Supplementary material

Material and methods

Decision-making under risk
Prospect Theory Model
The model assumes that participants compute the value V of each lottery Ok with outcomes i as:

Where  is the expected value (utility) of the option k to the participant,  are the potential outcomes of the option k and  their respective probabilities. The Prospect Theory assumes that the subjective representation of both outcomes and probabilities is distorted, which is captured by the respective value  and probability weighting  function. Thereby  is the function that assigns a subjective value to an outcome, and  is the function that assigns a subjective weight to a probability. We chose the following specifications:


And


We then assume that choices are made by (soft) maximising this value:

[bookmark: _Hlk90554740][bookmark: _Hlk90554750][bookmark: _Hlk90554758][bookmark: _Hlk90554718]Thereby, the model features 4 free parameters: r (utility curvature), λ (loss aversion), γ (probability distortion) and ω (choice inverse temperature). Note that, for simplicity, the only difference between our specification and the original one is that we use the same utility curvature parameter (r) for gains and loss outcomes.
We started the adaptive procedure with unbiased, loosely informative, Gaussian priors. Let θ = {r, λ, γ, ω} be the set of parameters to be estimated at each trial t, with mean μt and variance-covariance Σt, we set the prior as:



Parameter recovery
To evaluate the ability of our adaptive procedure to recover the Prospect Theory parameters properly, we performed a parameter recovery exercise (Wilson and Collins, 2019). We simulated 300 synthetic participants, sampling parameters randomly in uniform distributions (; ). We then assessed both robust regressions and Pearson correlation between the parameters used to simulate the data and the parameters recovered by the adaptive procedure – see (Correa et al., 2018) for a similar approach. Overall, these analyses showed excellent recovery (Fig.S1).

Decision-making under ambiguity
Ambiguity aversion model
The model was also adapted from (Levy et al., 2010; Tymula et al., 2013).

Where  is the expected value (utility) of the option k to the participant,  are the potential outcomes of the option k and  their respective probabilities, and  the level of ambiguity.
Similarly to the other task/model,  is the function that assigns a subjective value to an outcome and is defined as:

We then assume that choices are made by (soft) maximising this value:

[bookmark: _Hlk90554772]Thereby, the model features 3 free parameters: r (utility curvature), β (ambiguity aversion), and ω (choice inverse temperature).
We estimated one set of parameters (r, β, ω) per valence condition (gains & losses), leading to a total of 6 free parameters (thereafter referred to as rG, βG, ωG, rL, βL, ωL). Because the task does not feature an adaptive design, parameters were estimated a posteriori, off-line, using a standard maximum likelihood approach.



Parameter recovery
To evaluate the ability of our offline model-fitting procedure to properly recover the Ambiguity aversion model parameters, we performed a parameter recovery exercise (Wilson and Collins, 2019). We simulated 300 synthetic participants, sampling parameters randomly in uniform distributions (; ; ). We then assessed both robust regressions and Pearson correlation between the parameters used to simulate the data, and the parameters recovered by the model fitting procedure – see (Correa et al., 2018) for a similar approach. Overall, these analyses showed excellent recovery, except for the choice temperature parameters which appeared to be correlated with the utility curvature parameters (Fig.S2).
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Fig.S1 Prospect-Theory model for decision under risk, parameter recovery analysis.
Overall, data from 300 synthetic participants (20 simulations of 90 individuals) were simulated. A. The 6 estimated parameters per participants were then regressed against the true parameters used for simulating the data. Each dot represents a synthetic individual. The black continuous lines represent the identity line, and the red dotted lines the best linear fits. Results show very good identifiability, with regression intercepts close to 0, regression slopes close to 1 and highly significant. B. The confusion matrices represent summary statistics of the correlations between parameters, estimated over 90-subjects simulations, and averaged over the 20 simulations. Diagonal: correlations between simulated and estimated parameters. Off diagonal: cross correlation between estimated parameters. Left: Pearson correlation (R). Right: explained variance (R2).
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Fig.S2 Decision under ambiguity model, parameter recovery analysis.
Overall, data from 300 synthetic participants (20 simulations of 90 individuals) were simulated. A. The 6 estimated parameters per participants were then regressed against the true parameters used for simulating the data. Each dot represents a synthetic individual. The black continuous lines represent the identity line, and the red dotted lines the best linear fits. Results show very good identifiability, with regression intercepts close to 0, regression slopes close to 1 and highly significant. B. The confusion matrices represent summary statistics of the correlations between parameters, estimated over 90-subjects simulations, and averaged over the 20 simulations. Diagonal: correlations between simulated and estimated parameters. Off diagonal: cross correlation between estimated parameters. Left: Pearson correlation (R). Right: explained variance (R2). 


[bookmark: _Hlk90554853]Table.S1. Correlation coefficients between each parameter of the tasks and the tics severity (YGTSS/50).
	
	
	Correlation coefficient
	p-values
	bf

	Risk
	ω
	0.084 ± 0.128
	0.492
	0.381

	
	r
	-0.038 ± 0.129
	0.747
	0.322

	
	λ
	0.07 ± 0.128
	0.556
	0.359

	
	γ
	-0.077 ± 0.129
	0.527
	0.368

	Ambiguity
Gain
	ωG
	-0.112 ± 0.128
	0.355
	0.453

	
	rG
	0.021 ± 0.129
	0.869
	0.311

	
	βG
	0.134 ± 0.127
	0.263
	0.543

	Ambiguity
Loss
	ωL
	0.029 ± 0.129
	0.8
	0.316

	
	rL
	0.049 ± 0.129
	0.689
	0.33

	
	βL
	-0.2 ± 0.124
	0.097
	1.076


ω: Choice inverse temperature; r: Utility curvature; λ: Loss aversion; γ: Probability distortion; β: ambiguity aversion; bf: Bayesian factor.
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