Aberrant global and local dynamic properties in Schizophrenia with instantaneous phase method based on Hilbert transform
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Participants
Two independent datasets were included in the current study to validate the reproducibility of our findings.
Dataset 1 comes from a publicly available dataset (the Center for Biomedical Research Excellence, COBRE), MRI data were acquired with a 3-Tesla Siemens Trio scanner (Siemens, Germany) and included a high-resolution T1-weighted images and resting-state fMRI scans (5 minutes). 72 patients with a Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) (DSM-IV) diagnosis of schizophrenia and 75 healthy controls (HCs) were enrolled in the COBRE. All subjects were screened and excluded if they had 1) history of neurological disorders, 2) history of mental retardation, 3) history of severe head trauma with more than 5 minutes loss of consciousness, or 4) history of substance abuse or dependence within the last 12 months. Diagnostic information was collected using the Structural Clinical Interview used for DSM Disorders (SCID). Healthy subjects were further screened and excluded if they had any of the following characteristics: 1) subjects with a first-degree relative suffering from psychotic disorder, 2) history of depressive episode or antidepressant use. Detailed information could be found in (http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html).
Dataset 2 comes from OpenfMRI (UCLA Consortium for Neuropsychiatric Phenomics LA5c Study). MRI data were acquired on one of two 3T Siemens Trio scanners, located at the Ahmanson-Lovelace Brain Mapping Center (Siemens version syngo MR B15) and the Staglin Center for Cognitive Neuroscience (Siemens version syngo MR B17) at UCLA. Healthy adults were recruited by community advertisements from the Los Angeles area. Adult schizophrenia patients (SZ) were recruited using a patient-oriented strategy involving outreach to local clinics and online portals (separate from the methods used to recruit healthy volunteers). After receiving a verbal explanation of the study, participants gave written informed consent following procedures approved by the Institutional Review Boards at UCLA and the Los Angeles County Department of Mental Health. For both groups, participants were ages 21–50 years; NIH racial/ ethnic category either White, not Hispanic or Latino; or Hispanic or Latino, of any racial group; primary language either English or Spanish; completed at least 8 years of formal education; no significant medical illness; adequate cooperation to complete assessments; visual acuity 20/60 or better; and urinalysis negative for drugs of abuse (cocaine; methamphetamine; morphine; THC; and benzodiazepines). HC group were excluded if they had lifetime diagnoses of schizophrenia or other psychotic disorder, bipolar I or II disorder, or substance abuse or dependence (not counting caffeine or nicotine); or current major depressive disorder; suicidality; anxiety disorder (obsessive compulsive disorder, panic disorder, generalized anxiety disorder, post-traumatic stress disorder), attention deficit hyperactivity disorder (ADHD). stable medications were permitted for the patients. For MRI studies, participants who were left handed, who believed they might be pregnant, or had other contraindications to scanning were excluded (e.g., claustrophobia, metal in body, body too large to fit in scanner). The resting-state fMRI scan lasted 304 s. Participants were asked to remain relaxed and keep their eyes open; they were not presented any stimuli or asked to respond during the scan. Detailed information could be found in (https://openneuro.org/datasets/ds000030/versions/1.0.0).
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Data Preprocessing
The Data Processing Assistant for Resting-State fMRI toolbox (DPARSF, http://rfmri.org/dpabi) were used to carry out data preprocessing (Yan et al., 2016), which include removal of first 10 volumes, slice timing correction, head motion correction, normalized to Montreal Neurological Institute (MNI) space and further resampled to 3 × 3 × 3 mm3, spatially smoothed by convolution with an isotropic Gaussian kernel (FWHM = 4 mm), linear detrend, nuisance signal regression (including Friston 24 head motion parameters, white matter, and cerebrospinal fluid signals), and bandpass filtering. The bandpass range was selected as 0.04 – 0.07Hz, which could reduce the influence of low-frequency drift and high-frequency noise and made Hilbert transform play a better performance. Next, the brain was divided into 90 ROIs by using Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002), thus the average BOLD signal in each brain region was obtained respectively.
In our study, although strict excluding criteria will lead to inadequacy of representativeness of sample, prior studies have consistently proven that severe head motion could introduce substantial alters in the time courses of resting-state fMRI data and further lead to unpredictable errors during the research (Van et al., 2012; Yan et al., 2013; Zeng et al., 2014), thus we primarily selected a strict excluding criterion with displacement > 2 mm, rotation > 2 degree, or mean frame-wise displacement (mFD) > 0.5 mm to exclude participants with significant head motion from two datasets. Such a criterion has been mentioned and recommended in many studies (Sun et al., 2019; Power et al., 2012). After that, we performed head motion correction via Friston 24-parameter model (Friston et al., 1996), which has been strongly recommended by Yan et al (Yan et al., 2013) who compare 6 models in head motion correction in their study. According to the above studies, we believe that the strict exclusion criteria are necessary for our study. Finally, 32 subjects (20 SZ and 12 HCs) were excluded from the COBRE (no significant difference, chi-square test, P = 0.1149), and 29 subjects (14 SZ and 15 HCs) were excluded from the OpenfMRI (P = 0.4112).

