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Supplement A

Transition from traveling waves to solitons and solitons into stationary patterns

    Transition from traveling waves to solitons is not well understood in dynamical systems. The transition usually occurs when the traveling waves are dominated by group velocity dispersion (rather than diffusion) and by nonlinear frequency shift (rather than nonlinear saturation). 
(a) Group velocity dispersion (GVD):  The group of waves of different frequencies excited in a medium travels with the velocity dispersion. The group velocity, Vg , which is the velocity of the envelope wave - is the velocity at which the energy in a wave-group (package) travels in a medium Vg = d/dk (Kuriakose,  and Porsezian, 2010).
However, in the group of waves each wave travels independently and undergoes a time delay per unit wavelength. The propagation time over a distance L for a given group velocity Vg is defined as  = L/Vg: If the wavelength width of the wave-group is not wide, it may be approximated that the delay difference per unit wavelength along the propagation path is given by d/d If the wavelengths of the traveling wave-group are spread over a wavelength range , the total difference  is given by  = (d/dknown aswave-group temporal broadening (Kuriakose, and Porsezian, 2010).
The spreading of traveling group of waves is caused by the Group Velocity Dispersion (GVD). Introducing the quantity βcalled the wave propagation constant, the group velocity may be expressed as; Vg = d/dβ. The propagation constant βas a function of the frequency difference ( – ) (where 0 is the average  frequency of the wave-group) - can be presented by the Taylor series expansion (Kuriakose,  and Porsezian, 2010).
)
β() = β0 + β 1( - 0) +  ½β 2( - 0)2 + ..,                 (1)

where β m = (dm β /dm); m = 1; 2; 3;... . It can be shown that

 β 2 = dβ 1/d = ½(d2β /d2)( – 0)2  ,                     (2)

	where β2 is GVD parameter. The nonlinear wave-group dispersion parameter, β 2, causes that the velocities of different waves become different which causes temporal broadening of the wave-group. Due to time spreading of the wave-group after time , the waves differing in frequency by ω develop a phase shift Φ over period of time  given by: ΦGVD = ωGVD ×  

(b) Nonlinear frequency shift (NFS) 

With frequency shifting, a constant value of  is added to the frequency of each wave so that (harmonic) relationships between the waves in the group are not preserved. The manipulation of time/frequency regions allow to shift portions of a wave-group –  instead of transposing them. With the nonlinear frequency the waves with different frequency in the wave-group, have different what make their nonlinear behavior in the frequency domain very complex.


Thenonlinear frequency shiftNFS of the waves in dynamical systems may be caused by the material frequency shift (material properties have the effect on the wave frequency shift) or by the wave kinetic shift (wave velocity distribution has the effect on the frequency shift) or both, i.e., the frequency shift occurs either in the material limit or in the kinetic limit, respectively (Liu and Dodin, 2015). Depending on nonlinearities different scalings were found. An example is the nonlinear frequency shift of electrostatic waves in nonmagnetized plasma which can be considered as a paradigmatic example of dynamic systems. In the material fluid limit, when kD is relatively small (where D = vT/P is the Debye length, and vT is the thermal speed), while the amplitude of the waves a is relatively large (although a << 1 is still assumed), such that one can drop the half-integer powers of a0. This leads to the relation NFS ∝ a2 which is called the (leading-order) fluid nonlinearity(  ).In the wave kinetic limit, when the amplitude is relatively small, whereas kD is substantial leading to the relationNFS ∝√a is called the kinetic nonlinearity (Liu, and Dodin, 2015). The nonlinear phase shift is  Φ NFS = NFS × .
(c) Transition of traveling waves into solitary waves: Balance of a group velocity dispersion and the phase shift:

