and is simply dying out. Since this is not a plausible explanation of pertussis,

the estimates for Sicilia is interprettedto be an artifact of the finte length of data available for

Sicilia. We note that the best Waning Model fitted to Toscana data has a similar problem (but

not the Leaky Model). We still continue to include the results for both Sicilia and Toscana in our

aggregated profiles for completeness. Removing these do not qualitatively change the results.

S5 Reporting probability

In Trottier et al. (2006) the reporting probabilities of pertussis in industrialized countries were

estimated to range from 3–12%. Sentinel surveillance in Italy have yielded estimates of vaccine-

preventable disease prevalence (including pertussis) to be between 2.1–6.5 times higher than what

was calculated using statutory notifications in northern Italy, and 9.1–15.8 times higher in southern

Italy (Ciofi Degli Atti et al., 2002). This indicates that the statutory notification rate is fairly low

in Italy. The reporting probabilities calculated in this study were found to be between 1–3% for

all the different regions of Italy, except in the case of Sicilia and the Waning Model for Toscana.

For these exceptions, the best fit values for the observation probability were above 70%, due to the

very low estimates of the transmission rate in these cases (discussed in Section S4). In the other

cases, the estimates of the reporting probabilities may also be affected by our estimates of the basic

reproduction number. This is discussed in the next section.

S6 Projections

We presented example simulations for the best model fit to Lazio in Figure 5. Here we used the

birth and death rates from 2010–2012 from the Eurostat data. These were then fixed at the 2012

value for the remainder of the simulation (2013–2070). The population values from 2010–2012 were

also taken from Eurostat and an annual rate of change of 0.4% was assumed from 2013–2070.

S7 Region-specific fits to the Restricted Models

Here we present the maximum likelihood estimates derived for each of the six regions of study.

The estimates for the leakiness are shown in Table S7.2. For most regions, the confidence intervals

for the leakiness parameter span almost the the entire allowable range of (0, 1). The profiles for
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Figure S4.1: Profiles over the transmission rate for the stochastic models fitted to data from the Lazio and Sicilia
regions. This shows a maximum likelihood estimate of Sicilia that is highly inconsistent with other regions.
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Lombardia displayed the most curvature at the MLEs and thus this region is associated with the

smallest confidence intervals.

Table S7.2: Region-specific maximum likelihood estimates of the leakiness and mean transmission rate for the
stochastic form of the Leaky Model

Region Leakiness εL Mean transmission rate β1

Lazio 0.63 (0.07, 1.00) 650 (370, 1650)
Lombardia 0.17 (0.12, 0.25) 2000 (1450, 2730)
Sardegna 1.00 (0.05, 1.00) 530 (230, 2920)
Sicilia 0.02 (0.01, 0.70) 0 (0, 60)
Toscana 1.00 (0.02, 1.00) 490 (260, 3000)
Umbria 0.33 (0.10, 0.92) 1250 (600, 2830)

The estimates for the waning rate are shown in Table S7.3. In this case, three out of the six

regions provide confidence intervals that are much smaller than the entire allowable range of (0, 10).

This suggests that the Waning Model may be less flexible than the Leaky Model for fitting the

Italian data.

Table S7.3: Region-specific maximum likelihood estimates of the waning rate and mean transmission rate for the
stochastic form of the Waning Model

Region Waning rate α Mean transmission rate β1

Lazio 0.13 (0.05, 10) 520 (370, 1890)
Lombardia 0.10 (0.07, 0.16) 2060 (1570, 2720)
Sardegna 0.10 (0.02, 10) 1360 (250, 3000)
Sicilia 0.004 (0.001, 5.7) 0 (0, 30)
Toscana 0.008 (0.001, 10) 0 (0, 3000)
Umbria 0.96 (0, 10) 690 (160, 2070)

S8 Seasonal transmission

Due to the form of the seasonal transmission rate function (3), we could determine the timing of

the peaks in transmission from the region-specific fits. This was found to be at ϕ ≈ 0.2 of the year

(mid-February) for most of the regions. We note that peaks in transmission should occur before

peaks in incidence. Furthermore, since in our model, the disease is reported during the transition

from infected to recovered (or effectively removed due to treatment or isolation), these peaks could

be substantially separated by the mean incubation period of 8 days and infectious period of 14

days.

