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Notes: Italicized statements in the proofs correspond to conditions in the propositions.  refers to agent biases that follow from the group’s optimal selections of  and/or .

Proof of Proposition 1	In the third stage, a captured agent seeks to maximize . Differentiating this quantity with respect to  yields , so that . In the second stage, the solutions for  and  for a group not facing a binding rent-seeking cap follow immediately from taking the first derivatives of (1) with respect to  and . The regulatory conditions described in the main text assure that these solutions identify a unique global maximum. If the group does face a binding rent-seeking cap, the Lagrangian it maximizes is , and the Kuhn-Tucker conditions are
,

and .
The third of these equations implies that either  or . If , then  reduces to the marginal benefit of rent-seeking in (3), and  (with  the solution to (3)), in contradiction to the rent-seeking cap. Instead, , and , which is consistent with the marginal benefit of quality exceeding the marginal cost. Since , substitution into the equation for  implies that the group’s choice of  satisfies (2) at .	■
Proof of Proposition 2	(a) When the rent-seeking cap  binds,  sets  in equilibrium and 
selects      based on the first-order condition Equation (2). Differentiating (2) and rearranging yields
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The assumptions on the second derivatives with respect to  or  and  ensure that
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so  if the numerator in (SI.1) is positive. Since ,  provided that is not so negative that  .

(b) The statement is true if . Substitution and algebra yield



The numerator’s first term is negative, so if , provided that  is not so positive, nor  so great that .	■

Proof of Proposition 3	(a) If  does not bind, ’s first-order conditions are Equations (2) and (3). Differentiating these equations with respect to  and solving yields
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where  is the Hessian of (1). This Hessian is expressible in terms of other Hessians. First,



The first matrix on the right-hand side is positive definite, as is , so  is also positive definite. Also, define



which is negative semidefinite based on ’s concavity. Then , and  is negative definite. Then , so  if the numerator in (SI.3) is positive. The first term is positive, so  provided that  is not so positive, nor  so great that .
(b) To show , the first step is to derive  by differentiating (2) and (3) with respect to : 
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Then , and (SI.3) and (SI.4) can be substituted to yield



Positive definiteness of  implies that . Substituting and rearranging yields: 



which is negative. Next,  increases if , or equivalently, . The result is



The right-hand side is positive: the first term is nonnegative and the second is strictly positive due to positive definiteness of  and concavity of .	■

Proof of Proposition 4	(a) Differentiating (2) and (3) with respect to a implies



while differentiating these equations with respect to  yields
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Therefore, whenever ,  when . 
(b) The statement follows if . Then (SI.5) implies . Proposition 3(b) implies that , making the second term negative; and that , making the third term less than . Then .	■

Proof of Proposition 5	Preliminary to proving this proposition is establishing the following Lemma:
Lemma. When  continues to bind strictly, (i) increasing  and (ii) when he is more than halfway captured, decreasing  increase  and .
Proof. For (i), if  stays strictly binding, differentiating (2) with respect to  and solving yields
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which is positive since  and . Next, ’s final ideal point increases if , which by (SI.6) is equivalent to . Substituting from (SI.2) yields  based on the assumptions on  and .
For (ii), differentiating (2) with respect to  and solving yields
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For a more than halfway captured agent, , so the derivative is negative, which means that . To show that  increases, it first helps to derive from (SI.6) and (SI.7) that . This equation and  imply that . Since , the second term is negative. Also,  has been shown, so . Then the third term is less than , so .	□
Let the triple  represent a combination of the three institutional designs,  the equilibrium quality, and . (Note that  and  here may be constrained by ). Also, let  denote the solution to  when  and . Based on (4), the statement for when the condition in Proposition 2(a) always holds follows if  and  for any triple with  other than . The first condition holds because , the maximum possible. The second condition follows if . Since  always binds, the first inequality in this chain follows from (SI.7), which implies that quality is maximized when  is halfway captured; the second from the Lemma; and the third from  everywhere by assumption. At least one inequality holds strictly as long as .
	For the case when the condition in Proposition 2(a) always fails, let  denote the solution to  when  and  is not binding. The corresponding statement follows if  and  for any triple with  other than  or an equivalent triple  in which the rent-seeking cap is not binding. Again, the first condition holds because , the maximum possible. Meanwhile, the second condition follows if . The first inequality in this chain follows from Proposition 4(a), the second from Proposition 3(a), and the third from the proof of Proposition 2(a) since  by assumption. At least one inequality holds strictly as long as  is not  or an equivalent triple .	■
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