Index of Global Synchrony
After the construction of the dynamic functional connectivity in our study, instantaneous coupling matrices (ICMs) were binarized subsequently for each subject. When the difference between instantaneous phases of BOLD signals is small, signals can be considered highly synchronized at that time point. Therefore, a series of different thresholds (π/6, π/7, π/8, π/9, and π/10) were compared for the criterion of high phase synchronization. Finally, π/8 was chosen as the threshold (see next section) to obtain the binarized matrix :

where i and j are indexes of each ROI (1 ≤ i, j ≤ 90), and t indicates time points (1 ≤ t ≤ 140). The percentage of non-zero connections at each binary matrix ICM  were then defined as global synchrony:

Finally, average global synchrony () was computed for each subject. The purpose of using binarization is to simply and conveniently locate which brain regions at this time point have higher phase similarity between the BOLD signal time series. This global dynamic feature was used to quantify the overall spatiotemporal stability of the dFC. A higher value of average global synchrony indicates the overall phase coupling or synchronization of signals between all brain regions (i.e., ROIs) is persistently high (Attention: The definition of global synchrony was attempted to quantify the overall spatiotemporal stability of dFC, and the element with a value of 0 in the binarized matrix indicated that the instantaneous phase difference between two signals at that certain time point exceeded the defined threshold in the process of binarization. 0 indicated that the phase synchronization or similarity between two signals at that time point is not high enough instead of zero synchronization or totally no synchronization). In our study, the method of instantaneous phase synchrony between regions measured the phase similarity or synchronization between the BOLD time series signals of two brain regions.

Kolmogorov-Smirnov Test
The Kolmogorov-Smirnov (K-S) test is based on the cumulative distribution function, and it is a test method used to compare a frequency distribution ƒ(x) with a theoretical distribution g(x) or two sets of observations. The null hypothesis H0 of the test is: the distribution of the two groups of data is consistent or the single group of data conforms to the theoretical distribution; and the alternative hypothesis H1 is: the distribution of the two groups of data is inconsistent or the single group of data does not conform to the theoretical distribution. The statistics of K-S test are defined as: D = max |ƒ(x) – g(x)|, and H0 is rejected when the actual observed value D > D(n, α), otherwise H0 is accepted (where α is the significance level, generally selected as 0.05). The difference between the K-S test and the t-test or other parametric tests is that the K-S test does not require the distribution of data and can be considered as a kind of non-parametric test. If the data distribution of the test conforms to a particular distribution, the sensitivity of the K-S test is inferior to that of the corresponding parameter test. When the sample size is small, K-S test is often used to test and analyze whether there are significant differences between the two groups of data. 
In our study, average global synchrony () was firstly computed by averaging global synchrony at all scanning time points for each subject (i.e., one subject corresponds to one specific value of average global synchrony, and this averaged indicator is no longer a variable that changes over time). A subject with high average global synchrony indicates that signals between all brain regions can be considered highly synchronized during the whole scanning process, and this indicator was used to quantify the overall spatiotemporal stability for each subject in our study. The K-S test was then performed to explore the difference of the cumulative distribution function of the average global synchrony between two groups of subjects (SZ vs HCs).

The Validation of Threshold in Global Synchrony 
To obtain the binarized matrix , a series of thresholds (π/6, π/7, π/8, π/9 and π/10) were selected to validate the group differences of average global synchrony (). In the results, no significant difference was found in the cumulative distribution function of  between two groups under all thresholds (K-S test, D < 0.21, P > 0.15). In contrast, significant difference was found between the mean of  of the respective groups under all thresholds (10,000 permutations, P = 0.0111, 0.0122, 0.0107, 0.0119, 0.0126 respectively). The group differences were invariant to the choice of the threshold. Thus, the middle one (π/8) was chosen as the threshold in the analysis of global synchrony (Figure S5).

Index of Intertemporal Closeness
To quantify the temporal state stability of the whole-brain dFC, the measure of intertemporal closeness (ITC) was defined in this study. Each instantaneous coupling matrix (ICM) in the dFC was considered as an independent state, and then the Pearson’s correlation coefficient was used to measure the similarity between ICMs at any two time points. For each subject, a mean matrix of ICMs at all time points was firstly obtained (i.e., the mean matrix of 140 ICMs, denoted as av-FC). Then, we got the similarity between ICM and av-FC at all time points respectively, that is, 140 correlation coefficient values were obtained. Finally, we averaged the values of the 140 correlation coefficients to obtain a reference value corresponding to each subject. Finally, the intertemporal closeness was defined as the proportion of observing greater similarity between ICMs than the reference value of each subject in the respective groups (, 1 ≤ i, j ≤ T). The larger the value of this proportion, the higher the overall similarity between ICMs at different time points. Furthermore, ITC with different time-lags was also considered in this study: The similarities between ICMs (), where time point t ∈ T [image: ][image: ]and adjacent time point  with the given time-lags τ (range: 1 – 20 sec, τ = 0 denotes no time-lags) were quantified for each subject as the Pearson’s correlation coefficient between two ICMs at different time points:

Where the time point t ∈ T, T = 140. We expressed all cases of adjacent time points respectively, and the formula is as follows:

For all subjects in two groups, ITC without time-lag (τ = 0) and ITC with the given time-lags (τ = 1 – 20 s) were extracted respectively.

