SUPPLEMENTARY MATERIAL for
Multivariate Patterns of Grey Matter Volume in Thalamic Nuclei are associated with Positive Schizotypy in Healthy Individuals

Pasquale Di Carlo1,2, Giulio Pergola1,2, Linda A. Antonucci1,3, Aurora Bonvino1,4, Marina Mancini1, Tiziana Quarto1, Antonio Rampino1,5, Teresa Popolizio4, Alessandro Bertolino1,5, Giuseppe Blasi1,5

1Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience, and Sense Organs – University of Bari Aldo Moro, Bari, Italy

2Lieber Institute for Brain Development, Johns Hopkins Medical Campus – Baltimore, MD, USA

3Department of Psychiatry and Psychotherapy – Ludwig-Maximilians University, Munich, Germany

4IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy

5Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy 
This file includes:

1. Supplementary Materials and Results
1.1. Between-studies comparison of sample characteristics 
1.2. Demographics, neuropsychological and clinical assessment

1.3. Imaging data acquisition and preprocessing
1.4. Brain features extraction for machine learning multivariate analyses 
1.5. Random Forests analyses
1.6. Random Forests analyses: premorbid intelligence, dimensionality reduction and SPQ sub-sample.

1.7. Thalamic nuclei univariate associations with diagnosis
2.1. References
3.1. Supplementary Tables

eTable 1. Descriptive statistics of the scores of SPQ subscales in our sample. Furthermore, statistics on a comparison of SPQ scores in our sample with those of a larger sample used in a previous study 
 ADDIN EN.CITE 
(Fonseca-Pedrero et al., 2018)
.
eTable 2. Classification importance of thalamic nuclei and their univariate association with diagnosis and classification outcome. 
eTable 3. Machine Learning classification performances: premorbid intelligence, dimensionality reduction and SPQ sub-sample.
1. Supplementary Methods and Results
1.1. Between-studies comparison of sample characteristics

Compared with our previous report 
 ADDIN EN.CITE 
(Pergola et al., 2017)
, we excluded participants that were not screened with  Schizotypal Personality Questionnaire (119 HC), those enrolled in a separate protocol specifically designed for twin studies (27 HC). Importantly, we ran a further quality check relative to our previous work and removed those scans deemed of poor quality following individual and group-level quality checks (15 HC and 12 SCZ, see section 1.3 for details). We assessed whether the participants included in our previous report 
 ADDIN EN.CITE 
(Pergola et al., 2017)
 showed significant demographic differences relative to the sample included in the current study. With this aim, we performed separately for HC and SCZ. (2-test for gender imbalance and t-test for age, Socio-Economic Status (SES) and handedness, which did not reveal significant effects (all p-values>0.2).  
1.2. Demographics, neuropsychological and clinical assessment

We assessed putative imbalance of demographics in HC included in the present study (HC=255) with complete SPQ evaluation (HC=174) compared with those lacking SPQ data (HC=81). This comparison indicated no effect for gender ((2 =1.8, p-value=0.18) handedness (t-value=-0.6, p-value=0.56), and SES (t -value=1.7, p-value=0.09), while there was an effect for age (t-value=-3.2, p-value=0.002), with HC with-SQP younger than those without-SPQ. Importantly, we adjusted GMV estimates of interest for age during the pre-processing steps within SPM8 and age was not associated with machine learning outcome in our analysis (see Table 3).  


Furthermore, we compared SPQ scores in our sample with SPQ scores from a larger healthy population (N=27,001) reported in 
 ADDIN EN.CITE 
(Fonseca-Pedrero et al., 2018)
. We used descriptive statistics of the nine SPQ subscales reported in the latter study and computed mean differences with our sample (N=174) using Cohen’s d. This analysis indicates lower SPQ scores in our sample. The effect sizes of the difference range from small to medium across subscales (eTable 1). It is possible that lower scores (floor effect) and related lower variability in our sample might have reduced the power to detect statistical associations. Furthermore, scores for the disorganized factor in our sample are associated with low variability per se and compared with the other SPQ factors. This finding is consistent with previous reports 
 ADDIN EN.CITE 
(Vollema et al., 2002; Moreno-Izco et al., 2015,)
. 

