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Derivation of pressure deviations from ideality 
 

Deviations from ideal gas behavior (PV = nRT) can be encapsulated by the compressibility factor, 

Z = PV/nRT, which is given by a series expansion in molar volume (𝑉̅ = 𝑉/𝑛) or pressure in the 

virial equation of state.  This expansion is often truncated at the second term for gases under 

conditions of sufficiently low pressures and high temperatures without sacrificing precision 

(Poling et al. 2001) (Eq. (S-1)).  The “second virial coefficient” (B(T)) in Eq. (S-1) is a 

characteristic property of the gas under consideration that depends on temperature T (Poling et al. 

2001) (Figure S-1).   

  

(S-1)  

𝑍 ≈ 1 + 𝐵(𝑇)
𝑃

𝑅𝑇
 

or 

𝑍 ≈ 1 + 𝐵(𝑇)
𝑛

𝑉
 

  

Since the expected pressures of non-ideal gases can be calculated as 𝑃𝑉𝐸 = 𝑛𝑅𝑇𝑍/𝑉, deviations 

from the pressures expected under the ideal gas law (Δ𝑃 = 𝑃𝑉𝐸 − 𝑃𝐼𝐺𝐿 ) are approximately 

parabolic in the ideal gas law pressure (Eq. (S-2)).   

  

(S-2)  ΔP =
𝑛𝑅𝑇

𝑉
(𝑍 − 1) ≈

𝐵(𝑇)

𝑅𝑇
𝑃𝐼𝐺𝐿
2  

  

Accordingly, we demonstrate the range of ΔP’s for He, N2, CO2, and dry air over pressures 

spanning 0 to 1000 Torr (main text, Figure 2) for an array of prescribed number of moles in a fixed 

cold-finger volume (V = 15 cm3) at a typical laboratory temperature (T = 298.15 K).  Uncertainty 

in pressures calculated with the virial equation stem directly from uncertainties in all measured 

values (P, V, T), and indirectly from T when choosing the appropriate value of B(T). 

 

 
Figure S-1: Second Virial Coefficients, B(T), as a function of temperature from 273.15 to 323.15 K for He (black solid 
line), N2 (black dashed line), dry air (gray dashed line), and CO2 (grey solid line).  The curves were based on data and 
smoothing functions from the CRC Handbook of Chemistry and Physics (Rumble 2018) curves for He, N2, and CO2, and 
data from Sengers et al. (1971) for dry air. 
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Serial gas expansion method: derivation of V1 

 

In this method, equilibrium pressures (P1, P12, and P123) and temperatures (T1, T12, and T123) are 

measured during a series of gas expansions from the cold-finger (V1) into successively larger 

volumes (V12 = V1 + V2, and V123 = V1 + V2 + V3) that includes a clean, dry reference flask (V3) 

whose volume was previously determined gravimetrically with pure water (main text, Figure 1). 

The number of moles of the gas (n) are conserved during the expansions, permitting calculation of 

V1 from measurements of Pi’s, Ti’s, and V3 using the appropriate equation of state, such as the 

ideal gas law or the virial equation.  Despite the simplicity of this procedure, several potential 

errors must be considered. 

 

First, the volumes defined above and in Figure 1 (main text) can change upon actuating valves A, 

B, C, and D.  This error is most significant when using high-vacuum glass valves seated with an 

O-ring, but can be virtually eliminated if the manometric system and reference flask are 

constructed from lightly-greased tapered glass stopcocks (e.g., Chemglass Cat. No. CG-473) or 

similarly flat-seated metal valves.  Henceforth, we shall assume the manometric systems under 

consideration were constructed with appropriate valves, rendering this error negligible. 

 

Second, the capacitance diaphragm gauge (CDG) sensing element is a capacitor with one plate 

that deflects when pressurized. Thus, the volume contained by the manometer/cold-finger system 

(V1) is not constant, but rather pressure-dependent.  Consequently, the most general solution 

should quantify the volume of the cold-finger at the CDG equilibrium position (i.e., V1,o at P = 0 

Torr) and parameterize the additional pressure-dependent volumes created when the diaphragm is 

deflected (ΔVi is a function of Pi).    

 

Third, as previously stated, deviations from ideal gas behavior can be detected for several gases in 

under typical conditions (main text, Figure 2) using the gauges studied here.  Therefore, the most 

general and accurate set of equations describing the changes in pressure observed during serial gas 

expansion should correct for non-ideality (virial equation) and the pressure-dependent volumes 

generated by diaphragm deflections (e.g., V1 = V1,o + ΔV1): 

  

(S-3)  𝑉1,𝑜 + Δ𝑉1 =
𝑛𝑅𝑇1
𝑃1

𝑍1 

  

(S-4)  𝑉12,𝑜 + Δ𝑉12 =
𝑛𝑅𝑇12
𝑃12

𝑍12 

  

(S-5)  𝑉123,𝑜 + Δ𝑉123 =
𝑛𝑅𝑇123
𝑃123

𝑍123 
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Since V123,o = V1,o + V2 + V3 and V12,o = V1,o + V2, we can calculate V3 = V123,o – V12,o using 

equations (S-4) and (S-5). 