Validity of Intertemporal Closeness
In the COBRE dataset, the correlation coefficient between each ICM pair and the correlation coefficient between each ICM and av-FC were calculated for each subject. We then found that the distribution of correlation coefficients (Pearson’s correlation coefficients) among ICM pairs showed an extreme right-skewed distribution, mainly distributed between 0 and 0.2. There were very few ICM pairs with high correlation coefficients, and the median was very low (SZ: 0.1057, HC: 0.1133 respectively, both around 0.1, Figure S1(a) and S1(b)). Furthermore, there was a very high correlation (r > 0.5) between each ICM and its neighbors (Figure S1(e) and S1(f)). On the other hand, correlation coefficients between each ICM and av-FC were approximatively normally distributed with an average value around 0.4222 and 0.4282 (Figure S1(c) and S1(d)). In the OpenfMRI dataset, the distribution of correlation coefficients among ICM pairs was monotonously decreasing with a very low median ( SZ: 0.0936, HC: 0.1002 respectively, both around 0.1), mainly distributed between 0 and 0.2. And the correlation coefficients were also very high between each ICM and its neighbors (r > 0.5). Correlation coefficients between each ICM and av-FC were approximatively normally distributed with an average value around 0.41 (SZ: 0.4092, HC: 0.4148). The overall analysis of ICM and av-FC was roughly the same as the COBRE dataset (Figure S2). In other words, the ITC in this study built on both static and dynamic components (the static component meant that the similarity between ICMs was measured by Pearson’s correlation coefficient, and the dynamic component meant that ICMs was used to characterize the dynamic FC (dFC) between all brain regions at each time point). From Figure S1 and Figure S2, the average correlation coefficient between ICM pairs was much lower than the average correlation coefficient between each ICM and av-FC, and the correlation between each ICM and its neighbors was much higher. Therefore, it was reasonable to explore ITC with different time-lags and use it to measure the fluctuation or stability of dFC over time. The lower ITC value indicated that the temporal state of the whole-brain fluctuates greatly during the scanning, while the higher ITC value indicated that the temporal state between brain regions was more stable.

Definition of the Dynamic Local Features
Strength of Functional Connectivity (sFC)
The strength of FC (sFC) between any pair of brain regions was defined by averaging the ICM at all time points, in other words, sFC was defined as the mean matrix of ICMs at all time points:

Where i and j are indices of each ROI (1 ≤ i, j ≤ 90), T denotes total time points (T = 140 and 142 respectively in two datasets). Thus, the 90 × 90 matrix of sFC could be obtained for each subject.
Variability of Functional Connectivity (vFC)
The variability of FC (vFC) was defined to describe the dispersion degree or fluctuation of the dFC (i.e., sample variance / sample mean) at all time points between any pair of brain regions:

Where i and j are indices of ROI, and T also denotes total time points. Similarly, the 90 × 90 matrix of the vFC could be obtained for each subject.

Network-Based Statistics Method
At present, studies on the use of neuroimaging data to construct functional or structural networks are endless, and most of them are aimed at finding different connections between the two groups of networks. When we test each connection in the graph of network at the same time, the family-wise error rate (FWER) is generated. Network-based statistic (NBS) is used to control the FWER (in the weak sense), depending on the degree of association between the connections of interest. The specific steps are as follows: the first step is to independently test the hypothesis of interest at every connection in the network with an appropriate statistical test (i.e., mass univariate hypothesis testing), and the single test statistic value quantifying the evidence in favor of the null hypothesis; the second step is to set an appropriate threshold , those connections greater than the threshold initially select as different connections; the third step is using a breadth or depth search algorithm to find the connected subgraphs existing in the set of initial selection connections, and calculate the size of the connected subgraphs, in this context, a connected graph component (i.e., a subnetwork) is a set of supra-threshold connections for which a path can be found between any two nodes; and the final step is randomly permutation subjects label 5,000 times to compute a FWER-corrected p-value for each component. For each permutation, the first three steps of the NBS are repeated on the permuted data, and then find these initially selected connected subgraphs, calculate the size of the maximum connected subgraph. Finally, the empirical distribution of the size of maximum connected subgraph is obtained, and the significance of the size of the connected subgraph of the observed network data can be tested, thus the set of those reliable different connections can be obtained. In this paper, NBS was calculated with the toolbox introduced by Zalesky (Zalesky et al., 2010).