1.3. Imaging data acquisition and preprocessing

Structural Magnetic Resonance data were pre-processed with SPM8 (http://www.fil.ion.ucl.ac.uk/spm) using DARTEL as previously reported 
 ADDIN EN.CITE 
(Pergola et al., 2017)
. Raw structural images were visually inspected to exclude images affected by technical artifacts like blurring, ringing, wrapping and incomplete head coverage 
 ADDIN EN.CITE 
(Wood and Henkelman, 1985; Reuter et al., 2015; Backhausen et al., 2016)
. With respect to head coverage, images were excluded in case of crop of the skull and of dorsal brain regions, or even in case of signal drop at the border likely caused by the movement of the subject from his/her initial position during the scanning. We also inspected each image after segmentation and normalization. Segmented images underwent individual quality check procedures through visual checks to ensure that they were not affected by excessive noise, poor image contrast and/or poor boundaries (Song et al., 2006). Following this quality control procedure, that employed stricter criteria relative to our previous study 
 ADDIN EN.CITE 
(Pergola et al., 2017)
, 15 HC and 12 SCZ were excluded from further analyses, i.e., a proportion below 10% of each sample, which is in line with other approaches 
 ADDIN EN.CITE 
(Moberget et al., 2018)
. Images were segmented into three primary tissue concentration maps: gray matter, white matter, and cerebrospinal fluid. A study-specific group DARTEL template was created using an iterative process within SPM8. To identify outliers, we performed a group-level check through the SPM8 function Check Sample Homogeneity. This way, we calculated the standard deviation across sample with respect to our template. Specifically, the squared distance from the mean was calculated for each image. Images with the largest squared distance to the mean were re-checked with CheckReg function. There were no outliers based on this procedure. Subsequently, gray matter and white matter images were normalized to the final group DARTEL template and re-sampled to 1.1 mm3 isotropic voxels in order to soften possible partial volume effects (Mechelli et al., 2005). Normalized images underwent smoothing using a Gaussian kernel of 4 mm full-width at half maximum. This limited spatial smoothing was used to retain high signal to noise ratio for small regions like the thalamic regions we considered, while decreasing the effects of putative small registration errors. We already used this procedure in our previous work 
 ADDIN EN.CITE 
(Pergola et al., 2013a, 2017)
.
1.4. Brain features extraction for machine learning multivariate analyses 