Consider the traveling wave-group with the length over which GVD is effective (nonlinear phase shift length LGVD ) and the length over which NFS is effective (nonlinear frequency shift length LNFS ), which travels over a distance L. If the distance L = LGVD = LNFS  there is a balance or cancellation of these effects, because  (dispersive phase component) GVD ≃ NFS (nonlinear phase component). If β2 < 0, these effects exactly cancel each other and the traveling waves are transferred into solitary waves (Dudley et al., 20014).
(d) Transformation of soliton-like structures into solitary standing waves. 
When two solitary waves of the same frequency and amplitude, traveling through a medium with the same speed but in opposite direction superimpose on each other they give rise to a standing solitary wave. Such case occurs when the incoming solitary wave is reflected from the wall and then interferes with the original wave. The reflection from inhomogeneity has the same effect on the incoming solitary wave causing its reflection with 1800 phase shift. Their superposition causes formation of standing solitary wave pattern. Description of this process in dynamical systems is very complex, and we shall only mention the effect of inhomogeneity on soliton for 1D case described by the KdV equation (Aziz, 2011). Although in a homogeneous medium the soliton solution of the KdV equation travels with constant speed or shape, however, the weak inhomogeneities of the medium contribute to slowly varying coefficients in the KdV equation (Aziz, 2011). The KdV equation and soliton behavior in a weakly inhomogeneous medium (plasma for example) become significantly modified. The density gradients in a fluid system become the origin of an extra term in the KdV equation, but also responsible for the reflection of solitons on inhomogeneities (Aziz, 2011). 
   The reflection of solitary waves on the fluid inhomogeneities requires the condition that the group velocity vanishes (Vg = 0) at the nonzero wavenumber (Tofeldt, and Ryden, 2017). The group velocity vanishes due to the interference of two solitary waves of the same frequency, that have the same shape propagating with equal velocities but in opposite directions. In this case solitary wave is transformed into stationary soliton. The above condition indicates dependence of dispersion on the wavelength which is given by the another quantity (known as total dispersion parameter) (Kuriakose,  and Porsezian, 2010).
                                                   D= dβ 1/d .                                     (3)
In the number of systems (media) D increases as  increases and vanishes (D= 0) at some characteristic wavelength called zero dispersion wavelength,  = D. For < D; β2 > 0, and the medium is said to exhibit normal dispersion, while for  > D; β2 < 0, exhibits anomalous dispersion. (In the normal dispersion regime the high frequency components of a wave-group travel slower than the low frequency ones, while the opposite occurs in the anomalous regime). The transition of solitary waves into stationary solitons occurs with the zero group velocity dispersion (β2 = 0), and with respect to the wavelength represent the case:  ≃ D (Kuriakose, and Porsezian, 2010; Wai et al.,1989).
We assume that reflection of solitary waves from inhomogeneities of a fluid layer, in our case, coincide with the boundaries of local domains establishing stationary solitons inside them. 
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Supplement B

    Consider the solution of the generalized (2 + 1) nonlinear Kadomtsev-Petviashvili Modified Equal-Width Equation (KP-MEW) following (Wazwaz, 2005;  Adem and Khalique ,2015) 

                           (ut +(un)x + (uxxt )x+ uyy = 0 ,                                   (1)

where and n are real-valued constants. Taking n =2 the above equation includes u2x nonlinear convection term and the term uxxx that relates to the (nonlinear) dispersion effects (Adem and Khalique, 2015). This equation can be solved by the Lie group analalysis procedure.
The solution of this nonlinear equation requires complex mathematical procedure based on: (i) the Lie group analysis of the symmetry of Eq(1), (ii) finding of the optimal system of one-dimensional suabalgebras for this symmetry and of the transformed equation expressed in the invariants, (iii) Symmetry reductions and (iv) the G'/G-expansion method for the exact solution of the transformed equation. Following the Lie transformation procedure the nonlinear KP-MEW Equation can be reduced and after two successive transformations becomes partially differential equation (PDE) expressed by two invariants F and z.
      Schematic illustration of the Lie group analysis procedure
(i) Lie point symmetry group: Lie group analysis is the transformation of the original nonlinear Partial Differential Equation (PDE) on some manifold. Finding a Lie point symmetry of PDE is an invertible transformation of the dependent and independent variables that leaves the equation unchanged. The symmetry group of KP-MEW  Eq(1) is generated by the vector field (Adem and Khalique, 2015)
                             X = ξi x +  ξ2 + ξ3t + ŋu ,                  (2)

where ξi , i = 1,2,3  and ŋ depend on x,y,t , while u is the Lie point symmetry of Eq(1). At this step the prolongation action is used which allows one to explicitly compute the symmetry groups of differential equation. The prolongation is a vector function from the space of independent variables to the space whose entries represent the values of function and all its derivatives up to order n. The prolongation transforms the derivatives of the initial function into those of the prolonged function. Applying the fourth prolongation of X ( pr(4)X) to EQ(1) a system of linear PDEs is obtained. The solution of this (overdetermined) system of PDEs gives the four Lie point symmetries X1, X2 , X3 and X4. (Adem and Khalique, 2015).