The Study of Frequency Band
Since the concept of fMRI has been put forward, the frequency spectrum of fMRI blood oxygenation level-dependent (BOLD) signal has been extensively studied and explored. A large number of studies have shown that the low-frequency fluctuation of the resting-state fMRI signal has its physiological importance, and the low-frequency fluctuation of the resting-state fMRI signal can reflect spontaneous neuronal activity. So far, the most common practice is to band-pass filter BOLD signals between 0.01 – 0.08 Hz or 0.01 – 0.1 Hz. However, the BOLD spectrum is also not immune to noise such as low frequency drift even in such a frequency band. For instance, a study by Wise in 2004 investigated the spontaneous fluctuations in arterial carbon dioxide level mainly affecting the BOLD signal in the frequency range 0 – 0.05Hz (Wise et al., 2004). After this, Zuo meticulously explored the BOLD signal at sub-bands relevant in electrophysiological direct current and intracranial recordings (Zuo et al., 2010) based on the previous research on slow oscillation frequencies (Penttonen and Buzsáki, 2003). That is, fMRI was used to examine the amplitude of spontaneous low-frequency oscillations observed in the human resting brain and the test-retest reliability of relevant amplitude measures of 4 low frequency bands: slow-5 (0.01 – 0.027 Hz), slow-4 (0.027 – 0.073 Hz), slow-3 (0.073 – 0.198 Hz) and slow-2 (0.198 – 0.25 Hz). The results showed that the slow-3 and slow-2 bands were primarily restricted to white matter, respiratory and aliased cardiac signals fall in the range of them; the frequencies subtended by the slow-5 and slow-4 bands were those typically utilized for resting-state functional connectivity (FC) analyses, and mainly identified in the gray matter. Of note, slow-4 was more robust in the basal ganglia, thalamus, and several sensorimotor regions while slow-5 was more dominant within ventromedial prefrontal cortices. Studies had shown that slows-4 and slows-5 were both broadly distributed through gray matter, but slow-4 has higher test-retest reliability and more widespread spatial distribution of reliable voxels. Meanwhile, the Hilbert transform is essentially an all-pass filter, which defines the instantaneous frequency, phase or amplitude of a complex signal at any time point by applying the sines and cosines of the real and imaginary parts of the analytic equation, making it possible for us to extract the instantaneous parameters of the signal. Therefore, the Hilbert transform plays an important role in signal processing and communication theory. The research showed that the Bedrosian’s theorem states an explicit implication, that is, the narrower the bandwidth of the signal of interest, the better does the Hilbert transform produce an analytic signal with meaningful envelope and phase (Bedrosian, 1962). Using a band-pass filtered version of the BOLD signal can effectively improve the separation between the phase and envelope spectra. Therefore, the narrow range band-pass filter was performed (0.04 – 0.07 Hz) after consideration, which was shown to be resilient to physiological noise and make Hilbert transform play a better performance (Glerean et al., 2012), and it was successfully applied in the research of Demirtaş to reveal altered variability of FC among patients with MDD (Demirtaş et al., 2016). According to the above studies, the preprocessed time series in our main text were band-pass filtered in 0.04 – 0.07 Hz range in order to reduce the effects of low-frequency drift and high-frequency noise.
In addition, the conventional non-narrow range band-pass filter (0.01 – 0.1Hz) of BOLD signals were also considered. The global and local dynamic properties were also explored under this filter band. However, there were no significant differences between SZ and HC for global dynamic features of the averaged global synchrony and ITC (permutation test, P > 0.05). As for local dynamic features, many connections in dynamic subnetworks with the pattern of both decreased strength and increased variability were observed between similar brain regions, which was consistent with the main results of the paper.

Support Vector Machine Modelling: Methods
In order to further estimate the classification ability of global and local features extracted by our instantaneous phase method between two groups (SZ vs HC), the study of Support Vector Machine (SVM) was used in the discovery dataset (the COBRE dataset) as an auxiliary analysis, and the linear-SVM was chosen as the classifier to avoid the risk of overfitting (Pereira et al., 2009). Specifically, to measure the test performance and validate the classifier, a nested 10-fold cross-validation for SVM was applied in our study, with the outer loop estimating the generalizability of the model and the inner loop determining the optimal parameter. In order to acquire unbiased estimates, we consider all situations in the nested 10-fold cross-validation SVM models, including all different C parameter values (0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20), 5 global synchrony values under different binarization thresholds (π/6, π/7, π/8, π/9, and π/10), all types of global and local dynamic features under different filter range (narrow (0.04 - 0.07Hz) vs standard (0.01 - 0.1Hz)), and all aberrant global and local dynamic features. All subjects were randomly divided into 10 subsets, of the ten subsets, nine were combined as the training set, and the remaining subset was used as the testing set. The training and testing procedures were repeated 10 times so that each of the 10 subsets was used once as the testing set. Linear kernel function with different trade-off parameters was tried to obtain the highest classification accuracy rate. Within each loop of the outer 10-fold cross-validation, we applied the inner 10-fold cross-validation to determine the optimal parameter. Then, we used the best model with the optimal parameter obtained through the inner loop in order to make predictions for our testing set, finally we obtained the corresponding accuracy, sensitivity and specificity. To yield the final classification performance and avoid huge error bars, we compute one big confusion matrix instead of averaging the accuracy, sensitivity and specificity across the ten iterations. Specifically, different features were applied to the raw input matrix to train different models. Global dynamic features ( and ITC) and connections in dynamic subnetworks with significantly differences (P < 0.05, NBS method) in local dynamic features (sFC and vFC) for each subject were selected. Finally, discrimination accuracy, sensitivity and specificity were reported in our SVM results. In addition, using a meaningful measure of generalizability is a crucial requirement for evaluating the performance that a classification algorithm has achieved on a given dataset. In order to avoid an optimistic estimate when a biased classifier was tested on an imbalanced dataset, we further reported the balanced accuracy and the posterior probability intervals based on Brodersen's research (Brodersen et al., 2010). Moreover, the area under curve (AUC) value was also reported in the results.