To obtain grey matter volume estimates (GMV) of the thalamic subdivisions, we used a previously developed procedure 
 ADDIN EN.CITE 
(Pergola et al., 2017)
. We employed a published atlas, The Thalamus Atlas 
 ADDIN EN.CITE 
(Krauth et al., 2010; Jakab et al., 2012)
, which previous research found consistent with histological sections (Morel, 2007), with focal stroke localization 
 ADDIN EN.CITE 
(Pergola et al., 2013c; Danet et al., 2015)
 and with functional cluster localization 
 ADDIN EN.CITE 
(Pergola et al., 2013a; Antonucci et al., 2016)
. The ROIs available in The Thalamus Atlas refer to specific nuclei. However, with small ROIs, the definition of the borders may be unreliable with respect to inter-individual variability 
 ADDIN EN.CITE 
(Pergola et al., 2013b, 2016)
. Therefore, we combined these ROIs using Marsbar (Brett, 2002). Based on the adjacency of thalamic nuclei and their connectivity patterns 
 ADDIN EN.CITE 
(Pergola et al., 2012; Barbas et al., 2013)
, we defined fourteen ROIs, i.e., seven for each hemisphere: anterior/midline nuclei; mediodorsal thalamic nucleus; intralaminar nuclei; ventrolateral nucleus; ventral anterior region; geniculate nuclei; pulvinar. Notably, we removed voxels located at the border between the ROIs to increase the specificity of the nuclei. Additionally, we used a ROI including all thalamic nuclei to control for total thalamic GMV. Finally, we summarized GMV estimates using the first principal component of the GMV volume in each voxel of the ROIs and obtained a set of 14 features for further analyses.
1.5. Random Forests analyses.
Random Forests general concepts. Random Forests is a so-called ensemble method that combines the prediction of several classifiers to achieve better predictions. Each classifier is a non-parametric binary decision tree and has the advantage to not rely on any distributional assumption. To improve accuracy, Random Forests combines the prediction of multiple trees by bootstrap aggregation. In addition, only a random subset of features is used to find the optimal classification rule at each step. This guarantees that trees are decorrelated, that is, they use different variables to find an optimal prediction rule. Then, each tree votes for a class, i.e., it assigns a subject to healthy controls or patients with schizophrenia. Here, we grew an ensemble of 500 trees. The prediction at the single-subject level is based on the majority of votes. The fraction of trees that have voted for the same class is the subject’s classification score. Classification scores range between 0 and 1 and could be considered representative of the subject’s probability to belong to a certain class. Since we used a nested-designed model, the maximum number of SCZ available at each cross-validation fold of the train set is 131(0.7(0.9=82, to consider class sizes unbalance, we followed a down-sampling strategy to ensure an identical number of samples per class (N=80) at each bootstrap draw. 
Random Forests nested design – the main analysis model. We used a nested-designed framework. We separated the train and the test sets, we cross-validated the train set, and we estimated accuracy in the test set. In details, in the outer loop subjects were split in 70% train and 30% test sets. In the inner loop, the train set underwent 10-times-repeated-10-fold cross-validation to reduce overfitting. Then, the cross-validated algorithm was used to predict class membership at the single-subject level in the test set (30% unseen complementary individuals); thus, unbiased test set estimate of prediction accuracy was computed. To further control sampling bias, we ran 1,000 re-samplings of the outer loop. Results of this analyses are reported in the main text of the paper.
Features importance. To assess the importance of each feature in discriminating between diagnostic groups (HC vs. SCZ), we used rfPermute R package v2.1.6, which computes the mean accuracy decrease when each variable was removed from the model over 10,000 permutations of diagnostic labels, as alreaedy described in our previous work 
 ADDIN EN.CITE 
(Pergola et al., 2017)
. Mediodorsal and anterior-midline nuclei had high importance in discriminating HC from SCZ (empirical p-value<0.0001). Mean decrease accuracy and empirical p-values for all thalamic nuclei are reported in eTable 2. 
1.6. Random Forests analyses: premorbid intelligence, dimensionality reduction and SPQ sub-sample.

The following machine learning analyses employed the same nested design described in section 1.5, to estimate classification accuracy (outer loop: 1,000 re-samplings of train/test sets; inner loop: 10-times-repeated-10-fold cross-validation of the train sets; accuracy estimation: left-out test sets). Results are summarized in eTable 3.  
Thalamic nuclei and premorbid IQ. We sought to reproduce the machine learning analysis carried out in our previous work 
 ADDIN EN.CITE 
(Pergola et al., 2017)
 which combined thalamic nuclei GMV estimates and pre-morbid intelligence to predict diagnosis (HC vs. SCZ). Our aim was to verify whether the classification performance remains consistent in the present sample, which only partially overlaps with that investigated in our previous report 
 ADDIN EN.CITE 
(Pergola et al., 2017)
. To estimate pre-morbid intelligence, we used the Italian version of the Wide Reading Achievement Test (TIB) (Sartori et al., 1997). We thus developed an algorithm combining thalamic nuclei GMV estimates (14 nuclei) and TIB to predict diagnosis (ThSub+TIB). Overall accuracy was 81.8% (sensitivity/specificity = 81.3%/82.0%, eTable 3), which is consistent with our previous results 
 ADDIN EN.CITE 
(Pergola et al., 2017)
.
Dimensionality reduction for the AAL dataset. The AAL algorithm used 106 ROIs as input features while the ThSub used 14 ROIs. We further checked whether the AAL algorithm may underfit due to the large number of input features. Random Forests is robust respect to those scenarios in which features largely outnumber observations (Breiman, 2001). However, we used a dimensionality reduction technique (i.e., Principal Component Analysis, PCA) to shrink the number of input features. We selected 85% explained variance as cut-off for PCA, which extracts 30 principal components, in the same order of magnitude of the number of thalamic features. PCA-model remained stable compared to the full-model (accuracy=65.3%, eTable 3), suggesting that underfit is not a concern.     
Machine learning in the SPQ sub-sample. 174 out of 255 HC had full SPQ evaluation. We sought to explore machine learning classification accuracy (HC vs. SCZ) in this more limited HC sample to investigate consistency of performance in both ThSub and AAL datasets. ThSub/AAL classification performances was slightly lower compared to the full model (accuracy: ThSub=69.5% [decrease=-3%]; AAL = 65.1 % [decrease=-2.5%]. The smaller sample size may account for this performance decrease (-21% of the whole sample or -32% of the healthy controls only). Results of these analyses are reported in eTable 3. 

