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SUPPLEMENT A
PLASMA FORMATION AND DETONATION
Formation of Indium plasma

The Indium absorption spectra have maxium in the range of ~ 400 nm – 600 nm, so that the ruby laser wavelength of  = 628 nm – 654.3 nm  is at the ~ 70 % of the absorption maximum (Dragan and Geddes, 2004). During the laser action, multi-photon ionization creates the ions and electrons in the dense material plume. The ionization enargy of Indium is Eioniz ~ 5.78 eV, while the photon energy of a ruby laser ERuby laser ~ 1.79 eV what means that 4 photons are needed to be absorbed to cause the ionization. These electrons absorb additional energy during inverse Bremsstrahlung process; they speed up in the laser filed  and collide  with neutrals  and ions. The avalanche effect takes place increasing the plume temperatures to T ≳ 10000 K and transforming the In vapor into plasma, similar to the creation of Cu plasma (Autrique et al., 2012).  

Plasma ignition and detonation- Generation of a blast wave:  A dense indium vapor/plasma plume absorbs the laser energy what drives the plasma into the unstable state.  Since the laser power density of ~ 0.5 GW/cm2 is much higher (~ 1.4 times) than the threshold for plasma breakdown of various metals, (~ 0.36 GW/cm2) (Petzolt, 1996), and even more about ~ 7 times higher than the threshold for the aluminium plasma ignition (~ 0.075 GW/cm2)(Rui et al., 2009).(16), detonation occurs with formation of a blast and a shock waves. 
Pressure generated by the plasma detonation: The shock wave has the pressure peak P(kbar), which for the confinement configuration can be estimated from the Raizer equation (Devaux et al.,1991) 
                                   P = 0.1 Sqr[/(2 + 3)]√Z √I   ,                           (A1)

where Z is the reduced shock impedance of the two materials (between metal target and water layer confinement or glass confinement), I is the flux of the laser beam (GW/cm2), and is the corrective factor. Very good agreement of experimental and simulated results is obtained for  ~ 0.20, and Z ~ 390625 (~ 3.9 x 105). In our case I ~ 0.5 GW/cm2, and assuming similar value for  and Z parameters as Devaux et al. 1991), one finds the pressure generated by the plasma detonation 

                                  P ~ 10 – 12 kbar = (1 – 1.2) GPa.                          (A2)
This value is in a good agreement with the pressure of ~ 10 and 13 kbar for metal plasma detonation found by Deveaux et al. (Deveaux et al.,1991-   diagrams in Figs. 3 and 4). It is also in agreement with the pressure of ~ 15 kbar for Pb plasma found by Suponitsky et al., 2013, and somewhat higher than the pressure found by Ionin et al., 2010. 

     The vapor/plasma plume in the microchannel is in close contact with the liquid indium surface, so that they form one and the same fluid layer. However, this fluid layer is a bilayer comprising the upper low density fluid L, and the higher density fluid , H, separated by the interface L/H. The blast shock wave  of P ~ 1- 1.2 GPa strikes this density interface.
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SUPPLEMENT B
FORMATION  AND  EXPANSION OF THE PLASMA SPHEROID IN THE AMBIENT GAS
Expansion of metal vapor/plasma in the channel

 The vapor/plasma plume which undergoes first, the perpendicular expansion and than both perpendicular and the lateral ones, has the high temperature of about T ~ 104 K. The lateral plume expansion along the microchannel strongly depends on the background gas pressure. For the atmospheric background pressure of Pbackground  of 100 Torr, the expansion velocity was found from the ICCD (Intensity field charge-coupled device) photographs of visible emission and the aluminum plasma cloud size  by Harillal et al., 2003. Their ICCD photographs indicate the initial expansion velocity of  ~ 3000 – 4000 m/s between 450 and 950 ns after the plasma formation. Then, the expansion velocity decreases and after ~ 1500 ns it is about ~ 900 – 1000 m/s. This continues to about 2000 ns (2 s) when the light emission from the vapor/plasma cloud has ended. However, for the background gas at the higher (atmospheric) pressure, the expansion velocity is lower while the plasma lifetime is extended for the few orders of magnitude. 
      A radial plasma expansion causes the compression of surrounding background gas and forms the air shell with onset of the mixing process (Ma et al, 2010). Fig.1a. The expansion and compression increases the number density in the radial direction causing minimum in the center of 3D density distribution which looks like a valley at the cross-section in the (Z,X) plane. The plasma becomes confined with inversion of the initial density profile. Fig.1b. The density of the vapor/plasma plume (light fluid) in the central region is lower than the density in the near central region [L(CR) < L(NCR)]. However, the density of the heavy fluid is the same in both regions [H (CR) = H(NCR)]. Fig.1c. Ma et al. (Ma et al., 2010) have found that the number-density of the light-fluid in the NCR is higher for about two orders of magnitude with respect to the CR. Consequently, the Atwood number is expected to vary over the spot in the (Z,X) plane (below the Gaussian power profile in the X-direction from A(CR ) ~ 1, to  A(NCR) < 1. Fig.1d. 