Support Vector Machine Modelling: Results
SVM models under the narrow filter range (0.04 - 0.07 Hz) revealed a relatively high degree of balanced accuracy when classifying SZ and HC by using all significant global and local features as input (85.75%). The relatively lower degree of balanced accuracy when using local features (sFC and vFC) as input (79.75%) (see Table S2). Furthermore, the significant difference was found in the classification performance between the model with all features and the model with only local features (McNemar test, P = 0.0455). Similarly, SVM models under the normal filter range (0.01 - 0.1 Hz) revealed 76.63% of balanced accuracy when classifying SZ and HC by considering all significant global and local features as input, and SVM models also revealed 72.78% of balanced accuracy by considering only local features as input (see Table S2). Although there were no significant differences between the SVM classifier with all features and the SVM classifier with only local features (McNemar test, P = 0.2207), the classification performance of the former was still higher than the latter, which may suggest that the classification performance was mainly and possibly driven by local features. The corresponding posterior probability intervals of balanced accuracy were showed in Figure S3, all intervals were significantly above the chance level ([0.7867, 0.9107] for narrow filter with all significant global and local features, [0.7192, 0.8613] for narrow filter with significant local features, [0.6837, 0.8352] for normal filter with all significant global and local features, [0.6443, 0.8008] for normal filter with significant local features).
Furthermore, SVM models under the narrow filter range (0.04 - 0.07 Hz) revealed 64.66% of balanced accuracy when classifying SZ and HC by considering all global features (ITC and global synchrony under different thresholds) and all local features (i.e., a total of 8010 dynamic features from sFC and vFC) as input. Similarly, SVM models under the normal filter range (0.01 - 0.1 Hz) revealed 67.97% of balanced accuracy when classifying SZ and HC by considering all global and local features as input. Moreover, the posterior probability intervals of the above models were still significantly above the chance level ([0.5578, 0.7283] for narrow, [0.5923, 0.7582] for normal). Heuristically, these classification studies showed that the results were robust for different global synchrony thresholds and different filtering ranges, and using all dynamic connections under different filter range and thresholds could also adequately explain the difference between the two groups.


Results of Robustness Analysis
We also took the widely used sliding-window approach as a robustness analysis and implemented it with a graph theoretical network analysis toolbox (GRETNA) (V2.0.0, www.nitrc.org/projects/gretna/) (Wang et al., 2015). For each subject, the FC was defined as the Pearson’s correlation coefficient between the time series of each ROI, and a series of sliding-window matrices were firstly obtained. After Fisher’s z-transform (), FCs on all windows were then averaged to measure the strength of the dFC (sFC) between each pair of regions, and the variability of FC (vFC) was also calculated as the dispersion of the dFC at all time points. These 2 dynamic indices were established for each subject in two groups by the sliding-window approach and the same NBS method was also used to explore the subnetworks with significant differences between the respective groups.
The window length was chosen as 100 s with an incremental step of 6 s to balance the dynamics of the BOLD signals and the quality of connectivity estimation, as well as to reduce the computational complexity (Sun et al., 2019). In the results, SZ also showed a significant and widespread decrease in sFC, and the significant aberrant connections were predominantly observed among median cingulate and paracingulate gyri (DCG) and the temporal lobe, DCG and supplementary motor area (SMA), cuneus and fusiform gyrus (FFG), abnormal brain regions were also extended to precentral gyrus. In other words, the disconnectivity associated with the anterior cingulate cortex, temporal cortex and the visual cortex were predominantly found in sFC and further forming a significant dynamic subnetwork, which were almost consistent with the results of the instantaneous phase method based on Hilbert transform. Moreover, in the sFC results of significant subnetworks (14 connections) based on the Hilbert transform method and the results of significant subnetworks (13 connections) based on the sliding-window approach, a total of 7 connections were completely identical, and more than 70% of connections in both results were mainly observed among the anterior cingulate cortex (ACC) and temporal lobe, cuneus and FFG, ACC and SMA. According to this, the abnormal pattern of dFC with decreased strength was consistent with the results derived from our instantaneous phase method. However, brain regions with significant aberrant connections in vFC were not found (no significant subnetwork was formed). We suspected that this may due to its low temporal resolution (in fact, due to the inherent defects of the window-based method (the trade-off between the window length and the step length), its temporal resolution couldn't provide a window for every time point), the sensitivity in detecting the time-varying properties of FC was far less than that of the phase-based method used in our study. Therefore, under the same conditions, the phase-based method with high temporal resolution in our study may be better to explore the significant differences in time-varying FC (Figure S4 and Table S3).