  

(S-6)  𝑉3 = (
𝑇123
𝑃123

𝑍123 −
𝑇12
𝑃12

𝑍12) 𝑛𝑅 + (Δ𝑉12 − Δ𝑉123) 

  

Solving this expressing for nR and substituting into Eq. (S-3) gives the most general expression 

for calculating V1,o, the volume of the un-pressurized cold-finger flask, from the virial equation of 

state and measurements of temperature, pressure, and the volume of the reference flask (V3). 

  

(S-7)  

 

𝑉1,𝑜 =

𝑇1
𝑃1
𝑍1

𝑇123
𝑃123

𝑍123 −
𝑇12
𝑃12

𝑍12

(𝑉3 − (Δ𝑉12 − Δ𝑉123)) − Δ𝑉1 

 

  

Rearranging Eq. (S-7) into Eq. (S-8) reveals three terms that can be considered. 

  

(S-8)  𝑉1,𝑜 = (

𝑇1
𝑃1
𝑍1

𝑇123
𝑃123

𝑍123 −
𝑇12
𝑃12

𝑍12

)𝑉3 − (

𝑇1
𝑃1
𝑍1

𝑇123
𝑃123

𝑍123 −
𝑇12
𝑃12

𝑍12

)(Δ𝑉12 − Δ𝑉123) − Δ𝑉1 

  

The first term on the right-hand side of Eq. (S-8) is the volume that would be calculated assuming 

the additional volumes due to CDG diaphragm deflections are negligible. The second term corrects 

this for CDG deflection volumes (ΔV12 and ΔV123) associated with measuring P12 and P123. The 

final term corrects for the CDG deflection volume associated with the initial pressure measurement. 

This is the largest correction because the pressures and deflection volumes decrease with each gas 

expansion. If ignoring these corrections yields significant errors, then the deflection volumes can 

be parameterized as directly proportional to P (e.g., Eq. (S-31), derived below).  Otherwise, Eq. 

(S-7) can be simplified as follows: 

 

First, the maximum volume change at full scale deflection for the CDGs studied here is ~0.03 cm3 

(Dick Jacobs, Principle Applications Engineer, MKS Instruments, Inc., personal communication). 

This induces a maximum relative error that is similar in magnitude to the minimum relative 

uncertainty simulated for an optimized system with a 15 cm3 cold-finger (~0.002).  Since P1, P12, 

and P123 are lower than the upper detection limit of the gauge, the error due to deflection volumes 

will be within measurement uncertainty.  Therefore, the deflection volumes may be assumed 

negligible for cold-finger volumes greater than or equal to ~15 cm3 connected to comparable 

CDG’s (Eq. (S-9)). 

  

(S-9)  𝑉1 ≈

𝑇1
P1
𝑍1

𝑇123
𝑃123

𝑍123 −
𝑇12
P12

𝑍12

𝑉3 
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Second, if the ambient temperature is constant (T1 ≈ T12 ≈ T123) during the determination of V1, 

then the Virial coefficient terms cancel from the denominator (Eq. (S-10)). 

  

(S-10)  𝑉1 ≈

1
𝑃1

1
𝑃123

−
1
𝑃12

𝑉3𝑍1 

  

Finally, if the calibration gas does not deviate significantly from ideality over the range of 

measured pressures (ΔP ≤ gauge increment), then it may be treated as an ideal gas (Z ≡ 1).  In 

that case, the expression would reduce to a form derived from Boyle’s law.  

 

Serial gas expansion method: propagation of uncertainties 
 

If deflection volumes and deviations from ideal gas behavior are negligible, then the cold-finger 

volume (V1) can be determined via the reference flask volume (V3) and the equilibrium pressure 

readings (Pi’s) as shown in Eq. (S-10). Consequently, the uncertainty of V1 can be estimated by 

propagating uncertainties from V3 and the Pi’s through linearized Taylor Series expansions, 

where 𝜎𝑃1, 𝜎𝑃12, 𝜎𝑃123, and 𝜎𝑉3 are single standard deviations of P1, P12, P123, and V3, 

respectively, and 𝜎𝑃1𝑃12, 𝜎𝑃1𝑃123, 𝜎𝑃1𝑉3, 𝜎𝑃12𝑃123, 𝜎𝑃12𝑉3, and 𝜎𝑃123𝑉3 are the covariances of P1 and 

P12, P1 and P123, P1 and V3, P12 and P123, P12 and V3, and P123 and V3, respectively. 