1.7. Thalamic nuclei univariate association with diagnosis and SPQ scores

We sought to replicate univariate association between thalamic nuclei GMV estimates and diagnosis detected in our previous report 
 ADDIN EN.CITE 
(Pergola et al., 2017)
 in this partially overlapping sample. We performed separate t-tests using diagnosis (HC vs. SCZ) as independent variable and thalamic GMV estimates as dependent variables (as already described we obtained linear regression residuals of GMV estimates regressing out confounders). Since we conducted multiple tests, we adjusted statistical threshold with Bonferroni rule (( = 0.05/14 = 0.0036). As in our previous work 
 ADDIN EN.CITE 
(Pergola et al., 2017)
 we found a main effect of diagnosis on the GMV estimates of the mediodorsal nucleus of the thalamus (eTable 2), as well as on the anterior-midline nuclei, which in the current sample survives correction for multiple comparison (eTable 2). All GMV estimates are reduced in SCZ compared with HC. Moreover, we performed separate t-tests in the HC sub-sample using classification outcome (true negatives vs. false positives) as the independent variable and thalamic GMV estimates as dependent variables. We consistently found that mediodorsal and anterior-midline nuclei GMV estimates are reduced in false positive HC compared with true negative HC (Bonferroni rule: ( = 0.05/14 = 0.0036, eTable 2). Finally, we used Pearson’s correlation to evaluate separately the association between thalamic GMV estimates and SPQ factor scores. Individual thalamic nuclei GMV estimates are not associated with SPQ factor scores nor with total SPQ score (all p-values > 0.1), suggesting that complex thalamic volumetric patterns rather than individual nuclei are linked to schizotypy. 
1.8 Relevance of demographics to misclassification and classification scores


We verified whether misclassification and classification scores were associated with demographics to exclude other plausible sources of misattribution. We used a t-test to assess differences between TP and FN in terms of age, socio-economic status and handedness, while we used a (2-test to account for gender imbalance. Furthermore, we used linear regressions to investigate association of π-SCZ with age, socio-economic status or handedness, as well as t-test to investigate association with gender.
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3. Supplementary Tables

eTable 1. Descriptive statistics of the scores of SPQ subscales in our sample. Furthermore, statistics on a comparison of SPQ scores in our sample with those of a larger sample used in a previous study 
 ADDIN EN.CITE 
(Fonseca-Pedrero et al., 2018)
. 
	SPQ Subscales
	Reference sample*
N = 27,001
	Our sample

N=174
	Cohen’s d

	
	Mean
	SD
	Mean
	SD
	d
	CI95

	Ideas of Reference
	3.29
	2.40
	1.35
	1.65
	0.67
	0.52 – 0.82

	Unusual Perceptual Experiences
	2.09
	1.93
	0.61
	1.10
	0.67
	0.52 – 0.82

	Magical Thinking
	1.56
	1.70
	0.64
	1.10
	0.46
	0.31 – 0.61

	Paranoid Ideation
	2.23
	2.13
	1.64
	1.52
	0.23
	0.08 – 0.38

	Excessive Social Anxiety
	3.29
	2.43
	1.40
	1.67
	0.64
	0.49 – 0.79

	No Close Friends
	2.06
	2.11
	1.07
	1.50
	0.38
	0.23 – 0.53

	Constricted Affect
	1.78
	1.76
	1.33
	1.37
	0.20
	0.05 – 0.35

	Odd Speech
	3.18
	2.37
	1.67
	1.84
	0.50
	0.35 – 0.65

	Odd Behavior
	1.76
	1.99
	0.94
	1.39
	0.34
	0.19 – 0.49


* Fonseca-Pedredo et. al 2018. Please see the reference list for full citation.

eTable 2. Classification importance of thalamic nuclei and their univariate association with diagnosis and classification outcome. 

