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Task procedure training
Participants were trained in three sessions for each of the two tasks (Hampton, Adolphs, Tyszka, & O’Doherty, 2007; Holroyd, Nieuwenhuis, Yeung, & Cohen, 2003). The first was a deterministic reversal, in which the two option were associated 100% with a reward and a punishment, respectively. The two options then reversed based on the criteria in the formal experiment. This training session ended after participants successfully completed two sequential reversals. The second training session was a probabilistic reward or punishment learning, where the contingencies were not reversed. This training phase ended after participants consecutively chose the “optimal” option 7 times, or after 60 trials, whichever came first. The last training session was same with the formal experiment but ended after participants successfully completed 2 sequential reversals, or after 60 trials, whichever came first. Different stimuli of the options were used in the training session from those used in the formal experiment. Participants were informed that they would not receive any payment for their performance during the training session.

Model computation
[bookmark: _Hlk108622474]We next used three reinforcement learning computational models to examine the mechanisms of behavioral adaptations by hBayesDM package (Ahn, Haines, & Zhang, 2017). Four MCMC chains were used, with 2,000 post-warmup iterations per chain, resulting in 8,000 valid MCMC samples. All models were extended from Rescorla-Wagner value update (Rescorla & Wagner, 1972), but with different assumptions on the way that information was integrated (Crawley et al., 2020).

Fictitious update model. Participants may not only update the value of the chosen option, but also update the value of unchosen option simultaneously to estimate the optimal one, by using the counterfactual update model to capture the anti-correlations between options. This model updates the value of both options using the following rule (Hampton et al., 2007):
                      (1)
                    (2)
Thus, the value  at each trial t for the chosen option c () is updated with the actual prediction error (), whereas the value for unchosen nc stimulus is updated with the fictitious prediction error (). In this model, is the learning rate that reflects the influence of two prediction errors on the value update. In other words, it controls the speed of learning (i.e., individuals with high learning rate can learn and capture the information of outcomes faster than those with low learning rate). In this framework, the value estimation and updating of two options can be quantified under RLT and PLT frames and affected by self-other biases. 

[bookmark: OLE_LINK45][bookmark: OLE_LINK44]Experience-weighted attraction model. Alternatively, diversity of social preferences may influence perceptions of the past experience and current choices during the reinforcement learning with different outcome valences, which makes individuals insensitive to novel information and unable to switch to the correct option. An experience-related parameter which weights the learning is the key feature of this model. Poorly accuracy of decisions may be due to a failure to update the value of choices based on new information. We examined this hypothesis using the experience-weight parameter from a simplified version of the experience-weighted attraction (EWA) model of Camerer and Ho (Camerer & Ho, 1999), in which features unrelated to the present study were excluded. The EWA model with the experience weight  and update of the stimulus value  is described by the following equations:
                           (3)
                  (4)
[bookmark: OLE_LINK47][bookmark: OLE_LINK46][bookmark: OLE_LINK49][bookmark: OLE_LINK48][bookmark: OLE_LINK50]Here,  is the “experience weight” of the choice at trial , which is updated on each trial using the experience decay factor . is the value of choiceon trial t, and is outcome of the choice. is the decay factor for the previous payoffs, equivalent to the inverse of the learning rate in the Rescorla-Wagner model (1-α, α is the Rescorla-Wagner learning rate here). Particularly, for > 0, the experience weights promote more sluggish updating with time. The EWA model captures the attribution of significance to past experience over and above new information as an individual progress through the task. This effectively reduces the learning rate over time. Thus, in this framework, perseveration to the incorrect option would be different when making decisions for self or other, in particular on diverse learning frames.