  

(S-11)  𝜎𝑉1 =

√
  
  
  
  
  
  
  
 

(
∂V1
∂P1

𝜎𝑃1)
2

+ (
∂V1
∂P12

𝜎𝑃12)
2

+ (
∂V1
∂P123

𝜎𝑃123)
2

+ (
∂V1
∂V3

𝜎𝑉3  )
2

+2

(

 
 

∂V1
∂P1

∂V1
∂P12

𝜎𝑃1𝑃12 +
∂V1
∂P1

∂V1
∂P123

𝜎𝑃1𝑃123 +
∂V1
∂P1

∂V1
∂V3

𝜎𝑃1𝑉3 +

∂V1
∂P12

∂V1
∂P123

𝜎𝑃12𝑃123 +
∂V1
∂P12

∂V1
∂V3

𝜎𝑃12𝑉3 +
∂V1
∂P123

∂V1
∂V3

𝜎𝑃123𝑉3
)

 
 

 

  

This expression was simplified and used to estimate the relative uncertainty of V1 as follows. 

 

First, numerical simulations of gas expansions demonstrated that the covariances shown in Eq. (S-

11) contributed negligible uncertainty and were ignored hereafter.   

 

Second, the reference flask’s volume (V3) was assumed to have been previously measured 

gravimetrically based on temperature (T), density (ρwater), and buoyancy corrected mass (m3) of 

pure, degassed water (Eq. S-12) (Harris 2018).  The relative uncertainty of V3 was approximately 

equal to the relative uncertainty of m3 (Eq. (S-13)), assuming the contributions from the 

uncertainties of density and temperature were negligible compared to that from mass.  
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Third, the partial derivatives of V1 were expressed as functions of V1:  

  

(S-14)  
∂V1
∂P1

= −
𝑉1
𝑃1

 

  

(S-15)  
∂V1
∂P12

= −
𝑉1
𝑃12

(
1

P123
−

1

𝑃12
)
−1

 

  

(S-16)  
∂V1
∂P123

=
𝑉1
𝑃123

(
1

P123
−

1

𝑃12
)
−1

 

  

(S-17)  
∂V1
∂V3

=
𝑉1
𝑉3

 

  

Substituting Eq. (S-13) - (S-17) into Eq (S-11), ignoring the covariance terms, and rearranging, 

yielded a simplified expression for the relative uncertainty of V1 (Eq. (S-18)). 

  

(S-18)  
𝜎𝑉1
𝑉1

≈  √(
𝜎𝑃1
𝑃1
 )
2

+ (
1

P123
−

1

𝑃12
)
−2

[(
𝜎𝑃12
𝑃12

)
2

+ (
𝜎𝑃123
𝑃123

 )
2

] + (
𝜎𝑚3

𝑚3
)
2

 

  

Cryogenic transfer method: derivation of V1  
 

In the cryogenic transfer method, a dry condensable gas (e.g. CO2) is directly and completely 

transferred from the reference flask (V3) to the cold-finger (V1) using a cryogenic bath (main 

text, Figure 1). First, the system is filled with a quantity of CO2 and then the initial pressure and 

temperature are measured (P3, T3). Next, the gas in the reference flask (V3) is isolated (P3), while 

cold-finger (V1) and corridor (V2) are evacuated. Finally, the gas in V3 is cryogenically 

transferred into V1, the cold-finger is warmed, and the final pressure and temperature are 

measured (P1, T1).  Since this method relies upon a condensable gas, it requires a real equation of 

  

(S-12)  V3 =
𝑚3

𝜌𝑤𝑎𝑡𝑒𝑟
 

  

(S-13)  
𝜎𝑉3
𝑉3

= √(
𝜎𝑚3

𝑚3
)
2

+ (
𝜎𝜌𝑤𝑎𝑡𝑒𝑟
𝜌𝑤𝑎𝑡𝑒𝑟

)
2

+ (
𝜎𝑇

𝜌𝑤𝑎𝑡𝑒𝑟

𝜕𝜌𝑤𝑎𝑡𝑒𝑟
𝜕𝑇

)
2

≈
𝜎𝑚3

𝑚3
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state for greatest accuracy. If volume changes caused by the diaphragm deflection (ΔV1) are also 

considered, then V1,o and V3 can be expressed as functions of n, R, Ti, Pi, and Zi using the virial 

equation of state. 

  

(S-19)  𝑉1,𝑜 + Δ𝑉1 =
𝑛𝑅𝑇1
𝑃1

𝑍1 

  

(S-20)  𝑉3 =
𝑛𝑅𝑇3
𝑃3

𝑍3 

  

V1,o can be calculated by solving Eq. (S-20) for nR and substituting into Eq. (S-19). 

