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Supplementary Method
The Mini International Neuropsychiatric Interview
The Mini International Neuropsychiatric Interview (MINI, 6.0.0; (Sheehan et al. 2009)) was administered by qualified health personal on the day of examination. The MINI is a short structured interview that explores psychiatric diagnoses according to the DSM-IV and ICD-10 (Sheehan et al. 1998). Each diagnostic section starts with one to four screening questions (with yes/no response options). If these are answered positively, follow-up questions are asked to assess the presence of symptoms needed to fulfil the diagnostic criteria. For the trauma survivors, post-traumatic stress disorder (PTSD) symptom load was calculated based on the number of positively answered questions for the PTSD diagnostic section (Part I in MINI 6.0.0). Due to exclusion of healthy controls with previous traumatic experiences, their sum was always zero.
The orthogonalized Go/No-go task
We modified a Go/No-go task developed by Guitart-Masip et al (Guitart-Masip et al. 2011; Guitart-Masip et al. 2012). Each trial consisted of a fractal cue presented for 1000 ms followed by an outcome. The fractal cues indicated whether a subject would be required to perform a button press (go) or not (no-go) and the possible valence of the outcome consequent on the subject’s behaviour (reward / no reward or punishment / no punishment). Subjects could win 1 Norwegian Krone (NOK) in the rewarded trials and lose 1 NOK in the punishment trials. After a 500 ms delay, subjects were presented with the outcome (money won in NOK), which stayed on the screen for 2000 ms. The trials were separated by a jittered intertrial interval lasting 1500 – 2500 ms. In total, subjects had to learn four different trial types indicated by four separate fractal cues: press the correct button during fractal cue presentation to obtain a reward (Go to win), press the correct button during fractal cue presentation to avoid punishment (Go to avoid punishment), do not press a button during fractal cue presentation to obtain a reward (No-go to win) and do not press a button during fractal cue presentation to avoid losing money (No-go to avoid punishment). Importantly, the task orthogonalized action requirements (i.e. go or no-go) and outcome valence (i.e. reward or punishment). Each fractal was repeated 20 times in a randomized design. The meaning of the fractals was counterbalanced across subjects.
Subjects received verbal instructions prior to task performance and they also performed a short practice version of the task. They were told that the correct choice for each fractal image could be either a go or a no-go response, and they had to make a response while the fractal stayed on the screen. Furthermore, they were instructed that for some of the fractals, a correct response would lead to a reward, while for others a correct response would cause avoiding a punishment. The practice task consisted of three trials of each condition, and subjects were told that their performance would not be compensated.
Computational modelling of the behavioural data
A series of existing models were refined to capture learning behaviour of subjects (Guitart-Masip et al. 2012). In the simplest model (RW), state-action values (Q-values) were estimated using a simple Rescorla-Wagner like update equation with two free parameters. The two parameters were the feedback sensitivity () and learning rate (ɛ). Reinforcement entered the equation through rt ∈ {-1,0,1}.
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[image: ]The model was then expanded through successive steps (see (Guitart-Masip et al. 2012)). In model RW + noise, irreducible noise (ξ) (which squashed the softmax function) in action selection was entered as follows:                           
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In a third model (RW + noise + bias), a value-independent and static action bias b was included that promoted or suppressed go actions equally across all trial types. 
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In the model RW(rew/pun) + noise + bias the parameter was split such that it could take on two different values for rewards and losses. The final model RW(rew/pun) + noise + bias + Pav additionally contained the expected action-independent value of the stimulus V(s) which promoted go actions when it was positive, and promoted nogo actions when it was negative: 
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On trials where feedback was in terms of punishments, the Pavlovian parameter hence suppressed the tendency to go in proportion to the negative value V(s) of the stimulus, and similarly invigorated go responses in trials where feedback was in terms of rewards. The Pavlovian value V(s) of a stimulus is learned iteratively and biases the action value Q(Go) scaled by the Pavlovian bias. The parameter π measured the strength of the Pavlovian influence.  
Model fitting procedure
The model fitting procedures are identical to those described in Huys et al (Huys et al. 2011). We used an expectation-maximization procedure for estimation of the group and the individual subject parameters. Expectation-maximization is an iterative method which finds the maximum a posteriori likelihood of the group distribution for each of the parameters, and this distribution is subsequently used as an a priori prior for parameter maximization for each subject. Recursion terminated when consecutive iterations converged. The prior distribution over the parameters regularized the inference and prevented non-constrained parameters to take on extreme values. While the feedback sensitivities and the Pavlovian parameter were constrained to be positive, and learning rates and softmax noise were constrained to be between 0 and 1, the remaining parameters were unconstrained. Models were compared by using the integrated Bayesian Information Criterion (iBIC).
Magnetic resonance spectroscopy (1H-MRS) acquisition and analysis.
1H-spectra were obtained from the dorsal anterior cingulate cortex (dACC) using a single voxel point resolved spectroscopy (PRESS) sequence (TR = 1500 ms, TE = 35 ms, voxel size 25 x 40 x 40 mm, 128 averages) acquired with a GE Signa HDx, 3T scanner. The region was chosen on a priori grounds due to its involvement in resolving Pavlovian-instrumental conflicts (Cavanagh et al. 2013) and cognitive control (Silvetti et al. 2014). The MRS voxel was positioned using a high-resolution T1 image (TR = 7.8 ms, TE = 3.0 ms, Flip angle 14º, 256 mm x 256 mm field of view, 256 x 256 matrix), across the midline, covering dACC in both hemispheres. For comparison purposes, in vivo 1H-spectra were also obtained from a ventromedial prefrontal cortex (vmPFC) voxel (TR = 1500 ms, TE = 35 ms, voxel size 30 x 40 x 25 mm) using the same PRESS sequence. To ensure acceptable spectral quality, pre-scanning was applied iteratively to achieve water suppression level at minimum 94% and a line-width of less than 8 Hz. The Linear Combination Modelling (LCModel) software (Version 6.2-4A (Provencher, 1993)) was used for quantification of a the 1H-MRS spectra, with only those metabolite estimates having Cramer-Rao minimum variance bounds (CRLB) of less than 20% being accepted for the statistical analyses. 
Resting-state Glx (sum of glutamine and glutamate (Glx)) levels relative to Creatine (Cr) were used from the LCModel output. Cr levels in dACC (t(44) = -0.24, p=0.81) or vmPFC (t(42) = -1.04, p=0.31) did not differ significantly between the two groups. The use of Glx and not glutamate per se was motivated by reports linking chronic stress to changes in glutamate release (Moghaddam, 2002) and metabolism (Banasr et al. 2010) in prefrontal cortex, and thus Glx (which in addition to glutamate reflects the levels of glutamine, converted from glutamate) may provide a more accurate correlate (Popoli et al. 2012). Importantly, there was no difference in the quality of LC model fits for the two groups as indexed by the signal-to-noise ratio for the dACC (t(44) = -0.89, p = 0.38) and the vmPFC (t(42) =-1.13, p = 0.26) voxel. 
As glutamate levels have been shown to vary dependent on tissue classes in the investigated voxel, we additionally tested whether the proportion of grey and white matter in the measured voxel impacted on our results. We estimated the proportion of grey and white matter in each voxel using in-house written scripts that leverage the SPM8 software’s (http://www.fil.ion.ucl.ac.uk/spm) combined segmentation and normalization functions. Coordinates and orientation in scanner space was read directly from the raw spectroscopy files. Next, the T1 image was co-registered to a standard MNI template and segmented into tissue probability maps for grey matter, white matter and CSF tissue. There was no significant correlations between grey matter (r=-0.15, p = 0.34), white matter (r=0.17, p = 0.27) or the ratio between the two (r=-0.17, p = 0.27) and dACC Glx levels. 
SUPPLEMENTARY TABLE 1:  1H-MRS-values
	