Results of Robustness Analysis when Taking Age and Gender as Covariates
Heuristically, age and gender are likely to have an impact on dynamic connectivity changes. According to this, we take age and gender as covariates into account. The covariate effects of age and gender were further regressed during the construction of our dFC method.
In the new results of COBRE, more than 50% of connections of sFC were mainly observed among the anterior cingulate and the temporal lobe, brain regions in aberrant subnetworks were also extended to rolandic operculum, supplementary motor area and inferior parietal (but supramarginal and angular gyri). However, the disconnectivity between the anterior cingulate cortex and the temporal cortex were not predominantly found in vFC, and brain regions in aberrant subnetworks were also extended to the frontal lobe, supplementary motor area, amygdala, inferior occipital gyrus and the thalamus,which were not consistent with the former results in our study (Figure S6 (a) (b) and Table S4).
In the new results of OpenfMRI, the aberrant brain regions in significant subnetworks of sFC were mainly involved the temporal lobe, lingual gyrus, gyrus rectus, and the caudate nucleus, and the connections associated with the hippocampus were not found. However, the aberrant brain regions in subnetworks of vFC were predominantly observed at the hippocampus, parahippocampal gyrus, temporal lobe, rolandic operculum, and the inferior occipital gyrus (Figure S6 (c) (d) and Table S5). The consistent results in both sFC and vFC were hardly found in two datasets after the regression of age and gender in our phase based method. 
Moreover, the new results of SVM classification performances were all relatively reduced. For the  COBRE dataset: (Accuracy: 0.7629; Balanced Accuracy: 0.7163; Sensitivity: 0.7467; Specificity: 0.7786); For the OpenfMRI dataset: (Accuracy: 0.7511, Balanced Accuracy: 0.6900; Sensitivity: 0.6917; Specificity: 0.7833). Although the accuracy of SVM classification performance was relatively decreased, the classification results of dynamic global and local features in our study were still statistically significant. 
In conclusion, although the abnormal pattern of dFC with decreased strength and increased variability were still unchanged, we could still consider that the consistency (i.e., in the results of sFC and vFC, many connections in dynamic subnetworks with the pattern of both decreased strength and increased variability were observed between similar brain regions) of the local dynamic features in dFC (sFC and vFC) and the classification performance of those connections in dynamic subnetworks were all affected. This may be caused by the definition and extraction of local features in dFC constructed by ICMs were accordingly influenced (i.e., the meaning and the rationality of our dynamic features will be unclear) after regressing out the effect of covariates (age and gender) in our phase based method.
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Figure S1. Instantaneous coupling matrix (ICM) analysis chart of the COBRE dataset. (a), (b) : the correlation coefficient distribution between each ICM pair in the respective groups; (c), (d) : the correlation coefficient distribution between each ICM and the mean matrix of 140 ICMs (av-FC) in the respective groups; (e), (f) : matrix of average similarity between ICMs of the respective groups (left: schizophrenia patients group, right: healthy controls group).
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Figure S2. Instantaneous coupling matrix (ICM) analysis chart of the OpenfMRI dataset. (a), (b) : the correlation coefficient distribution between each ICM pair in the respective groups; (c), (d) : the correlation coefficient distribution between each ICM and the mean matrix of 140 ICMs (av-FC) in the respective groups; (e), (f) : matrix of average similarity between ICMs of the respective groups (left: schizophrenia patients group, right: healthy controls group).
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Figure S3. The posterior probability intervals of the balanced accuracy (based on the discovery dataset).
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Figure S4. Significantly decreased connections (the strength of functional connectivity, P = 0.0006) in dynamic brain networks analysis by using the sliding-window approach (schizophrenia patients vs healthy controls). The results are based on NBS using 5,000 permutations, P value < 0.05 and maximum component threshold t > 4.2.
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Figure S5. The validation of threshold in global synchrony. The group differences of the mean of global synchrony were invariant to the choice of the threshold (10,000 permutations, P = 0.0111, 0.0122, 0.0107, 0.0119, 0.0126 respectively). In our study, π/8 was chosen to be the binary threshold in analysis.
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Figure S6. The results of the aberrant local dynamic properties in sFC and vFC (regressed the effects of age and gender). (a) dynamic brain networks analysis of significantly decreased connections in strength of functional connectivity (sFC) in COBRE. (b) significantly increased connections in variability of functional connectivity (vFC) in COBRE (P value < 0.05 and maximum component threshold t > 3.60 (sFC) and t > 3.39 (vFC), SZ vs HC). (c) significantly decreased connections in strength of functional connectivity (sFC) in OpenfMRI. (d) significantly increased connections in variability of functional connectivity (vFC) in OpenfMRI (P value < 0.05 and maximum component threshold t > 3.83 (sFC) and t > 3.40 (vFC), SZ vs HC).