  

(S-21)  V1,o =
𝑃3𝑇1𝑍1
𝑃1𝑇3𝑍3

𝑉3 − Δ𝑉1 

  

The correction for CDG diaphragm deflection (-ΔV1) can be safely neglected for sufficiently large 

cold-fingers and low pressures. Furthermore, if T1 ≈ T3, then V1 can be calculated with Eq. (S-22).  

  

(S-22)  V1 =
𝑃3𝑍1
𝑃1𝑍3

𝑉3 

  

Lastly, if the gas follows ideal behavior (Z1 = Z2 = 1) over the range of observed temperatures 

and pressures, then Eq. (S-22) reduces to Boyle’s Law. 

 

Cryogenic transfer method: propagation of uncertainties 
 

The uncertainty of V1 via cryogenic transfer (Eq.(S-22)) can be estimated by propagating the 

uncertainties of V3 and the Pi’s through linearlized Taylor Series expansions, where 𝜎𝑃1, 𝜎𝑃3, 𝜎𝑉3 

are the single standard deviations of P1, P3, and V3, and the terms 𝜎𝑃1𝑃3, 𝜎𝑃1𝑉3, and 𝜎𝑃3𝑉3 are the 

covariances of P1 and P3, P1 and V3, and P3 and V3, respectively. 

  

(S-23)  𝜎𝑉1 =

√
  
  
  
  
  
  
  
 

(
∂V1
∂P1

𝜎𝑃1)
2

+ (
∂V1
∂P3

𝜎𝑃3)
2

+ (
∂V1
∂V3

𝜎𝑉3)
2

+

2

(

 
 

∂V1
∂P1

∂V1
∂P3

𝜎𝑃1𝑃3 +
∂V1
∂P1

∂V1
∂V3

𝜎𝑃1𝑉3 +

∂V1
∂P3

∂V1
∂V3

𝜎𝑃3𝑉3
)

 
 

 

  

As with the serial gas expansion method, covariances calculated from numerical simulations 

contributed negligible uncertainty and were ignored hereafter.   
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The partial derivatives of V1 were expressed as functions of V1 (Eq. (S-24) - (S-26)).  

  

(S-24)  
∂V1
∂P1

=
−𝑉1
𝑃1𝑍1

 

  

(S-25)  
∂V1
∂P3

=
𝑉1
𝑃3𝑍3

 

  

(S-26)  
∂V1
∂V3

=
𝑉1
𝑉3

 

  

Substituting Eq. (S-13) and Eq. (S-24) through (S-26) into Eq. (S-23), ignoring the covariance 

terms, and rearranging, gave a simplified expression for the relative uncertainty of V1 (Eq. (S-

27)). 

  

(S-27)  
𝜎𝑉1
𝑉1

= √
1

𝑍1
2 (
𝜎𝑃1
𝑃1
)
2

+
1

𝑍3
2 (
𝜎𝑃3
𝑃3
)
2

+ (
𝜎𝑚3

𝑚3
)
2

 

  

The relative uncertainty of V1 measured by the cryogenic transfer method is minimized and 

essentially constant when it is determined with pressures that fall between Pcusp and Pfull scale.  

This property results from the following.  First, the relative uncertainty of V3 (i.e., σm3/m3) may 

be taken as a constant for any given reference flask.  Second, the relative uncertainties of P1 and 

P2 are also constant for pressures between Pcusp and the CDG full scale pressure (i.e., 6.67 to 100 

Torr or 66.7 to 1000 Torr on the gauges studied here).  Finally, the CO2 compressibility factor 

changes by ≤ ca. 0.7 % from 0 to 1000 Torr (Figure S-2), rendering the squared compressibility 

factors of CO2 in Eq. (S-27) nearly constant (e.g., Z = 0.9996 to 0.9932 for P = 66.7~999.9 Torr).   

 

 
 
Figure S-2: Compressibility factors (Z) of He (black solid line), N2 (black dashed line), Dry air (gray dashed line), and CO2 
(grey solid line) from 0 to 1000 Torr at 298.15 K.  Values were calculated with B(T)’s of 12.44 cm3 mol-1, -4.3 cm3 mol-1, 
-127 cm3 mol-1 and -8.0885 cm3 mol-1 for He, N2, CO2, and dry air, respectively (Figure S-1). 
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CDG deflection volume parameterization 
 

As mentioned above, CDG diaphragm deflections increase the volume of the manometer system 

and the uncertainty of V1 determinations.  To quantify the volume changes caused by diaphragm 

deflections, we first assume that deflections in the center of the diaphragm (h) can be calculated 

by Eq. (S-28), where P is pressure, 𝜐 is the Poisson ratio, E is the Young modulus, t is the 

thickness of the diaphragm, and a is the free radius of the diaphragm (Jousten and Naef 2011). 