	dACC
	vmPFC

	
	Trauma
	Controls
	Trauma
	Controls

	Glx/Cr
	2.20 ± 0.26
	2.40 ± 0.29
	2.37 ± 0.48
	2.62 ± 0.65

	GM
	42.66 ± 2.95
	42.60 ± 3.58
	50.52 ± 4.85
	49.86 ± 4.10

	WM
	48.79 ± 3.19
	48.76 ± 3.68
	37.43 ± 6.16
	37.14 ± 5.19



± indicates SD
Abbreviations: Glx/Cr = resting-state Glx relative to Creatine; GM = Gray matter proportion in voxel; WM = White matter proportion in voxel. 
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where ξ was the irreducible noise which was kept at 0 for one of the
models (RW), butwas free to vary between 0 and 1 for all othermodels.



The models further differed in terms of how the action weight was
constructed. For models RW and RW+noise, W(a,s)=Q(a,s), which
was a simple Rescorla–Wagner like update equation:



Qt at ; stð Þ ¼ Qt−1 at ; stð Þ þ ε ρrt−Qt−1 at ; stð Þð Þ ð2Þ



where ε was the learning rate. Reinforcements entered the equation
through rt∈{−1,0,1} and ρwas a free parameter that determined the ef-
fective size of reinforcements for a subject. For model RW(rew/pun)+
noise+bias, the parameter ρ could take on different values for the re-
ward and punishment trials, but for all other models there was only one
value of ρ per subject. This meant that those models assumed that loss
of a reward was as aversive as obtaining a punishment.