(ii) One dimensional optimal system of subalgebras: By using the four Lie point symmetries X1, X2 , X3 and X4 and adjoint representations of the symmetry group of EQ(5) one can construct the optimal system of one-dimensional subalgebras for Eq(1) which is given by {aX1 + bX2 +cX3 +, dX1 + dX4}, where a, d ε ℝ, b, c = 0, ± 1. (Adem and Khalique, 2). 
(iii) Symmetry reductions: Using the above optimal system of one-dimensional subalgebras: aX1 + bX2 +cX3 ; a ε ℝ, b, c = ± 1, it is possible to reduce the nonlinear KP-MEW Eq(5) which after two successive transformations  becomes partially differential equation (PDE) expressed by two invariants F and z. (Adem and Khalique, 2015). This gives rise of the group invariant solution F = F(z) and makes possible the new transformation of the equation into the fourth-order nonlinear ordinary differential equation (ODE). Detail procedure is given in the ref (Adem and Khalique, 2015):
(a + c)2F'' + nb2Fn-1F'' – b2F'' + anb2(n – 1)Fn-2F'2 – b2F''' = 0.       (3)
The Eq(3) represents the transformation of the complex starting (KP-MEW) equation into the fourth-order nonlinear ordinary differential equation (ODE). 

(iv) Exact solutions: The exact solution of the above ODE  can be found by the (G'/G) expansion method in the form of the traveling waves (Adem  and Khalique, 2015; Wang et al., 2008; Alam and Akbar, 2013). This method is based on the assumption that the traveling wave solution of Eq(3) can be expressed by a polynomial in G'(z)/G(z) as follows (Adem  and C. M. Khalique, 2015) 
               F(z) = A0 + A1[G'(z)/G(z)] + A2 [G'(z)/G(z)]2,                            (4)              
where

A0 = (1/12b2 )•(b22A2 + 8b2A2 – 6a2 -12ca – 6c2 +6b2),

A1 =  (6)/
                                                                                                                  (5) 
A2 
This procedure gives the solution of the starting KP-MEW equation in the form of trigonometric function 
u(x,y,t) = A0 + A1[- /2 + 2 (- C1sin(2z) + C2cos(2z)) /(C1cos(2z) + C2sin(2z))] +
               + A2[- /2 + 2 (- C1sin(2z) + C2cos(2z)) / (C1cos(2z) + C2sin(2z))]                                   

                                                                                                                  (6)
where  z = t — x — ((a+ c )/b)y;  2 =(1/2)√4 – 2  ;  a = b = c = 1;  and  are constants and C1 and C2 are arbitrary constants (Adem  and Khalique, 2015).
    The principle of the (G'/G) method summarized in 5 steps is given in the Supplement C. For detail procedure see the mathematical literature (Wang et al., 2008; Adem and Khalique, 2015; Adem and Khalique, 2014; Hafez, 2016; Song and Ge, 2010; Zhong et al.,2014).
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Supplement C
Short outlines of the G’/G expansion method

 The G’/G expansion method for the solution of nonlinear evolution equation was introduced by Wang et al.,(2008).). Here we present the method in short outlines of 5 steps following  Adem and Khalique (2015), and also (Adem and Khalique , 2014: Hafez, 2016; Song and Y. Ge, 2010).
Assume we have a nonlinear partial differential equation           

                                            P(u, ux, ut, uxx, uxt, utt)  = 0 ,                          (1)

where u(x,t) is an unidentified function and P is a polynomial function in u(x,t) and its partial derivatives. The nonlinear term of the highest order and the highest order linear terms exist and subscripts indicate partial derivatives.
Step 1.  By taking u(x,t) = U(ξ) , ξ = x – Vt we look for traveling wave  solutions of Eq(1), and transform it to the ordinary differential equation
                                                    Q(U,U’,U’’…) = 0 ,                              (2)

where primes indicate derivation with respect to ξ.