Table S1. Local alteration of brain networks for OpenfMRI dataset (schizophrenia patients VS healthy controls)
	 Strength of functional connectivity (sFC)
	Variability of functional connectivity (vFC)

	Connections
	T-statistic
	P value
	Connections
	T-statistic
	P value

	PreCG.R–LING.L
	–3.63
	4.58 × 10-4
	OLF.L–INS.R
	3.49
	7.32 × 10-4

	CUN.L–LING.L
	–3.57
	5.74 × 10-4
	SMA.L–ACG.R
	3.79
	2.67 × 10-4

	CUN.R–LING.L
	–4.16
	7.03 × 10-5
	INS.R–DCG.R
	4.08
	9.34 × 10-5

	CUN.R–LING.R
	–3.70
	3.67 × 10-4
	ROL.L–HIP.R
	3.42
	9.40 × 10-4

	CAL.R–TPOmid.R
	–3.83
	2.28 × 10-4
	ROL.L–PHG.R
	3.34
	1.20 × 10-3

	LING.R–TPOmid.R
	–3.93
	1.65 × 10-4
	ROL.R–PHG.R
	3.44
	8.62 × 10-4

	ROL.L–PHG.R
	–3.65
	4.30 × 10-4
	SMA.L–PHG.R
	3.35
	1.16 × 10-3

	REC.L–PHG.R
	–3.77
	2.84 × 10-4
	SMA.R–PHG.R
	3.33
	1.25 × 10-3

	PHG.R–TPOsup.L
	–3.74
	3.19 × 10-4
	INS.L–PHG.R
	3.41
	9.54 × 10-4

	SFGdor.L–TPOsup.R
	–3.56
	5.92 × 10-4
	INS.R–PHG.R
	4.30
	4.11 × 10-5

	PHG.R–TPOsup.R
	–3.72
	3.38 × 10-4
	PHG.R–STG.L
	3.79
	2.69 × 10-4

	
	 
	
	SMA.L–STG.R
	3.76
	2.91 × 10-4

	
	 
	
	HIP.R–TPOsup.L
	3.62
	4.78 × 10-4

	
	
	
	PHG.R–TPOsup.L
	3.47
	7.85 × 10-4

	
	
	
	DCG.R–TPOsup.R
	4.08
	9.37 × 10-5

	
	
	
	HIP.R–TPOsup.R
	4.26
	4.84 × 10-5


Note: L denotes the left cerebral hemisphere, and R denotes the right cerebral hemisphere.

Table S2. SVM classification performances with different classification features in the discovery dataset
	SVM model
	Accuracy
	Balanced Accuracy
	Sensitivity
	Specificity
	AUC

	narrow filter (all aberrant features)
	0.8772
	0.8575
	0.7451
	0.9841
	0.8646

	narrow filter (sFC+vFC)
	0.8158
	0.7975
	0.6863
	0.9206
	0.8035

	normal filter (all aberrant features)
	0.7807
	0.7663
	0.6863
	0.8571
	0.7717

	normal filter (sFC+vFC)
	0.7456
	0.7278
	0.6078
	0.8571
	0.7325

	narrow filter (all features)
	0.6579
	0.6466
	0.5686
	0.7302
	0.6494

	normal filter (all features)
	0.6930
	0.6797
	0.5882
	0.7778
	0.6830


Note: narrow filter denotes 0.04 - 0.07 Hz, and normal filter denotes 0.01 - 0.1 Hz.






Table S3. Local alteration of brain networks in the strength of FC (sFC) based on the sliding-window approach (schizophrenia patients VS healthy controls)  
	Strength of functional connectivity (sFC)

	Connections
	T-statistic
	P value

	SMA.R–DCG.L
	–4.50
	1.67 × 10-5

	SMA.R–CUN.R
	–4.21
	5.28 × 10-5

	CUN.R–FFG.R
	–4.39
	2.54 × 10-5

	PreCG.R–HES.R
	–4.37
	2.77 × 10-5

	DCG.R–HES.R
	–4.54
	1.41 × 10-5

	DCG.L–STG.L
	–4.52
	1.53 × 10-5

	DCG.R–STG.L
	–4.84
	4.20 × 10-6

	DCG.L–STG.R
	–4.38
	2.63 × 10-5

	DCG.R–STG.R
	–4.76
	5.90 × 10-6

	DCG.L–MTG.R
	–4.53
	1.48 × 10-5

	DCG.R–MTG.R
	–4.43
	2.25 × 10-5

	STG.R–MTG.R
	–4.23
	4.72 × 10-5

	DCG.L–ITG.R
	–4.24
	4.66 × 10-5


Note: L denotes the left cerebral hemisphere, and R denotes the right cerebral hemisphere.