In Figure S8.2, we provide a profile of the seasonality parameters for the Leaky Model fit to

Lombardia. The MLEs of the stochastic form of this model for the amplitude of seasonality and

phase are β2 = 0.07(0.03, 0.11) and ϕ = 0.22(0.12, 0.32) respectively.
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Figure S8.2: Profiles over the disease parameters for the stochastic models fitted to data from the Lombardia region.

We also tested the effect of using a more flexible seasonality function to our results. We re-fitted

the Leaky Model of Lombardia using the following form of β(t),

β(t) = exp
( 6∑
i=1

biSi(t)
)
, (8)

where the Si functions are periodic spline functions with a period of one. The parameters bi were

allowed to take any values in R. This yields three extra parameters to the model. Since β1 is no

longer a parameter in such a model, the force of infection was changed from (2) to

λ(t) =

(
β(t)(I1 + θI2) +Bι

N(t)

)
∆Q, ∆Q ∼ Gamma

(
shape =

∆t

β2
sd

, scale =
β2
sd

∆t

)
, (9)

where B =
∫ 1

0 β(t)dt.

The Leaky Model using (8)–(9) was fitted to the Lombardia data and converged to the β(t)

function shown in Figure S8.3. Clearly the form B(t) is different from a cosine curve. However,

we note that the least-squares fit of a function of the form (3) to B(t) has coefficients that are

very similar to the values at the MLE of the original form of the Leaky Model. Similar results

are found using the Waning Model. While this more flexible seasonality function provides slightly

better likelihood values, the increase in number of parameters actually decreases the AICcof the

new model. Furthermore, as shown in Figure S8.4, the estimates and confidence intervals of the

relevant vaccine parameters do not change significantly with this new seasonality function.

S9 Sensitivity with respect to vaccine coverage assumption

Here we test the robustness of our results on the Restricted Models to changes in our assumptions of

the unknown vaccination coverage from 1994–2000. We focus on the region of Lombardia because

its likelihood profiles over the vaccine parameters display the most curvature compared to the other

regions. In Figure S9.5, we demonstrate how the profiles change when the initial vaccine coverage
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Figure S8.4: Profiles over the vaccine parameters for the stochastic models fitted to data from the Lombardia region.
The profiles in green correspond to profiles using a seasonality function made up of six splines.
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in 1994 is changed from 30% to 50%. In this case, the values with 95% confidence expand to

include a disjoint interval that includes high levels vaccine failure (εL = 1 for the Leaky Model,

and α = 10 for the Waning Model). However the original MLEs and confidence intervals are still

included in the confidence intervals of the new profiles, despite the large change in the vaccine

coverage assumption. As noted in the main text, the fits to the data in Italy depend on factors that

affect the vaccination level of the population, due to its effect on susceptibility of the population

to the disease. When the initial vaccination coverage to 50%, more of the population was moved

to the V class right from the beginning of the simulations. Thus to maintain the same number

of susceptible individuals as in the original formulation, the model can compensate by making the

vaccine less effective.
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Figure S9.5: Profiles over the vaccine parameters for the stochastic models fitted to data from the Lombardia region.
The profiles in green correspond to profiles where the initial vaccine coverage in 1994 is changed from 30% to 50%.

S10 Vaccine impact

Here we consider the effects of primary vaccine failure, leakiness, waning and relative infectiousness

on transmission. Using the deterministic system of equations in (6) (with K = 1 and

ignorning all superscripts for simplicity in notation) the disease-free equilibrium of this system

(V ∗, S∗
1 , E

∗
1 , I

∗
1 , S

∗
2 , E

∗
2 , I

∗
2 , R)T is given by,

V ∗ =
p(1− εA)µ

µ+ α
,

S∗
1 = 1− (1− εA)p,

S∗
2 =

p(1− εA)α

µ+ α
,

E∗
1 = I∗1 = E∗

2 = I∗2 = R∗ = 0.

(10)

Let β(t) = β (a constant) and define X = (E1, I1, E2, I2)T . Linearizing about the disease free

equilibrium yields,
dX

dt
= (F − V)X, (11)
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where

F =


0 S∗

1 0 θS∗
1

0 0 0 0
0 S∗

2 + εLV
∗ 0 θ(S∗

2 + εLV
∗)

0 0 0 0

 , V =


σ + µ 0 0 0
−σ γ + µ 0 0
0 0 σ + µ 0
0 0 −σ γ + µ

 . (12)

To derive the basic reproduction number of this system, we first derive the next generation matrix

K = FV−1. The sole non-zero eigenvalue of this matrix yields the expression for the basic

reproduction number Rp,

Rp =
βσ

(µ+ σ)(µ+ γ)