Positive-Negative model. Adequate adaptation to the environment depends on the ability to flexibly adjust our choices in response to changes in reward and punishment contingencies. Individuals may update the values estimation by learning from positive and negative outcomes separately. The Positive-Negative model (P-N), a different extension of the Rescorla-Wagner model, has been shown to be the winning model in neurotypical adults in a similar probability reversal learning task (Frank, Moustafa, Haughey, Curran, & Hutchison, 2007). To access how self-other biases influences outcome evaluation of participants, we used the P-N to capture dissociable learning effects under specific learning frames. 
              (5)
This model is described by above equations, where  is the reward learning rate (0 in negative feedback trials), and  is the learning rate for negative feedback (0 in positive feedback trials);is the received outcome. 

Softmax action selection
For above models, these values are then translated into action probabilities using a softmax choice function (Sutton & Barto, 2018). In each trial t, the action probabilities of selecting option A (over B) were defined as follows:
                 (6)
In this selection rule,is the indecision point, which systematically improved performance of all models. Particularly, represents a bias for participants’ decision making. When = 0, both options are equally likely to be chosen. Mathematically, this corresponds to the mid-point on the sigmoid function.is the inverse temperature parameter that governs the stochasticity of the selection, computed using inverse logit transfer, i.e., the slope of the sigmoid. 

FRN measurement
Based on previous studies, we used a peak-to-peak method to measure the FRN (Osinsky, Mussel, & Hewig, 2012; Osinsky, Walter, & Hewig, 2014). Specifically, we first identified the sample associated with the most positive value of the P2 within a 150 – 250 ms window following the presentation of the feedback. Then, we identified the sample associated with the most negative amplitude of the FRN within a 200 – 300 ms window following the presentation of the feedback stimulus. Finally, the peak-to-peak value of FRN was defined by the difference between FRN and P2. The amplitude of FRN was taken as 0 , if the peak-to-peak value of FRN was a nonnegative value (Holroyd et al., 2003).

Delta-band oscillation
[bookmark: OLE_LINK79][bookmark: OLE_LINK78]Delta-band oscillations of negative feedback at Cz position modulated by AVP was associated to the social behavioral adjustment in four conditions (SR, SP, OR, OP). To explore the relationship between brain oscillations and behavioral adjustments, we correlated the negative feedback-related delta-band power (NDP) and RT. Correlational analyses showed that average delta band oscillation of negative feedback was correlated with RT in SR, SP, OP in AVP group (SR: rAVp = -.429, p = .002; OR: rAVp = -.352, p = .011; SP: rAVp = -.364, p = .009; OP: rAVp = -.318, p = .023; Supplementary Fig.1) but not in PBO (SR: rPBO = .097, p = .515; OR: rPBO = .049, p = .4; SP: rPBO = -.108 p = .468; OP: rPBO = -.106, p = .479). The former SR and OR correlations was significantly higher than the later one (zSR = -2.664, pSR = .008; zOR = -1.997, pOR = .046), though there were no significant between PBO and AVP correlations in other two conditions (zSP = -1.308, pSP = .191; zOP = -1.069, pOP = .285). Previous studies have shown that delta power increases with aversive outcomes in negative reinforcement (Rawls & Lamm, 2021) and reflects motivational salience and negatively related to dopamine releases in the reward brain network (Knyazev, 2012). Compatibly, under AVP administration, delta-band oscillations of negative outcome were correlated with behavioral reaction time, an objective marker of decision execution and decision confidence (Fischer & Ullsperger, 2013), suggesting that AVP controlled the relationship between brain oscillation and individuals’ behavioral adjustments on aversive learning. Moreover, we found a significant moderating effect of AVP on relation between NDP and RT in SR condition (b = 19.522, p = .017, R2 = .056), suggesting that AVP moderated relation between NDP and RT to adjust the self-related reward-seeking on social learning.