	Thalamic Nuclei
	Classification HC vs. SCZ

Mean Decrease Accuracy
	Univariate

HC vs. SCZ
	Univariate

TN vs. FP

	
	%
	Empirical p-value
	t-value
	p-value
	t-value
	p-value

	MD-right
	15.4
	< 0.0001
	3.5
	0.00050
	3.6
	0.00061

	AT-left
	14.4
	< 0.0001
	4.4
	0.00001
	3.3
	0.00181

	AT-right
	12.8
	< 0.0001
	4.3
	0.00003
	3.5
	0.00089

	MD-left
	12.6
	< 0.0001
	3.2
	0.00140
	3.1
	0.00323

	VA-right
	7.4
	0.0109
	2.5
	0.01397
	5.4
	< 0.00001

	GN-right
	6.7
	0.0173
	1.5
	0.13404
	-0.3
	0.74333

	GN-left
	6.6
	0.0162
	1.5
	0.14267
	0.7
	0.48181

	Pul-right
	6.1
	0.0400
	0.7
	0.48897
	1.2
	0.22409

	VL-right
	4.7
	0.1073
	2.4
	0.01615
	3.1
	0.00319

	ILN-left
	4.5
	0.1921
	1.0
	0.31823
	2.6
	0.01164

	VA-left
	4.5
	0.1311
	2.3
	0.02255
	2.1
	0.03850

	ILN-right
	3.9
	0.3428
	1.8
	0.07371
	2.8
	0.00610

	Pul-left
	2.9
	0.4358
	0.1
	0.91494
	1.7
	0.09587

	VL-left
	0.5
	0.7574
	1.2
	0.24922
	2.9
	0.00455


Univariate tests surviving Bonferroni threshold (( = 0.05/14 = 0.0036) are displayed in bold font.

HC = healthy controls.
SCZ = patients with schizophrenia.

TN = true negative healthy controls.

FP = false positive healthy controls.

MD = mediodorsal nucleus.
VL = ventrolateral nucleus.
INL = intralaminar nuclei.
AT = anterior/midline nuclei.
VA = ventral anterior region.
GN = geniculate nuclei.
Pul = pulvinar. 
eTable 3. Machine Learning classification performances: premorbid intelligence, dimensionality reduction and SPQ sub-sample.
	
	Notes 
	Accuracy%
	Sensitivity%
	Specificity%
	NPV%
	PPV%

	
	
	Mean (SD)

	ThSub
	+TIB*
	81.8 (3.0)
	81.3 (6.3)
	82.0 (4.4)
	89.7 (3.0)
	70.2 (4.9)

	ThSub
	drop HC#
	69.5 (3.9)
	61.0 (7.5)
	75.8 (6.1)
	73.1 (3.7)
	64.9 (5.7)

	AAL
	drop HC#
	65.1 (4.0)
	49.9 (8.2)
	74.7 (7.0)
	66.6 (4.1)
	60.0 (6.2)

	AAL
	PCA$
	65.3 (3.9)
	41.6 (8.3)
	77.5 (6.5)
	72.2 (2.6)
	49.2 (7.4)


Table reports statistics of the classification performance (HC vs. SCZ) obtained by the Thalamic Subdivisions (ThSub) and the Automated Anatomic Labeling (AAL) Random Forests classifiers. NPV, Negative Predictive Value; PPV, Positive Predictive Value; SD, Standard Deviation.

* TIB (i.e., premorbid intelligence) was added to thalamic nuclei.

# HC without SPQ were dropped (remains 174 HC vs. 131 SCZ).

$ Principal Component Analysis was carried to determine input features.