Table S4. Local alteration of brain networks for COBRE dataset (after regressing out the covariate effect of age and gender)
	Strength of functional connectivity (sFC)
	Variability of functional connectivity (vFC)

	Connections
	T-statistic
	P value
	Connections
	T-statistic
	P value

	ROL.L–DCG.L
	–3.69
	3.51 × 10-4
	ORBinf.L–DCG.R
	3.87
	1.81 × 10-4

	SMA.R–DCG.L
	–3.89
	1.70 × 10-4
	SMA.R–DCG.R
	3.87
	1.85 × 10-4

	ROL.L–DCG.R
	–3.68
	3.54 × 10-4
	DCG.L–AMYG.R
	3.55
	5.64 × 10-4

	SMA.R–DCG.R
	–3.75
	2.82 × 10-4
	DCG.R–IOG.L
	3.41
	9.19 × 10-4

	IFGoperc.L–IPL.L
	–4.30
	3.70 × 10-5
	IFGoperc.L–IPL.L
	3.56
	5.54 × 10-4

	DCG.L–STG.L
	–4.00
	1.14 × 10-4
	ORBinf.L–IPL.L
	3.44
	8.10 × 10-4

	DCG.R–STG.L
	–3.90
	1.67 × 10-4
	ORBsupmed.L–IPL.L
	3.59
	4.85 × 10-4

	DCG.L–STG.R
	–3.96
	1.30 × 10-4
	ACG.R–IPL.L
	3.53
	5.94 × 10-4

	DCG.R–STG.R
	–4.15
	6.50 × 10-5
	ACG.R–THA.R
	3.55
	5.61 × 10-4

	DCG.L–TPOsup.L
	–3.72
	3.11 × 10-4
	IOG.L–HES.L
	3.43
	8.54 × 10-4

	IPL.L–TPOsup.L
	–3.87
	1.86 × 10-4
	DCG.R–STG.R
	3.40
	9.50 × 10-4

	ROL.L–MTG.R
	–3.63
	4.25 × 10-4
	DCG.L–TPOsup.L
	3.57
	5.18 × 10-4

	DCG.L–MTG.R
	–4.03
	1.01 × 10-4
	IPL.L–TPOsup.L
	3.56
	5.41 × 10-4

	DCG.R–MTG.R
	–3.72
	3.15 × 10-4
	IPL.L–ITG.L
	4.01
	1.09 × 10-4

	DCG.L–ITG.R
	–3.72
	3.17 × 10-4
	
	
	


 Note: L denotes the left cerebral hemisphere, and R denotes the right cerebral hemisphere.


Table S5. Local alteration of brain networks for OpenfMRI dataset (after regressing out the covariate effect of age and gender)
	Strength of functional connectivity (sFC)
	Variability of functional connectivity (vFC)

	Connections
	T-statistic
	P value
	Connections
	T-statistic
	P value

	SMA.L–STG.L
	–3.97
	1.41 × 10-4
	IFGtriang.R–ORBinf.R
	3.58
	5.53 × 10-4

	PreCG.L–STG.R
	–4.12
	8.30 × 10-5
	ROL.L–SMA.L
	4.11
	8.51 × 10-5

	SMA.L–STG.R
	–4.26
	4.93 × 10-5
	ROL.L–HIP.R
	3.45
	8.51 × 10-4

	PreCG.R–LING.L
	-3.99
	1.33 × 10-4
	ORBinf.R–PHG.L
	3.49
	7.43 × 10-4

	CUN.L–LING.L
	-3.85
	2.15 × 10-4
	PHG.L–AMYG.L
	4.18
	6.51 × 10-5

	CUN.R–LING.L
	-5.34
	6.32 × 10-7
	SMA.L–IOG.L
	3.59
	5.27 × 10-4

	ORBinf.L–MOG.R
	-3.84
	2.23 × 10-4
	IOG.L–SMG.R
	3.92
	1.71 × 10-4

	LING.L–FFG.R
	-3.84
	2.21 × 10-4
	ROL.L–CAU.L
	3.67
	3.96 × 10-4

	MOG.R–FFG.R
	-4.44
	2.43 × 10-4
	SMA.L–STG.L
	3.69
	3.75 × 10-4

	ORBsup.R–REC.R
	-3.87
	1.97 × 10-4
	SMA.L–STG.R
	4.37
	3.20 × 10-5

	ORBsupmed.R–REC.R
	-3.84
	2.27 × 10-4
	PHG.L–STG.R
	3.43
	9.08 × 10-4

	ORBsup.R–HES.R
	-3.90
	1.82 × 10-4
	CAU.L–ITG.L
	3.78
	2.73 × 10-4

	ROL.L–REC.L
	-4.02
	1.16 × 10-4
	
	
	

	ROL.L–CAU.R
	-4.06
	1.02 × 10-4
	
	
	

	SOG.L–CAU.R
	-4.10
	8.72 × 10-5
	
	
	

	SOG.R–CAU.R
	-4.20
	6.11 × 10-5
	
	
	


Note: L denotes the left cerebral hemisphere, and R denotes the right cerebral hemisphere.
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