Additional information to the Datasets

Chironomids
Chironomids, or non-biting midges, are a species-rich group of insects whose distribution is closely related to summer temperature and which can react rapidly to environmental changes (Brooks et al., 2008; van Asch, 2012). Therefore, chironomids often are used as a proxy for past summer temperatures 


(Walker and Mathewes, 1989; Walker et al., 1991a; Walker et al., 1991b; Lotter et al., 1999; Brooks and Birks, 2000; Heiri et al., 2007; Brooks et al., 2008; Brooks et al., 2012; van Asch, 2012; Barber et al., 2013; Heiri et al., 2014) ADDIN EN.CITE . 
Due to the use of the Norwegian transfer function of Brooks and Birks (2000) for the Bigland Tarn record and the position of the core in the deepest part of the lake, it is assumed by Barber et al. (2013) that the dataset is skewed towards lower temperatures, although the observed trends are unaffected. The uppermost part of the core, dated after AD 990, shows an increase of anthropogenic disturbances, causing a shift in the species composition. Although there is a close match of the reconstructed temperature with instrumental data in the top of the core, this upper part is thought not to reflect changes in temperature (Barber et al., 2013). The climate signal in chironomid records from the Holocene are considered less robust than during times with greater climate variations due to a possibly larger influence of other environmental factors such as euthrophication or sediment input as a result of anthropogenic influence 
 ADDIN EN.CITE 
(e.g., Velle et al., 2010; Taylor et al., 2017)
. However, a recent study by Lang et al. (2018) show that even chironomids from a lowland lake, which is impacted by pollution, are a reliable proxy for past temperatures, as well as chironomids from the Holocene as discussed by Brooks et al. (2012) and evidence by several reconstructions 
 ADDIN EN.CITE 
(e.g., Axford et al., 2009; Barber et al., 2013; Nazarova et al., 2013)
.
Pollen

Pollen assemblages give an impression of past vegetation and vegetation changes. Since vegetation is directly influenced by climate, pollen is an indirect indicator of past climate changes and can to some extent be used as a climate proxy 


(Bordon et al., 2009; Litt et al., 2009; Peyron et al., 2012; Jacques et al., 2013) ADDIN EN.CITE . Pollen as a climatic proxy is assumed to be more sensitive to temperature changes than to precipitation changes, but both climate parameters are indirectly reflected in pollen records (Litt et al., 2009).
The approach used by Litt et al. (2009) for the records from the Meerfelder Maar and Holzmaar infers palaeo-climatic information using a climate-transfer function based on several individual taxa. The climate relationship for each taxon is derived from the Climate Research Unit climate data set (New et al., 2000) and from plant species distribution maps 


(Meusel et al., 1964; Meusel et al., 1978; Meusel and Jäger, 1992) ADDIN EN.CITE . This climate reconstruction model is only minimally influenced by anthropogenic influences on the vegetation since neither abundances nor modern analogues are taken into account. The climate parameters had been modelled using a trivariate approach (Neumann et al., 2007).

Speleothems

During the last decades speleothems such as stalagmites and flowstones increasingly have been used as palaeoclimate archives 
 ADDIN EN.CITE 
(e.g., Onac et al., 2002; Frumkin and Stein, 2004; McDermott, 2004; Frisia et al., 2005; Fairchild et al., 2006; Asrat et al., 2007; Meyer et al., 2008; Wang et al., 2008; Scholz et al., 2012; Fohlmeister et al., 2013)
. Speleothems grow in secluded cave environments in all climate zones, often without anthropogenic disturbances and developed from percolating water supersaturated with calcium carbonate (Ford and Williams, 2007). The most frequently used proxies derived from speleothems are stable oxygen and carbon isotope ratios, thickness of annual layers, and element concentration ratios (e.g., magnesium/calcium). This multitude of proxies gives the added advantage of creating multiple-proxy records from single speleothems. These are used to reconstruct temperature, precipitation/infiltration, or soil and vegetation processes (Fairchild and Baker, 2012). Singular relationships between speleothem-derived proxies and climate parameters do not exist, due to the strong influence of cave-specific conditions and processes on speleothem formation 


(e.g., Spötl et al., 2005; Sundqvist et al., 2007; Genty, 2008; Mattey et al., 2008; Miorandi et al., 2010; Riechelmann et al., 2011) ADDIN EN.CITE . The relation between climatic parameters and the measured proxies usually is empirically derived based on data collected during cave-monitoring studies 