  
[image: image1.emf] 
Fig.1. Plasma density distribution in the (Z, X) plane after detonation and radial expansion in the X direction.

a) Cross-section of the plasma spheroid in the (Z, X) plane. Lateral compression of background gas (air) and formation of the air shell around the plasma spheroid.

b) Formation of central minimum in the plasma density distribution due to the expansion and compression of the background gas. Inversion of the initial plasma density profile. (Schematically). 

c) Expanded plasma spheroid in contact with the target surface. The Central Region (CR) below the Gaussian maximum and the Near Central Region (NCR) below the Gaussian wing. (The Peripheral region below the Gaussian tail is not shown).

d) Segment of the low-density and the high density interface (L/H) showing the CR and the NCR with the corresponding Atwood number A.
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SUPPLEMENT  C
CHARACTERISTICS  OF A SHOCK WAVE
     The blast shock wave expands first in the vertical direction and then horizontally in the microchannel becoming the oblate spheroid. Fig.2d .

-The lower part of the blast spheroide moves downward through the  background gas toward the L/H interface;

- The upper part moves upward through the background gas toward the cover plate. 

Putting the coordinate system in the center of microchannel (and the center of the spheroid) one has: the velocity of upward moving blast wave toward the cover plate is positive (Vz = V⊥+ ); the velocity of downward moving blast wave toward the L/H density interface is negative (Vz = V⊥-)  , i.e., V = V(Vx,Vy,Vz∓), with Vx = Vy.  (Fig. a). The expansion of the blast spheroide is strongly dependent on the background gas and its pressure, and strongly decrease with propagation distance (Wen et al., 2007). 

     The upward moving shock velocity can be estimated to Vinitial shock ≳ 3 000 m/s in the center of the microchannel at /2 = 60 m. The velocity decreases with the blast wave expansion in the background air to about  V⊥-shock ~ 1800 – 1900 m/s, when the shock wave strikes the density interface. This shock velocity is similar to the shock velocity of graphite plasma in air (Vshock = 1400 ms) of Ionin et al., 2010, with the shock velocity in air (1760 m/s), and the shock velocity in argon (1940 m/s)  found by Shimamura et al., 2011.

The sound velocity in indium vapor/plasma can be estimated from the diagram in Fig.4 of Ionin et al., 2010.  For the laser intensity of I ~ 0.5 GW/cm2 which corresponds to our case, one finds Csound ~ 410 - 430 m/s, what gives the Mach number of the detonation shock velocity of indium plasma in the ambient gas

      Ma⊥-shock = (V⊥shock-/Csound)  ~  4.37 – 4.68,  or  Ma ≲ 5.              (C1)

This value is in agreement with the shock velocity Ma = 5.23 in the air, and in the argon, Ma = 6.22 (Shimamura et al., 2011), with Ma ≲ 5, (Perestrige et al.,2013), and Ma = 6 found by Lee et al.,1996, for the silicon plasma plume near ignition threshold in the background gas. It is also in agreement with the interval of Ma numbers Ma ~ 2 – 8, reported by Nevmerzhitsky, 2013. 

       The downward moving shock strikes and perturbs the density interface; the light fluid (L) is accelerated impulsively into the heavy one (H) with the mismatch of temperature and pressure gradients what results with deposition of vorticity. The instabilities start with formation of spikes in the light fluid, and with formation of bubbles in the heavy fluid.