[
S∗

1 + θ(S∗
2 + εLV

∗] (13)

If we use the previously introduced Magpantay et al. (2014) notation εW = α
µ+α , then we derive,

Rp = R0(1− ϕp), (14)

where R0 = βσ
(µ+σ)(µ+γ) and the vaccine impact is given by,

ϕ = (1− εA)
[
(1− θ) + θ(1− εL)(1− εW )

]
. (15)

If, as in the main text, we set the primary vaccine failure εA = 0, then this expression simplifies to,

ϕ = (1− θ) + θ(1− εL)(1− εW ). (16)

One can calculate the critical vaccination coverage, the minimum fraction of the population that

needs to be vaccinated to obtain asymptotic eradication of the disease, by setting R0 ≤ 1. This

yields,

p ≤ pc(the critical vaccination coverage) :=
1

ϕ

[
1− 1

R0

]
.

Since the critical vaccination coverage can be considered a measure of the total reduction in

transmission (due to both reduction in susceptibility of vaccinated individuals, and reduction in

their transmission potential if they get infected), we can look at the vaccine impact ϕ as a measure

of the reduction in overall transmission due to vaccination.

S11 Mean age at first infection of näıve individuals

The values in Table 7 were calculated by taking the full collection of points and likelihoods measured

for Lazio (including the initial run and all profiles) and discarding those wherein the relevant vaccine

parameters (leakiness for the Leaky Models and waning rate for the Waning Model) do not fall

within the confidence intervals in Table 7. We then used the likelihoods to take 50 samples from

these points. At each sample, we found the filter means of the states from 1994–2070 (filtered

through data consisting of the original data from 1994–2009 augmented by NA values from 2010–

2070, each NA value was assumed to have probability of one). The collection of filter means were

then used to derive the mean age at first infection of näıve individuals, as well as the 2.5% and

97.5% quantiles.
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S12 Basic reproduction number for systems with and without age-structure

The basic reproduction number is an important concept in epidemiology and represents the

expected number of secondary cases resulting from the introduction of one infected case in a wholly

susceptible population. This can be derived from linearization of the systems about the disease-free

equilibrium (van den Driessche & Watmough, 2008). While a particular disease is often associated

with a range of basic reproduction number values, this number actually also depends on the model

that is being used to represent the disease dynamics. In this section we discuss how an estimate of

basic reproduction number varies when we use a (1) homogenous model and (2) an age-structured

model with two age classes to model a disease at steady state.

The system of equations for the age-structured model is given by,

dS1

dt
= µ− λ1S1 − νS1 − µS1,

dI1

dt
= λS1 − γI1 − νI1 − µI1,

dR1

dt
= γI1 − νR1 − µR1,

dS2

dt
= νS1 − λ2S2 − µS2,

dI2

dt
= νI1 + λ2S2 − γI2 − µI2,

dR2

dt
= νR1 + γI2 − µR2.

(17)

Here,
λ1 = β11I1 + β12I2,

λ2 = β21I1 + β22I2.
(18)

and [
β11 β12

β21 β22

]
= β

[
ϕ χ
χ 1

]
(19)

where ϕ > 1 and χ ∈ (0, 1] to reflect higher than average contacts between children and lower

contacts between adults and children.

In Figure S12.6 we present the basic reproduction number of the age-structured model compared

to that of a homogenous model with the same mean age at first infection. All of these values were

calculated numerically with all model parameter values fixed except for the transmission rate β1.

We see that in a homogenous approximation of an age-structured system, estimates of the basic

reproduction number can be much higher than the reproduction number associated with the age-

structured system. Depending on the value of ϕ, this could also be lower. Thus we see that fitting

a homogenous model to data that may have been generated from age-structured data can affect the

estimates of R0. For this reason, we do not focus on the estimates of R0 in this project. Instead

we look at the mean age at first infection which is more consistent across regions. Furthermore,

the high estimates of R0 that we measured due to our use of a homogenous model may be trading

off with the low reporting rates that we observed in Section S5. Our assumption that wP-induced
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immunity can be considered the same as infection-derived immunity may also play a part in our

wide range of estimates for the transmission rate β1 and therefore R0.
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Figure S12.6: Comparison of the basic reproduction number for homogenous and age-structured models at the same
values of the steady state mean age at first infection for ϕ = 3 and χ = 1. In this case, the transmission between
children is three times larger than transmission between all other types of transmissions (between adults, between an
adult and a child).
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