Supplementary Materials
Supplementary Textbox 1. Details of both deep learning architectures.
Details of our deep learning architecture to classify speech vs non-speech in naturalistic environments
This deep learning model is a deep bi-directional long short-term memory (BLSTM); a combination of bi-directional recurrent neural network (BRNN; 1) and long short-term memory (LSTM; 2) units. LSTM units are widely used to process temporal data such as sound (3). The architecture of the model consists of eight layers of BLSTM, followed by six layers of LSTMs, four fully-connected layers, and softmax layer. All LSTM layers use the hyperbolic tangent as activation function. Three of the fully-connected layers use Maxout and the fourth uses the ReLU activation function. All the BLSTM and LSTM layers are trained using the Adam gradient descent algorithm (4). All the fully-connected layers are trained using Rmsprop algorithm (5). The learning rate used is 10-5, and the regularisers used are dropout, batch normalisation, and l2 regularization. We implemented this network using the DeepLearning4J framework (https://deeplearning4j.org). Manual feature engineering processing was not required. 
Details of our deep learning architecture to classify wearer’s speech vs other speech in naturalistic environments
This deep learning model starts with Convolutional Autoencoder (Encoder: 3 convolution layers, 3 MaxPooling layers and one fully-connected layer; Decoder: 3 convolution layers, 3 up-sampling layers and one fully-connected layer) followed by 3 layers of BLSTM, then 4 layers of LSTMs, and finally the softmax layer. All LSTM layers use the hyperbolic tangent as the activation function. The training algorithm for all layers is the Adam algorithm (4). The learning rate used is 10-5, and the regularisers used are dropout, batch normalisation, and l2 regularization. The classifier is trained only on the wearer speech and speech of other speakers from the training dataset (i.e. non-speech was not included in the training). 
The source code for both models is available at https://github.com/OssamaAlshabrawy/NatSpeech
Comparison of our deep learning architecture to other voice activity detection methods
[bookmark: _GoBack]The performance of our speech activity detection method was compared against a variety of existing voice activity detection methods, ranging from classic methods such as Sohn99 (6), Random Forest, Support vector Machines, Ramirez05 (7) to more recent methods such as Ying11 (8), Multi-resolution stacking (9), Sehgal18 (10), Gelly18 (11); the latter three are based on deep learning. The first set of experiments were conducted on public datasets: Aurora 2 (12), Aurora 4 (13) and TIMIT (14). On the discussion dataset, we compared our measure with Sehgal18 and Gelly18 because they were found to be the best methods in the initial experiments. Our model resulted in the highest performance evaluation (F1) measure.
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Supplementary Textbox 2. Details of neuropsychological domains.
Calculation of neuropsychological domains
Scores for each neuropsychological test were standardised by calculating a z-score based on control group mean and standard deviation. Where appropriate, scores were inverted such that a higher score reflected better performance. Individual neuropsychological tests were then organised into neuropsychological domains by averaging the z-scores of the following groups of tests: 
· Executive Working Memory comprised Verbal Fluency total score, Digit Span Backwards total score, and Cambridge Neuropsychological Test Automated Battery (CANTAB) Spatial Working Memory between errors 4–10 boxes.
· Attention and Psychomotor Speed comprised Trails A total time and Digit Symbol Substitution Task total time. 
· Short-Term Memory comprised Digit Span Forwards total score and span length from the CANTAB Spatial Span task.
· General Memory comprised Rey Auditory Verbal Learning task (RAVL) presentations 1–5 total, RAVL maximum delayed recall, CANTAB Paired Associates Learning total errors adjusted, and Rivermead Behavioural Memory Test standardised profile score.
· Emotional Processing comprised median latency of correct responses from the CANTAB Affective Go/No-go task and Facial Emotion Processing task proportion of correct to incorrect answers. 
· A Grand cognitive score was calculated by summing individual z-scores of all neuropsychological tests. 



Supplementary Table 1. Results of group comparisons of neuropsychological performance (z-scores) of participants with Late-Life Depression (N=29) and healthy controls (N=29), with NART IQ and years of education added to the Analysis of Covariance model as covariates. 
	
	F
	Degrees of Freedom
	p
	ηp2

	Executive working memory
	5.813
	1, 54
	.019*
	.097

	Attention and psychomotor Speed
	7.796
	1, 54
	.007*
	.126

	Short-term memory
	2.822
	1, 54
	.099
	.050

	General memory
	11.328
	1, 54
	.001*
	.173

	Emotional processing
	.039
	1, 54
	.843
	.001

	Grand cognitive performance
	17.412
	1, 54
	<.001*
	.244


*significant at the .05 level



Supplementary Table 2. Results of correlations of key study variables with speech data for participants with Late-Life Depression (N=29).
	
	Average percentage of speech detected in 24-hour period
	Average percentage of speech produced by the wearer (out of all speech detected)

	Montgomery-Asberg Depression Rating Scale
	rs(26) = .092, p = .643
	r(26) = .081, p = .681

	Attention and Psychomotor Speed z-score
	rs(27) = .428,  p = .021*
	rs(27) = .474, p = .009*

	Duke Social Support Index
	rs(27) = -.315, p = .096
	r(27) = -.087, p = .653

	Lubben Social Network Scale-Revised
	rs(27) = .118,  p = .542
	r(27) = .274, p = .151


*significant at the .05 level


Supplementary Table 3. Results of Pearson (r) and Spearman (rs) correlations of movement measures (physical activity, entropy, and jerk)[footnoteRef:1] with speech data for participants with Late-Life Depression (N=29) and healthy controls (N=29). [1:  Group means and standard deviations of movement measures are reported previously: O’Brien, Gallagher, Stow, Hammerla, Ploetz, Firbank, Ladha, Ladha, Jackson, McNaney, Ferrier & Olivier (2017). A study of wrist-worn activity measurement as a potential real-world biomarker for late-life depression. Psychological Medicine, 47, 93–102.] 

	
	Late-Life Depression
	Healthy controls

	
	Average percentage of speech detected in 24-hour period
	Average percentage of speech produced by the wearer (out of all speech detected)
	Average percentage of speech detected in 24-hour period
	Average percentage of speech produced by the wearer (out of all speech detected)

	Physical Activity
	rs(27) = -.167,  p = .387
	r(27) = -.032,  p = .871
	r(27) = .418, p = .024*
	r(27) = .525, p = .003*

	Entropy
	rs(27) = -.007,  p = .972
	r(27) = .064,  p = .740
	r(27) = .457, p = .013*
	r(27) = .488, p = .007*

	Jerk
	rs(27) = -.050,  p = .798
	r(27) = .026,  p = .893
	r(27) = .410, p = .027*
	r(27) = .479, p = .009*


*significant at the .05 level.


[image: ]
Supplementary Figure 1. Estimation of the predictive capacity of our deep learning speech prediction on the training dataset. 
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Supplementary Figure 2. Application of the speech prediction model to the recordings of the current study. 
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