Current source density analysis
We conducted the analyses based on priori hypothesis about specific loci for examining reinforcement learning at anticipation stage (SPN) (Brunia & Damen, 1988; Hackley, Valle-Inclán, Masaki, & Hebert, 2014) and at outcome evaluation stage (FRN, P300 and theta oscillation) (Cavanagh & Frank, 2014; Hauser et al., 2014; Holroyd et al., 2003; Nieuwenhuis, Aston-Jones, & Cohen, 2005; Osinsky et al., 2012; Yeung, Holroyd, & Cohen, 2005). Therefore, we extracted the specific electrode sites, i.e. SPN at bilateral FC5/6 and F5/6 (Zheng, Li, Wang, Wu, & Liu, 2015); FRN at FCz (Hauser et al., 2014; Holroyd, Krigolson, Baker, Lee, & Gibson, 2009); P300 at CPz (Cavanagh, 2015); theta at FCz (Cavanagh & Frank, 2014; Cavanagh, Frank, Klein, & Allen, 2010) for the corresponding analyses.
We additionally applied the current source density analysis to diminish volume conduction and identify the locations of sources and sinks of electrical currents on the head (Hu and Zhang, 2019), which can support our extraction of specific electrode.

 

Supplementary Figures
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[bookmark: OLE_LINK1]Supplementary Fig. 1. Delta-band oscillation results. (a) Correlations between delta band power for negative feedback condition and RT in four conditions (SR, SP, OR, OP) by two groups (PBO  vs. AVP). (b) The proposed moderation model. NDP, negative feedback-related delta band power; RT, reaction time (c) RT among participants as a function of drug and NDP. Functions are graphed for two levels of the drug administration (PBO vs. AVP) in SR condition. SR, making decisions for self in RLT session; SP, making decisions for self in PLT session; OR, making decisions for other in RLT session; OP making decisions for other in PLT session.
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Supplementary Fig. 2. Result of positive learning rate of PBO group on reward learning. The positive leaning rate was calculated by the winning model, Positive-negative model. On reward learning, participant’s positive learning rate when they learned for themselves was significantly higer than learning for others (t = 3.041, df = 101, P = .003). Mean SE. ＊＊p < .01.
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Supplementary Fig. 3. Current source density analysis of FRN. Current source density of FRN for PBO and AVP groups at the stage of outcome evaluation in condition SR, OR, SP and OP. Scalp map (220 - 320 ms) depicted the topography for the difference waveforms, where magenta triangles showed the FCz electrode selected for analysis. SR, making decisions for self in RLT session: SP, making decisions for self in PLT session; OR, making decisions for other in RLT session; OP making decisions for other in PLT session.


[image: P300_csd]
Supplementary Fig. 4. Current source density analysis of P300. Current source density of P300 for PBO and AVP groups at the stage of outcome evaluation in condition SR, OR, SP and OP. Scalp map (320 - 420 ms) depicted the topography for the mean waveforms, where white triangles showed the CPz electrode selected for analysis. SR, making decisions for self in RLT session: SP, making decisions for self in PLT session; OR, making decisions for other in RLT session; OP making decisions for other in PLT session.
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Supplementary Fig. 5. Current source density analysis of SPN. Current source density of SPN for PBO and AVP groups at the stage of anticipation in condition SR, OR, SP and OP. Scalp map (-200 - 0 ms) depicted the topography for the mean waveforms, where magenta triangles showed the F5/F6 and FC5/FC6 electrodes selected for analysis. SR, making decisions for self in RLT session: SP, making decisions for self in PLT session; OR, making decisions for other in RLT session; OP making decisions for other in PLT session.
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Supplementary Fig. 6. Current source density analysis of theta oscillation. Time-frequency analysis of theta oscillation (4 - 7 Hz) after current source density transform for PBO and AVP groups at the stage of anticipation in condition SR, OR, SP and OP. Scalp map (100 - 300 ms) depicted the topography for the mean power, where white triangles showed the FCz electrode selected for analysis. SR, making decisions for self in RLT session: SP, making decisions for self in PLT session; OR, making decisions for other in RLT session; OP making decisions for other in PLT session.
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