DNA PARTITIONS INTO TRIPLETS UNDER TENSION IN THE PRESENCE OF ORGANIC CATIONS, WITH SEQUENCE EVOLUTIONARY AGE PREDICTING THE STABILITY OF THE TRIPLET PHASE

Amirhossein Taghavi, Paul van der Schoot, Joshua T. Berryman

(b) Lemkul et al.

(a)	Protozanova	et	al
-----	-------------	----	----

Amino Acid	codon · anticodon	$\Delta G_{\tau} / k_B T$
T*	ACC·GGT	1.38
G†	GGT·ACC	1.38
S*	AGT-ACT	1.51
At	GCC·GGC	1.56
I*	ATC·GAT	1.57
D†	GAT·ATC	1.57
V†	GTC·GAC	1.61
Ν.	AAT·ATT	1.63
R.	AGA·TCT	2.40
F.	TTC ·GAA	2.55
E*	GAA·TTC	2.55
К.	AAA·TTT	2.61
P*	CCC·GGG	3.20
C.	TGT-ACA	3.32
L*	CTC-GAG	3.54
М.	ATG·CAT	4.45
Н.	CAT·ATG	4.47
Y.	TAT·ATA	4.57
Q.	CAA·TTG	5.41

Amino Acid | codon \cdot anticodon | $\Delta G_{\tau} / k_B T$ S* AGT-ACT 1.30 T* ACT·AGT 1.30 Аŕ GCT-AGC 1.46 D† GAT·ATC 1.47 ۱* ATC-GAT 1.47 CGT·ACG R. 1.68 E* GAG·CTC 1.82 L* CTC-GAG 1.83 ۷ť GTC · GAC 1.90 N. AAT·ATT 2.02 K. Y. AAG·CTT 2.38 **TAT**·ATA 3.09 F. 3.57 TTC-GAA Μ. ATG-CAT 3.93 Н. 3.94 CAT·ATG Q. 4.32 CAG·CTG Gť GGT·ACC 4.81 P* 4.82 **CCT**·AGG C. TGT·ACA 4.96

(c) Protozanova et al.

(d) Lemkul et al.

Figure S1. Triplet formation free energies and triplet disproportionation propensity with Protozanova *et al.*(a,c) and Lemkul *et al.*(b,d) datasets.

Figure S2. Inter-run variation of the proportion of different local conformations of different phases. Trends are consistent between replicates up to extensions of >1.5, where (especially without intercalator) strong kinetic lock-in becomes evident.

Figure S3. Proportion of each classified conformation versus time, at constant extension of 1.45, averaged over 16 replicates and also smoothed over a 1ns window. The proportion of each conformation remained approximately constant over 300ns.