  

(S-28)  ℎ =
3𝑎4(1 − 𝜐2)

16𝐸𝑡3
𝑃 

  

The deflection height h is an approximately linear function of P because 𝑎, 𝜐, 𝐸, and t are nearly 

constant over the range of commonly observed pressures.  If we assume that the diaphragm 

deflects as a spherical cap, then the volume change due to the deflection can be expressed as a 

function of h (Eq. (S-29)). 

  

(S-29)  ∆𝑉 =
1

6
𝜋ℎ(3𝑎2 + ℎ2) 

  

The first derivative of ΔV with respect to h is given by Eq. (S-30). 

  

(S-30)  

𝑑∆𝑉

𝑑ℎ
=
𝜋

2
(𝑎2 + ℎ2) ≈

𝜋

2
𝑎2 

  

  

Normally, the free radius of the diaphragm is much larger than the deflection at its center from 

the zero position, hence dΔV/dh is approximately constant at 0.5πa2; in other words, ΔV is 

practically proportional to h over the range of measurable pressures, and thus directly 

proportional to P via Eq. (S-28). Since the maximum deflection volume of our chosen gauge is 

given by the manufacturer as ΔVmax = 0.03 cm3 at full scale pressure (e.g., at Pmax = 100 Torr; 

personal communication) and the minimum deflection volume ΔVmin = 0 at Pmin = 0, then ΔV at 

any measured P can be estimated via Eq. (S-31). 

  

(S-31)  ∆𝑉 ≈
Δ𝑉𝑚𝑎𝑥
𝑃𝑚𝑎𝑥

𝑃 

  

Quality control of numerical simulation results 
 

In this work, the standard deviations and relative uncertainties of V1 in all numerical simulations 

were calculated assuming the simulated results of V1 were normally distributed. This assumption 

was checked by the “normplot” command in MATLAB, which generated normal probability 

plots for arrays of our simulated data. The numerically simulated V1 measurements by serial gas 
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expansion and cryogenic transfer methods consistently fell on the normal probability line (Figure 

S-3) with minor deviations on the wings.  This indicates that uncertainties on V1 are largely 

symmetric and can be treated as single standard deviations of normally distributed data during 

subsequent manometric measurements.  

 

 
 

Figure S-3: Example normal probability plots of V1 (mean = 15 cm3) determined by numerical simulations of the (a) 

serial gas expansion and (b) cryogenic transfer methods for V2 = 5 cm3, V3 = 153.1 cm3
，T = 298.15 K, at optimized 

compression ratios and initial pressures. Light grey dashed lines represent perfectly normal distributions. 
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MATLAB Code: Numerical simulation of σV1/V1 for serial gas expansion 
method 

 
% Title: 

% Manometer calibration simulation: with corridor (V2>=0) 

 

% Subtitle: 

% A simple script to find the optimum flask size (V3) for the highest 

% precision measurements of the volume of a manometer's cold finger (V1) 

 

% Xi Lu / Steven R. Beaupre 

% Stony Brook University 

% Created: 20170927 

% Edited: 20180717 

 

% Description: 

% This program simulates measurements of pressure drops when expanding gas 

% from an unknown volume (V1, the cold finger) into a flask of known volume (V3)  

% with an intermediate corridor of known volume (V2). Those pressure drops are then 

% used to calculate the volume (V1) via Virial equation (NOT ideal gas law),  

% assuming the temperature (T), and associated virial coefficients, are constant:   

 

% P*V = n*Z*R*T, where Z ~= 1+B*(P/(R*T)), and B = 2nd virial coefficient for a chosen gas at temperature T 

 

% The program simulates many (n) serial gas expansions for a range of manometric systems, where 

% each system is defined by its cold finger, corridor, and reference flask volumes (V1, V2, V3). 

 

% P1*V1= n*R*T*(1+B*(P1/(R*T))) 

% P12*V12= n*R*T*(1+B*(P12/(R*T))) 

% P123*V123= n*R*T*(1+B*(P123/(R*T))) 

 

% where 

 

% V12 = V1 + V2 

% V123 = V1 + V2 +V3 

% V1 = cold finger volume  

% V2 = corridor volume 

% V3 = calibration flask volume 

% P1 = pressure measured inside V1 before expansion 

% P12 = pressure measured after expanding into V1 + V2 =V12 

% P123 = pressure measured after expanding into V1 + V2+ V3 = V123 

% n = the mole number of gas molecules originally kept in the cold finger (as n_mol in the script) 

% R, B= constants (R is presented as R_g in the script) 

 

% It then calculates the average and standard deviation of V1 for all n simulations and systems, 

% then searches for the values of total volume (V2 + V3) that yields the lowest relative uncertainty 

% (std dev V1 / V1) of the cold finger volume. 