The other models differed in the construction of the action weight
in the following way. For model RW+noise+Q0, the initial Q value
for the go action was a free parameter, while for all other models
this was set to zero. For models that contained a bias parameter, the
action weight was modified to include a static bias parameter b:



Wt a; sð Þ ¼ Qt a; sð Þ þ b if a ¼ go
Qt a; sð Þ else :
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For the model including a Pavlovian factor (RW+noise+bias+
Pav), the action weight consisted of three components:



Wt a; sð Þ ¼ Qt a; sð Þ þ bþ πVt sð Þ if a ¼ go
Qt a; sð Þ else
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where π≥0 was again a free parameter. Thus, for conditions in which
feedback was in terms of punishments, the Pavlovian parameter
inhibited the go tendency in proportion to the negative value V(s)
of the stimulus, while it similarly promoted the tendency to go in con-
ditions where feedback was in terms of rewards.



Model fitting procedure



These procedures are identical to those used by Huys et al. (2011),
but we repeat them here for completeness. For each subject, each
model specified a vector of parameters h. We found the maximum a
posteriori estimate of each parameter for each subject:



hi ¼ argmaxh p Ai ; hij Þ p hi θj Þðð ð6Þ



where Ai comprised all actions by the ith subject. We assumed that
actions were independent (given the stimuli, which we omit for nota-
tional clarity), and thus p(Ai|hi) factorized over trials, being a product
of the probabilities in Eq. (1). The prior distribution over the param-
eters p(hi|θ) mainly served to regularize the inference and prevent
parameters that were not well-constrained from taking on extreme
values. We set the parameters of the (factorized) prior distribution
θ, which consist of a prior mean m and variance v2, to the maximum
likelihood given all the data by all the N subjects:
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where A={Ai}i=1
N comprised all the actions by all theN subjects and θ=



{m,v2} were the prior mean and variance. This maximization was ap-
proximately achieved by Expectation–Maximization (MacKay, 2003).
We used a Laplacian approximation for the E-step at the kth iteration:
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Before inference, all parameters were suitably transformed to en-
force constraints (log and inverse sigmoid transforms). All model fitting
procedures were verified on surrogate data generated from a known
decision process.



Model comparison



Models would ideally be compared by computing the posterior log
likelihood logp(M|A) of each model M given all the data A. As we had
no prior on the models themselves (testing only models we believed
were equally likely a priori), we instead examined the model log like-
lihood logp(M|A) directly. This quantity could be approximated in
two steps. First, the integral over the hyperparameters was approxi-
mated using the Bayesian Information Criterion at the group level
(Kass and Raftery, 1995):
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where Kwas set to 1000 and hkwere parameters drawn independently
from the priors over the parametersp h θ̂ML
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procedures were also verified on surrogate data generated from a
known decision process. Comparing integrated BIC values is akin to a
likelihood ratio test, and in fact can be shown to reduce to classical sta-
tistical tests for certain simple linear models (Kass and Raftery, 1995).



fMRI data acquisition



fMRI was performed on a 3-Tesla Siemens Allegra magnetic reso-
nance scanner (Siemens, Erlangen, Germany)with echo planar imaging
(EPI). Functional datawas acquired in four scanning sessions containing
135 volumes with 41 slices, covering a partial volume that included
the striatum and the midbrain (matrix: 128×128; 40 oblique axial
slices per volume angled at −30° in the antero-posterior axis; spatial
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Before inference, all parameters were suitably transformed to en-
force constraints (log and inverse sigmoid transforms). All model fitting
procedures were verified on surrogate data generated from a known
decision process.



Model comparison



Models would ideally be compared by computing the posterior log
likelihood logp(M|A) of each model M given all the data A. As we had
no prior on the models themselves (testing only models we believed
were equally likely a priori), we instead examined the model log like-
lihood logp(M|A) directly. This quantity could be approximated in
two steps. First, the integral over the hyperparameters was approxi-
mated using the Bayesian Information Criterion at the group level
(Kass and Raftery, 1995):
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where Kwas set to 1000 and hkwere parameters drawn independently
from the priors over the parametersp h θ̂ML
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. Thesemodel comparison



procedures were also verified on surrogate data generated from a
known decision process. Comparing integrated BIC values is akin to a
likelihood ratio test, and in fact can be shown to reduce to classical sta-
tistical tests for certain simple linear models (Kass and Raftery, 1995).



fMRI data acquisition



fMRI was performed on a 3-Tesla Siemens Allegra magnetic reso-
nance scanner (Siemens, Erlangen, Germany)with echo planar imaging
(EPI). Functional datawas acquired in four scanning sessions containing
135 volumes with 41 slices, covering a partial volume that included
the striatum and the midbrain (matrix: 128×128; 40 oblique axial
slices per volume angled at −30° in the antero-posterior axis; spatial
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where ξ was the irreducible noise which was kept at 0 for one of the
models (RW), butwas free to vary between 0 and 1 for all othermodels.
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