(Spötl et al., 2005; Mattey et al., 2008; Riechelmann et al., 2011; Riechelmann et al., 2013; van Rampelbergh et al., 2014) ADDIN EN.CITE . 
The band width record from Uamh an Tartair cave in north-west Scotland shows a negative correlation of band width to precipitation, which is caused by a peat bog overlying the cave. During a dry period, CO2 production from peat oxidation increases dissolution of the carbonate host rock and consequently increases the growth rate of the speleothem. Under wet and anaerobic conditions the peat is saturated and CO2 production decreases, leading to a slower stalagmite growth rate (Proctor et al., 2000). This also indicates that the Uamh an Tartair record is more sensitive to dry than to wet conditions, since once the peat is saturated, growth rate remains at its minimum. Despite being based on annual growth bands, the precipitation signal in this record is smoothed to an approximately decadal scale, in order to account for buffering and the water storing effect of the peat bog above the cave (Proctor et al., 2000; Fuller et al., 2008). The age-depth model for Uamh an Tartair has been constructed via layer counting, which was confirmed by 230Th/U-datings (Baker et al., 2015). 
Stalagmite CC3 from Crag Cave in south-western Ireland is fed by a drip site with a seasonal drip rate, whereas the water in the aquifer is well mixed and gives a year-round constant 18O value (Baldini et al., 2006). The calcite was deposited under conditions of, or close to, isotopic equilibrium. Therefore, the precipitation of calcite and the 18O values of the speleothem CC3 has been predominantly affected by mean annual temperature in the cave (McDermott et al., 1999).

The cave-monitoring study of Bunker Cave shows that the Mg/Ca ratio of the drip water is related to prior calcite precipitation in air-filled cavities in the epikarst zone (i.e. the zone with soil and host-rock between the surface and the cave). When more air is present, more calcite can precipitate, leading to increased Mg concentrations in the cave drip water (and vice versa). The 13C values of the drip water and of recent calcite precipitates is also influenced by prior calcite precipitation as well as by drip rate, which are both related to the amount of infiltrated rain water 


(Riechelmann et al., 2011; Riechelmann et al., 2013) ADDIN EN.CITE . Further, the cave monitoring study shows that the 18O in the drip water and in the recent calcite precipitates is influenced by the temperature effect on the rain water as well as by drip rate, which is induced by the infiltrated amount of rain water 


(Riechelmann et al., 2011; Riechelmann et al., 2013) ADDIN EN.CITE . The age-depth model for the speleothems from Bunker Cave has been constructed using intra-site correlation, with the sampled speleothems’ age modelling based on the 230Th/U-datings, radiocarbon ages, and linear interpolation between dated depths (Fohlmeister et al., 2012). 
The lamination of the flowstone from Klapferloch Cave, in the northern Austrian Alps, has been induced by changing cave air conditions (CO2 concentration and temperature) and by the input of organic soil particles from drip water during autumn. This cave was monitored for cave air, drip water, and recent calcite precipitate parameters, which has shown that 13C and 18O concentrations do not provide a seasonal signal due to buffering and mixing of the water in the soil and in the epikarst zone. The changes of the 13C and 18O concentrations are related to the drip rate, which in turn is related to the amount of rainwater infiltrating into the soil and epikarst. The age-depth model of the flowstone has been constructed using a stalagmite growth model (Scholz and Hoffmann, 2011) using 230Th/U ages (Boch and Spötl, 2011).
Sphagnum mosses

Sphagnum is the most abundant moss species in bogs of NW Europe throughout the late Holocene. Since this bog-forming species is moisture dependent and sensitive to drought, it is an ideal climate proxy (Clymo, 1970). During the uptake of CO2 by plants consistent fractionation of different isotopes occur, although this is species and plant component specific (Moschen et al., 2011). This uptake and the resulting stable carbon isotope composition is strongly coupled to temperature, although for Sphagnum, bog surface wetness, relative humidity, and partial pressure of CO2 also play a role 


(Ménot and Burns, 2001; Skrzypek et al., 2007) ADDIN EN.CITE . Due to the high uncertainties present when calculating absolute temperatures from 13Ccellulose using transfer functions (Ménot and Burns, 2001), the 13Ccellulose values were used for Sphagnum from Dürres Maar in western Germany to construct relative temperatures variations only.