% The program also simulates multiple V1 to seek the underlying trend of optimum V3/V1. 

 

% ----------------------------------------------------------------------------------------------------------------------------- ------------ 

 

% Constants: 

% % These constants can be adjusted according to the actual conditions of users 

R_g = 62363.7;   % universal gas constant (mL Torr. mol-1 K-1) 
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B = -8.0885;   % Second virial coefficients of dry air (mL*mol^-1) (at 298.15K) 

T = 298.15;   % ambient temperature (K) 

Minc = 0.1;   % increment of balance mass (g) 

Pinc = 0.01;   % increment on pressure gauge, e.g., Baratron CDG (Torr) 

ruP = 0.0015;   % relative uncertainty on pressure measurements 

dH2O = 0.9970470;  % density of water under T = 298.15K (g/mL) 

sV3 = Minc/dH2O;  % standard deviation (uncertainty) on V3 (mL) 

P1fix = 76;   % approximate (or designed) initial pressure in cold finger (Torr.) 

V1min = 1;   % minimum cold finger size investigated in this program (mL) 

V1max = 31;   % maximum cold finger size investigated in this program (mL) 

V1inc = 1;   % increment between adjacent cold finger size investigated in this program (mL) 

V2min = 0;   % minimum corridor size tested in this program (mL) 

V2max = 49;   % maximum corridor size tested in this program (mL) 

V2inc = 1;   % increment between adjacent corridor size tested in this program (mL) 

V3min = 0.1;   % minimum flask size tested in this program (mL) 

V3max = 500.1;   % maximum flask size tested in this program (mL) 

V3inc = 0.5;   % increment between adjacent flask sizes tested in this program (mL) 

n = 1000;   %number of simulations (cases) for each V1+V2+V3 combination 

 

% Vectors of manometric systems: 

V1 = (V1min:V1inc:V1max)';  % different cold finger sizes (mL) 

V2 = (V2min:V2inc:V2max)';  % different corridor sizes (mL) 

V3 = (V3min:V3inc:V3max)';   % different flask sizes (mL) 

n_mol = P1fix*V1./(R_g*T);  % estimate the mole number of gas molecules originally kept in the cold finger  

% via P1fix, V1 and ideal gas law (functions as constant in later calculations) 

 

% % preallocate vectors of exact values.   

P1 = ones(length(V1),1);  % will hold P1 calculated exactly from each n_mol and V1 via Virial equation 

sP1 = ones(length(V1),1);  % will hold standard deviation of each P1 

optV23 = ones(length(V1),1); % will hold the optimum V2+V3 for each of the various V1 

optP123 = ones(length(V1),1); % will hold the optimum P123 calculated from the optimum optCR 

 

% % Preallocate vector of values simulated with uncertainties 

V1sim = ones(n,1);     

V2sim = ones(n,1);    

V3sim = ones(n,1);    

P1sim = ones(n,1);    

P12sim=ones(n,1);    

P123sim=ones(n,1);    

 

% %  preallocate matrices of exact values  

V12 = ones(length(V2), length(V1));   % will hold the V12 calculated via V1+V2 

V123 = ones(length(V2), length(V1), length(V3));  % will hold the ideal V123 calculated via V1+V2+V3 

P12 = ones(length(V2), length(V1));   % will hold the ideal P12 calculated via Virial equation 

P123 = ones(length(V2), length(V1), length(V3));  % will hold the ideal P123 calculated via Virial equation 

sP12 = ones(length(V2), length(V1));   % will hold standard deviation of each P12 

sP123 = ones(length(V2), length(V1), length(V3));  % will hold standard deviation of each P123 

 

% % Preallocate matrices of mean values, standard deviations, and optimum values calculated from simulations with 

% % uncertainties for each combination of V1, V2, and V3 

 

mV3sim = ones(length(V2), length(V1), length(V3));  % means of simulated V3  

mP1sim = ones(length(V2), length(V1), length(V3));   % means of simulated P1  

mP12sim = ones(length(V2), length(V1), length(V3));  % means of simulated P13 

mP123sim = ones(length(V2), length(V1), length(V3));  % means of simulated P123  

mV1sim = ones(length(V2), length(V1), length(V3));  % means of calculated V1  

https://doi.org/10.1017/RDC.2019.43


Radiocarbon DOI:10.1017/RDC.2019.43  
 

S-13 

 

sV1sim = ones(length(V2), length(V1), length(V3));   % standard deviation of calculated V1 

ruV1sim = ones(length(V2), length(V1), length(V3));  % relative uncertainty of calculated V1  