Step 2. Integrating Eq(2), term by term one or more times yields constant(s) of integration., which, however, can be set to zero for simplicity.

Step 3. Suppose the solution U(ξ) of Eq(2)  can be expressed as a finite series in an extended symmetric form (Adem and Khalique, 2015)
                                   U(ξ)  = ΣMi = 1 Ai [G’(ξ) / G(ξ)]i ,                            (3)

where  Ai (I = 0, 1, 2…..M) are real constants to be determined, M is positive integer to be determined, and the function G(ξ) is the general solution of the auxiliary second order linear ordinary differential equation (ODE)( Adem and Khalique, 2015)
                                   G’’(ξ) +  G’(ξ) +  G(ξ) = 0 ,                              (4)

where  and  are real constants to be determined. The solutions of (4) are
(Jafari et al., 2013).

 G'/G = Sqr(4–2)/2·[(c1cos Sqr((4 –2)/2)ξ – c2sin Sqr((4 –2)/2) ξ)/
             /(c2cos Sqr((4 –2)/2)ξ + c1sin Sqr((4 –2)/2)ξ)]− /2  ,     (5)

for  2 – 4 < 0 . The solution U(ξ) can be determined explicitly by using the following steps (Adem and Khalique, 2015; Jafari et al., 2013):

Step 4.  The Homogeneous Balance Method (HBM) of the highest order nonlinear terms with the linear term(s) of the highest order in Eq(2), is used to determine M. The  Homogeneous Balance  Method (HBM) between the highest order derivative and highest order nonlinear term in the Eq(5) is used to determine M and A0 .....AM. (Adem and KHalique, 2015). 

Step 5. Get an algebraic equation involving powers of (G’/G) by substituting (3) together with (4) into Eq(2). Next, equating the coefficients of each power of  (G’/G)   to zero, obtain a system of algebraic equations for 
Ai , ,  and V. Then, to determine these constants, solve the system with the aid of computer algebra system. Based on the fact that the solutions of Eq(4) are known (5) and depend  on the sign of the discriminant one can find theexact solutions, u(ξ) of the Eq(1).(Zhu, 2010).
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Supplement D

Kinematic dispersion

For the Domain B we assume that the surface morphology of the target affects the flow of the fluid parcels of the molten layer that travel the same distance by different pathways, by different velocities, in different times. Modeling such flow, Saco and Kumar (2002) introduced  the spatially variable velocities and hydrodynamic diffusivities which give rise not only to hydrodynamic and morphological components of dispersion but also to an additional term, called kinematic dispersion. (Their linear model which includes spatially variable velocities and dispersion coefficients was latter on extended into the nonlinear model by Snell et al ( 2004)). 

The mean fluid velocity <c> in the basin (Domain) can be obtained from the mean travel time and from the mean path length in the basin (Saco and Kumar, 2002)
                                           <c> = E∣L∣ / E∣T∣,

where E∣L∣ is the mean travel distance for a fluid parcel, while E∣T∣ is the mean travel time. A diffusion coefficient of total dispersion is associated with the mean velocity through the relationship

                                 <D> = <c>3 Var∣T∣ / E∣L∣,

where Var∣T∣ is the variance of the travel time distribution (Snell et al., Adv. Water Resources, 27 (2004), 141-154); Saco and Kumar, Water Resources Res., 38 (2002), (26-1 -26 -13). The total dispersion arises from the contribution of three components: linear hydrodynamic (DLH),  morphologic (DM) and kinematic (DK) dispersion

                                     <D> = DK + DLH + DM  .
The morphologic dispersion DM is defined  

                                   DM = <c> Var∣L∣ / 2 E∣L∣  .

The contribution to total dispersion <D>  from kinematic dispersion overcomes the contribution of other two components. One can define the nondimensional kinematic dispersion (Snell et al., Adv. Water Resources, 27 (2004), 141-154)
                                   DK+ = DK / DM  ≡ 
which has two components, 1 and 2 as the coefficients of nondimensional kinematic dispersion for the x- and y- directions, respectively. 
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