Re-shocks from the lower and higher surfaces: 

    The downward moving shock passes through the liquid indium layer and striking the target surface returns through the indium layer as re-shock. Fig.2e. Assuming that interaction with the bubbling-indium-layer causes energy dissipation for about 20 %, one finds that the re-shock velocity from heavy-to-light-fluid is reduced to V⊥+re-shock ~  900 - 950 m/s, and the Mach number to, Mare-shock = (V⊥+re-shock/ Csound) ~  1.89 – 2.1. This result is in a good agreement with Ma = 1.91 of Probyn and Thornber, 2013.
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SUPPLEMENT  D
CHARACTERISTICS OF FLUID DYNAMICS 
Estimation of the Reynolds number
     Following Sobral et al., 2000, we assume that the shock front is not decoupled from the blast wave at the time scales of few hundreds of nanoseconds. 

The shock moving downward causes the light-fluid into the heavy-fluid penetration with the velocity V⊥-~ 1800 -1900 m/s. Assuming the kinematic viscosity of light-fluid  ~ 10-6 m2/s, the linear dimension of fluid motion due to vertical perturbation, h⊥ ~ 20 - 60 m, (it is not homogeneous over the irradiated area as usually assumed, but varies), one finds the Reynolds number for the light-into-heavy fluid penetration, Re⊥-  = h⊥V⊥-/  ~ 3.6 x 104 – 1.1 x 105.  However, in some domains the vertical prominences reach h⊥ ~ 100 m, what gives the high Re number of, Re⊥- ≲ 2 x 105. (Such variation of the Re number may be caused by the variation of initial surface morphology due to m corrugation, by the rippled oscillatory shock, and by density fluctuations of the laser vapor/plasma cloud in the microchannel).  

These Re numbers are comparable with Re = 104 - 106 reported by Nevmerzhitsky, 2013, for various combinations of ligh-havy gases (air/SF6; Xe/CO2; He/SF6; Ar/Xe). – in the shock tube experiments.
     The re-shock moving upward causes heavy-to-light-fluid penetration with the velocity V⊥+~ 900 – 950 m/s. Assuming h⊥+ ~ 2 - 10 m, one finds Re⊥+ ~ 1.8 x 103 – 9.5 x 103 ~ 2 x 103 – 1 x 104. These Re⊥+ numbers are in a good agreement with the Re numbers used in simulation of RM instability for heavy-to-light- fluid acceleration, Re = 6.997 x 103 and 1.1442 x 104  of Abarzi and Hermann, 2003 .
Adiabatic expansion of vapor/plasma plume along the microchannel: 

Long-leaving vapor plasma plume
     The adiabatic expansion causes decrease of the plasma temperature from the initial T ≳ 10000 K to T ≳ 2000 K many microseconds after pulse termination when plasma is transformed into a hot vapor which expands in the atmosphere (open configuration of experiment). Radzenski et al., 1983, have found the temperature of 2100 K after 2 s from the pulse termination, while Sobral et al., 2000, have found the temperature of ~ 1.7 x 104 K after 1s; even more, the hot vapor still has the temperature of about ~ 103 K  at 100 s after pulse termination. However, in the semiconfined configuration the slower expansion causes that the long-leaving vapor plume reaches lifetime of ~ 200 - 300 s with T ~ 2000 K, keeping Indium surface in the boiling state. 
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SUPPLEMENT E

BUBBLE DYNAMICS AND TURBULENT MIXING
--The small bubbles, D  < 0.5 ( <D> ~15 -18 m) at low pressure (P = 29) oscillate in radius as volume oscillation which exists in certain interval of pressures. The volume oscillations become stronger as the ultrasonic pressure increases. (Kim and Kim, 2014). 
--The larger bubbles of D ~ 0.6 (<D> ~ 25 m) at the pressure (P ~ 29) show splitting and formation of a weak jet. The splitting of bubble in the ultrasonic filed generates liquid jet with the velocity of vj ~ 1m/s (Kim and Kim, 2014). The corresponding “water hammer” pressure, Ph ~cvj , where c is the speed of sound in the liquid material (c ~ 1650 m/s in liquid Indium),  ~ 6.9 x 103 kg/m3, reaches approximately, Ph ~ 0.011 GPa, what is. negligible. Thus, the liquid jet does not generate any damage on the solid target so that the bubble-cavity is smooth.