 

optV2 = ones(1, length(V1), length(V3));   % optimum V2 for each of the various V1+V3 combinations 

optCR_V2 = ones(1, length(V1), length(V3));  % optimum V2/V1 for each V1+V3 combinations 

optV3 = ones(length(V2),length(V1));   % optimum V3 for each of the various V1+V2 combinations 

optCR_V3 = ones(length(V2),length(V1));   % optimum V3/V1 for each V1+V2 combinations 

 

% ----------------------------------------------------------------------------------------------------------------------------- ------------ 

 

% Simulation: 

 

% % Calculate exact values of all expansion volumes (V12 = V1 + V2,  V123 = V1 + V2 + V3) 

for i = 1 : length(V1)    

    V12(: ,i) = V1(i,1)+V2;      

    for k = 1 : length(V3)     % calculate the exact values of V123 and P123 

        V123(:, :, k) = V12+V3(k,1);  

    end  

     

    %  % Calculate P1, P12 and P123 via Virial equation, also estimate their uncertainty 

     

    P1(i, 1) = VirialGL(n_mol(i,1), V1(i,1), T, B); % calculate P1 via Virial equation (Torr) 

    tsP1 = P1(i,1)*ruP;     % calculate the uncertainty of P1 

    if tsP1 >= Pinc 

        sP1(i,1) = tsP1;  % if the uncertainty of P1 calculated by the tsP1 equation is larger than increment of the  

           % pressure gauge, the result (tsP13) represent the uncertainty of P1 measurements     

    else 

        sP1(i,1) = Pinc;  % Otherwise the increment of pressure gauge determines the uncertainty 

            % of P1 measurement 

    end 

 

    for j = 1 : length(V2)     % loop for each V1+V2 combination 

        P12(j ,i) = VirialGL(n_mol(i,1), V12(j, i), T, B); % calculate P12 via Viral equation (Torr) 

        tsP12 = P12(j,i)*ruP;     % calculate the uncertainty on P12 

        if tsP12 >= Pinc 

            sP12(j,i) = tsP12;  % if the uncertainty of P12 calculated by the tsP12 equation is larger than increment of  

               % the pressure gauge, the result (tsP12) represent the uncertainty of P12 measurements     

        else 

            sP12(j,i) = Pinc;  % Otherwise the increment of pressure gauge determines the uncertainty 

                % of P12 measurement 

        end 

         

        for k = 1 : length(V3)     % loop for each V1+V2+V3 combination 

             P123(j,i,k) = VirialGL(n_mol(i,1), V123(j,i,k), T, B); % calculate P123 via Virial equation (Torr) 

             tsP123 = P123(j,i,k)*ruP;     % calculate the uncertainty on P123 

        if tsP123 >= Pinc 

            sP123(j,i,k) = tsP123; % if the uncertainty of P123 calculated by the tsP123 equation is larger than  

% increment of the pressure gauge, the result (tsP123) represent the uncertainty 

% of P123 measurements     

        else 

            sP123(j,i,k) = Pinc;  % Otherwise the increment of pressure gauge determines the uncertainty 

                % of P123 measurement 

        end 

             

        % % The n different simulations for each case 
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            V3sim = normrnd(V3(k,1), sV3, n, 1);  % simulate variability in V3, as if each determination were  

% performed with a different measurement of the same 

% reference flask’s volume 

            P1sim = normrnd(P1(i,1), sP1(i,1), n, 1);   % simulate the P1 measurement with uncertainty  

            P12sim = normrnd(P12(j,i), sP12(j,i), n, 1);   % simulate the P12 measurement with uncertainty 

            P123sim = normrnd(P123(j,i,k), sP123(j,i,k), n, 1);  % simulate the P123 measurement with uncertainty 

 

            % Calculate mean values of simulated V3, P1, P12, and P123  

            mV3sim(j,i,k) = mean(V3sim); 

            mP1sim(j,i,k) = mean(P1sim); 

            mP12sim(j,i,k) = mean(P12sim); 

            mP123sim(j,i,k) = mean(P123sim); 

             

% Calculate V1 from simulated pressure measurements and simulated V3       

            V1sim = ((P1sim.*P12sim.*P123sim.*V3sim.*B) + 

(P12sim.*P123sim.*V3sim.*R_g.*T))./(P1sim.*(P12sim - P123sim).*R_g.*T); 

             

            mV1sim(j,i,k) = mean(V1sim);    % mean of calculated V1 

            sV1sim(j,i,k) = std(V1sim);     % standard deviation of calculated V1 

            ruV1sim(j,i,k) = sV1sim(j,i,k)/V1(i,1);   % relative uncertainty of calculated V1 

        end 

    end 

end 

 

% find optimum values 

 

% % find the minimum relative uncertainties of V1  

[minruV1sim_V2, optj] = min(ruV1sim,[],1);  % minimum relative uncertainties with respect to V2 