Testate-Amoebae

Testate-amoebae are a group of aquatic species with a high cosmopolitan distribution which can live in small water-filled spaces (Charman et al., 2000). They are a class of rhizopoda that form a species-specific, morphologically different outer test (shell) which can be well preserved in the fossil record. The species composition is mainly controlled by moisture availability with pH as the second most important factor (Charman et al., 2000). Other factors controlling the species composition are food availability, temperature, light, oxygen, and water chemistry (other than pH; Charman et al., 2000). Because testate-amoebae can reproduce fast, they are sensitive indicators for small and rapid palaeo-environmental changes. When moisture availability is directly dependent on precipitation, as is the case with groundwater-tables in oligotrophic mires, testate-amoebae can be used as either a quantitative climate proxy by using a transfer function to convert the assemblages to depth to water-table, or as a qualitative proxy  


(Charman et al., 2000; Hendon et al., 2001; Barber and Charman, 2003; Booth et al., 2006; Mitchell et al., 2008; Booth et al., 2010; Barber et al., 2013) ADDIN EN.CITE .
Testate-amoebae are mainly used as an indicator for Bog-Surface Wetness (BSW). Although the influx of precipitation seems to be the main forcing factor of moisture availability, the decrease in wetness by evaporation is also controlled by temperature (Charman, 2007). Usually, the assemblage is linked to mean annual precipitation since data on seasonal preferences are lacking. However, since bogs during winter usually are completely saturated, testate-amoebae inferred water-table depths mainly reflect summer moisture deficit 


(Barber and Langdon, 2007; Charman, 2007; Charman et al., 2009; Chambers et al., 2012) ADDIN EN.CITE .
The testate-amoebae record of Tore Hill Moss is affected by an incomplete modern calibration data set. Three species present at relatively high percentages during the interval AD 1 to 1000 are insufficiently incorporated in the dataset due to a lack of modern data.

During the period AD 1 to 210 the testate-amoebae assemblage of Walton Moss shows a high abundance of the species Difflugia pulex. The ecology of this taxon is poorly understood and it is not included in the transfer dataset, although the current study indicates a preference for drier conditions 


(Charman et al., 2006; Barber and Langdon, 2007) ADDIN EN.CITE . It is therefore possible that the water-table depth during this period is underestimated.

Whereas Atlantic bogs, such as commonly found in Ireland, are dome-shaped and can grow up to several meters high, continental bogs are relatively flat (Charman, 2002). More importantly, continental bogs have a different precipitation/evapotranspiration balance when compared to Atlantic bogs. Therefore, the testate-species composition of these continental bogs appears to be more dependent on temperature than on precipitation (Schoning et al., 2005; Slowinska et al., 2010). The Polish Stążki bog, however, is located close the southern Baltic coast and influenced by the oceanic climate and therefore, belongs to neither category. Consequently, it will probably be sensitive to both climate variables, which can be difficult to separate 


(Charman et al., 2009; Galka et al., 2013) ADDIN EN.CITE .
Tree-rings

Tree-rings as a climate archive provide an unambiguous annual resolution. A significant advantage of tree-rings as a climate proxy is the large number of individual tree samples used to create annual-resolution chronologies (Hughes et al., 2011). Using many multiple and duplicate records, significant statistics can be calculated for each studied site, and a single outlier does not dramatically affect the interpretation. Furthermore, trees are directly influenced by temperature and precipitation and these influences are well understood. Tree growth, in addition, is influenced by ecological, geomorphological, hydrological, anthropogenic, and site-specific factors 


(e.g., Treydte et al., 2001; Moser et al., 2009; Esper et al., 2012; Düthorn et al., 2013) ADDIN EN.CITE . To create a temperature reconstruction from tree-ring widths, samples are taken from trees near the boreal or altitudinal tree-line, since temperature is the major limiting growth factor on these locations. For precipitation reconstructions trees from low altitudes, e.g. in Central Europe, are preferred since their growth is often limited by moisture availability (Babst et al., 2012). Long tree-ring chronologies are constructed from series collected from living trees as a starting point and are extended backwards using historical and archaeological timbers (e.g., houses, revetments, and water wells) and/or subfossil wood (e.g., from glaciers, bogs, and lakes). Due to the direct influence of climate on tree growth, in comparison to for example speleothems where the climate signal is transferred by the percolating water through the soil and host rock, a calibration with meteorological data is possible. Absolute values for past temperatures and precipitation can then be estimated for the entire record using a transfer function (Hughes et al., 2011). 

A methodological disadvantage is that due to the data processing required to compile long chronologies long-term climate signals are removed from the data. This is because millennia-long tree-ring chronologies are constructed by stacking overlapping shorter measurement series which have been detrended in order to remove the age-related trend of narrowing of the tree-rings (Hughes et al., 2011). Hence, the maximum length of climate variations preserved in these stacked long chronologies is directly related to the length of the original tree-ring series from which the chronologies have been compiled (Hughes et al., 2011). Furthermore, tree-rings in most cases give information about the climate during the growing season (approximately March to October) and therefore, cannot be used to reconstruct winter climate parameters.
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