--The bubbles slightly below the resonant size D  ≤ 0.9  (<D> ~ 25m) at low pressure (P = 29), and the bubbles close to the resonant size, D ~ 0.9 – 1.25 (<D> ~ 25 - 35 m) at very high pressure (P = 63), show chaotic oscillation. (Kim and Kim, 2014).The chaotically oscillating bubbles as a cloud of bubbles or bubble cluster show the emission of a shock wave due to interaction of multiple bubbles. (Lauterborn and Kurz, 2010; Brujan et al., 2011). It is characterized by ejection of multiple daughter bubbles and consequent formation of multiple dents distributed randomly over the bubble interface (Kim and Kim, 2014).
The bubbles larger than the resonant size, D ≥ 1.33 (<D> 35 - 42 m) at high pressure (P = 45) exhibit strong shape oscillations.
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SUPPLEMENT F
BUBBLE COLLAPSE: PRESSURE RELEASED
For the estimation of pressure generated by the bubble collapse we relay on the results of the studies of this phenomenon under various conditions and polytropic index, . Bidjin, 1995 has studied dynamics of bubbles generated by frequency doubled Nd:YAG laser ( = 514 nm, L = 8 ns, EL = 180 mJ) in absence of the ultrasonic filed has found that bubble collapse generate the shock waves which appear as dark ring surrounding the bubble.  The collapse takes place with some delay after passing the shock wave after 184 s, (and after repetitive  delay of 217, 231, 356 and 345 s). Holzfuss, 2010, has found that bubbles in medium fluid of variable  in the ultrasonic filed of frequency  = 20; 23 kHz generate the subsonic waves, while at  = 1MHz generate the sonic/supersonic shock wave. The pressure of expanding bubble ranges between 104 – 105 Pa. The other studies,  (Vogel et al,1996), performed by the same type laser ( = 532 nm,  = 6ns) caused the bubble formation and collapse with generation of the shock wave whose velocity and pressure depend on the laser energy. Thus, for the ns laser pulse of EL = 1mJ, the vshock =3050 m/s and Ps = 2400 MPa, while for the larger energy of EL = 10 mJ, Vs = 4450 m/s and the pressure generated is almost three times larger, Ps = 7150 MPa. They also found that bubble collapse caused by short ps laser pulse (L = 30 ps, ) of EL = 1 mJ generates the shock wave with maximal velocity vs = 2750 m/s and the pressure Ps = 1700 MPa, while at the lower laser pulse energy of EL = 50 J, vs = and Ps = 1300 MPa. Many other studies, Lauretborn et al., 2010  and references cited there, have shown generation of high pressure by the bubble collapse and of the high velocity waves. Based on these observations we assume that the pressure shock by the ns pulse of duration L= 30 nsand the  wavelengthof = 630 nm, of EL = 150 mJ, generate the pressure estimated to P ≳ 1 GPa.
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SUPPLEMENT G
LINE  SOLITON SOLUTIONS OF KP EQUATION
Line soliton solution 
The KP-II equation (Tippabholta, 2005; Oikawa and Tsuji, 2006; Chakravarti and Kodama, 2008; Biondini and Kodama, 2003)
                ∂/∂x (∂u/∂t + ∂3u/∂x3 + 6u ∂u/∂x) + 3 2∂2u/∂y2 = 0 .             (G1)
has the single line-soliton solution (Oikawa and Tsuji; Biondini, 2007)   
                                u(x,y,t) = 1/2a2sech2[1/2(φ2- φ1)]   ,                        (G2)
where  

                       φm (x,y,t) = - kmx + km2y – km 3t + φm,0 ;     m = 1,2.         (G3)

and k1, and k2 are parameters. This solution may be also written in the form of a traveling wave (  )

              u(x,y,t) = U(K•r – t),  with     r = (x,y) and K = (kx,ky),       (G4)

with the  relation beteween (F3)  and (F4) (Oikawa and Tsuji; Biondini, 2007; Chakravarti and Kodama,2008) . 
                    K = (k2 –k1), k22 – k12) ;    = ½(k23 – k13).                          (G5)
To-soliton solutions of KP-II equation
Expression of the function by the power series