[minruV1sim_V3, optk] = min(ruV1sim,[],3);  % minimum relative uncertainties with respect to V3 

[minruV1sim, finoptj] = min(minruV1sim_V3,[],1);  % minimum relative uncertainties with respect to V2 and V3 

minruV1sim = minruV1sim';   % transpose minimum relative uncertainty of V1 vector for 

future calculations 

 

% % Search for values of V2 and V3 that correspond to the minimum relative uncertainties of V1 calculated above 

for i = 1 : length(V1) 

   for k = 1 : length(V3)     % find the optimum V2 

optV2(1,i,k) = V123(optj(1,i,k),i,k)-V1(i,1)-V3(k,1);   % find the matrix of optimum V2 which render the 

% most precise measurement for the given V1+V3  

% combination 

     optCR_V2(1,i,k) = optV2(1,i,k)/V1(i,1);   % find the matrix of optimum V2/V1 ratios 

    end 

     

    for j = 1 : length(V2)     % find the optimum V3 

     optV3(j,i) = V123(j,i,optk(j,i))-V1(i,1)-V2(j,1);  % find the matrix of optimum V3 which render the  

% most precise measurement for the given V1+V2  

% combination 

     optCR_V3(j,i) = optV3(j,i)/V1(i,1);   % find the matrix of optimum V3/V1 ratios 

    end 

     

        optV23(i,1)=V123(finoptj(1,i),i,optk(finoptj(1,i),i))-V1(i,1);  % find the optimum V2+V3 which render  

% the most precise measurement for each  

% given V1 

     

         optP123(i,1)=P123(finoptj(1,i),i,optk(finoptj(1,i),i));   % find the optimum P123 which render the  

% most precise measurement foreach given  

% V1 
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end 

 

 optCR = optV23./V1;     % calculate the optimum compression ratio ((V2+V3)/V1) 

 

 

% Figures 

fs = 20; % font size 

 

figure; 

subplot(1,2,1); BubblePlot(V1,optCR,minruV1sim,'k'); 

xlabel('V_1 (mL)','fontSize',fs), ylabel('Optimum (V2+V3)/V1','fontSize',fs); 

legend('Size: min. relative uncertainty of V1'); 

set(gca,'fontSize',fs) 

subplot(1,2,2); plot(V1,minruV1sim, 'k') 

xlabel('V_1 (mL)','fontSize',fs), ylabel('min. relative uncertainty of V1','fontSize',fs); 

set(gca,'fontSize',fs) 

 

% % to compare the relative uncertainty of V1 achieved over full range of tested V3 for V1 of 5, 15 and 25 mL 

minruV1sim_test_1 (:,1) = minruV1sim_V2(1,5,:); 

minruV1sim_test_2 (:,1) = minruV1sim_V2(1,15,:); 

minruV1sim_test_3 (:,1) = minruV1sim_V2(1,25,:); 

 

figure; 

subplot(1,3,1); 

scatter(V3, minruV1sim_test_1, 'k'); 

xlabel('V_3 (mL)','fontSize',fs), ylabel('min. \sigma V_1/V_1','fontSize',fs); 

set(gca,'fontSize',fs) 

subplot(1,3,2); 

scatter(V3, minruV1sim_test_2, 'k'); 

xlabel('V_3 (mL)','fontSize',fs), ylabel('min. \sigma V_1/V_1','fontSize',fs); 

set(gca,'fontSize',fs) 

subplot(1,3,3); 

scatter(V3, minruV1sim_test_3, 'k'); 

xlabel('V_3 (mL)','fontSize',fs), ylabel('min. \sigma V_1/V_1','fontSize',fs); 

set(gca,'fontSize',fs) 
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MATLAB Code: VirialGL function 
 
function P_Virial = VirialGL(n,V,T,B) 

% Description: 

% VirialGL(n,V,T, B) is a function applied to calculate non-ideal gas pressure P with the Virial equation. 

% Results are calculated based on mole number of gas molecules (n), volume occupied by the gas 

% (V), temperature of the gas (T), AND the second Virial coefficient of gas (B)   

 

% created by Xi Lu, 20180118 

% edited: 20180717 

 

% The Virial equation: 

% % P*V = n*Z*R*T 

% Z ~= 1+B*(P/(R*T)) 

% Thus, P_Virial = n*R*T/(V-(n*B)) 

 

% input units 

% n: mol 

% V: mL 

% T: K 

% B: mL mol^-1 

 

% output units: Torr 

 

% define constants 

R_g = 62363.7; % gas constant (mL Torr. mol-1 K-1) 

         

% calculation 

P_Virial = n*R_g*T/(V-(n*B)); 

https://doi.org/10.1017/RDC.2019.43