The two soliton solutions which correspond to the configurations in Figs.9(i,iii,v)  can also be obtained from the KP-II equation (Tippabholta, 2005; Oikawa and Tsuji, 2006; Biondini, 2007; Biondini et al., 2009) 
                 ∂/∂x (∂u/∂t + ∂3u/∂x3 + 6u ∂u/∂x) + 2∂2u/∂y2 = 0  ,               (G6)

where 2 = 3. The transformation 
                              u(x,y,t) = 2∂2/∂x2 log (x,y,t)   ,                                  (G7)

called the Hirota’s method, reduces the KP-II equation into bilinear form (Oikawa and Tsiji, 2006)  

                             ( -4DxDt + Dx4 + Dy2 ) ‧ = 0   .                                  (G8)

where Dxm , Dym and Dtm are the Hirota derivatives. The derivative Dxm  is defined as 

   Dxm Dyn‧’  =  (∂x - ∂x’)m (∂y - ∂y’)n(x,y,t)’(x’,y’,t)x’= x, y’=y  .                              

                                                                                                                (G9)

The solution u(x,y,t) is found expressing the -function in the power series (Tippabholta, 2005; Oikawa and Tsuji, 2006) 

  (x,y,t)  = 1 + Σn εn fn    ( n = 1 …∞)  ,                         (G10)

where ε is the parameter (ε << 1), and fn are the unknown functions. The functions  fn can be found by substituting (G10) into (G9). Then equating to zero the coefficients with equal powers of ε, one finds functions f1, f2,…. fn. and the -function. 

For the two-soliton solution, the -function is 


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              ϕj  =  kxj x + kyj y – j t + ϕj0      ( j = 1, 2)  ,                         (G12)

where ϕj0  isarbitraryconstant. The wavevector components  kxj , and kyj  ( kj = kxj + kyj)satisfy dispersion relation (Tippabholta, 2005; Oikawa and Tsuji, 2006) 

               - kxj j + kxj4 + 2kyj2  = 0           ( j = 1,2)  .                               (G13)

The interaction constant A12 , is (Oikawa and Tsuji, 2006) 

A12 = [3(k1- k2)2 – 2(tan 1 – tan 2)2]/[3(k1+ k2)2 – 2(tan 1 – tan 2)2],  
                                                                                                               (F14)
where  tanj  = kyj / kxj . Considering only the Y-type configuration of two-soliton solutions it is obtained by taking the specific values for the wavevectors ki and frequencies i (i =1,2,3), which satisfy the Miles  resonance condition 
                          k1 +  k2 =  k3   and   2 3.                               (G15)

Mltisoliton solutions of KP-II equation:

          The  complex configurations of line solitons can be obtained as the multisoliton solutions by using the Hirota’s transformation of the KP-II equation into bilinear form (Ong et al.2005, Tippabholta, 2005; Oikawa and Tsuji, 2006; Kodama, 2004; Chakravarti and Kodama, 2008; Biondini, et al., 2009).)  
                                    u(x,y,t) = 2∂2/∂x2 log (x,y,t)                             (G16)
The function (x,y,t) is expresed by the Wronskian determinat 
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The functions {fi}i=1N are linearly independent solutions of the linear system (Ong et al.2005, Tippabholta, 2005; Oikawa and Tsuji, 2006; Kodama, 2004; Chakravarti and Kodama, 2008; Biondini, et al., 2009; Lugomer et al, 2013.)  
          ∂fi/∂y  =  ∂2fi/∂x2  ;  ∂fi/∂t  =  ∂3fi/∂x3  ,  (i = 1 ….N).              (G18)
    The multisoliton solutions for N solitons are constructed by taking the M phases {ϕm}Mm = 1 with real phase parameters k1< k2<…. < kM .. Then, the function  fi   should be expressed as the sum of expotentials with arbitrary phases ϕm 
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The index m ranges m = 1 .. M, and km and ϕm0  are arbitrary constants. The -function may be expressed with arbitrary as (Ong et al., 2005; Tippabholta, 2005; Oikawa and Tsuji, 2006; Kodama, 2004; Chakravarti and Kodama, 2008; Biondini, et al., 2009; Biondini, 2007)  
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where Am1 …mN  is the N x N minor of the coefficient matrix A, given by columns m1 …mN , and  Vm1 …mN  is Van der Monde determinant 
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The -function (G20) is a linear combination of real exponentials, where each exponential term contains combinations of N out of M distinct phases given by ϕ(m1...mN). Any given phase combinations appears in the -function if and only if the corresponding minor A(m1..mN) is nonzero (Chakravarti and Kodama, 2008; Lugomer et al., 2013).
The -function (G20) gives the multisolution solutions which can reproduce all types of N-soliton configurations taking into account that N- ≠ N+.
Two soliton solution
      The two-soliton solution which corresponds to the configuration in Fig. 9(i) can be also obtained from function expressed by using the Wronskin method for the multisoliton solutions and the corresponding coefficiernt matrix A. In this case N - = 2, N+ = 1, and the number of independent phase parameters M = 3, so that the coefficient matrix A is  reduced to A(m1..m3) = (1 1 1), and the function fn,  (G19) is (Chakravarti and Kodama, 2008)  
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 The -function (G20) becomes 
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and describes the resonant “Y”-type soliton solution which satisfies  the Miles resonant condition (Biondini,2007; Chakravarti and Kodama, 2008; Lugomer et al, 2013). 

                     k1,2 + k2,3 = k1,3     and       1,2 + 2,3 = 1,3 .                   (G24)

N-soliton solution
     For the reconstruction of the other wave configurations in Figs. 9(iii) and (v) one can use the -function (G20) which can be writtenBiondini, odama,2004;Chakravarti and Kodama, 2008
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where 
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 is the N x N minor of the coefficient matrix A(N,M) = aij  (Kodama, 2004)
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The experssion (G25) for the -function becomes determinat of the product of two square matrices. 
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The Binet-Cauchy theorem, which states that if A and B are square matrices then det(A∙B) = det(A) ∙ det(B) , can be applied to the above expression giving the basic structure of the -function for the N-soliton solution. Then, the matrix A(N,M) has all the N x N minors nonnegative after making A(N,M) to be in the row reduced echelon form (Kodama, 2004; Lugomer et al., 2013) .
       The soliton configurations in Figs.9(iii) and (v)  can be reproduced  considering the specific case when the number of ingoing line solitons is equal to the number of outgoing ones, i.e, N - = N + ,  M = 2N, and the  coefficient matrix  A(N, M) =  A(N, 2N). The n-th line-soliton which is parametrized by a pair [kni , knj ] of distinct phase parameters with 1≤ ni < nj ≤ 2N , can be parametrized equivalently by the index pair [ni , nj ], taking into account that the ingoing solitons are labeled [ni -, nj -], and the outgoing ones [ni +, nj +](Kodama, 2004).

 Finding the asymptotic line solitons which correspond to the “infinite” waves in the wave configurations in Fig.9, the problem can be reduced to the (2,2), or (N,M) = (2,4) soliton systems, or the 2-soliton solutions. 

Following Kodama, 2004, and Chakravarti and Kodama, 2008, one can identify the pairs of asymptotic solitons and find the coefficient matrix A for the most frequent (canonical) cases of the line soliton interaction, known as ordinary (O), resonant (T), and asymmetric (P). The coefficient matrices Ao, AT and AP, for ordinary, resonant, and asymmetric solution, are (Kodama,2004; Chakravarti and Kodama, 2008; Biondini et al.,2009; Biondini, 2007; Lugomer et al., 2013)
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For these cases, the non-negative minors of the above matrices are: O-Type:  ao (1,3) , ao(1,4) , ao(2,3) , ao (2,4) ; T-type:  aT(1,2) , aT (1,3) , aT (1,4) ,  aT (1,4) , aT (2,4) ; P-type: aP(1,2) , aP (1,3) , aP (2,4) , aP (3,4).   
Expressing the -function by the minors aP and aO, the successful reproduction of the local wave configurations in Fig.9(iii) and (vi), respectively, can be obtained. 
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