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1 Supplementary proofs

This document contains the proofs of Theorems 1, 2, 6, and 7 of ”Consistent and Conservative
Model Selection with the adaptive Lasso in Stationary and Nonstationary Autoregressions”.
Please consult the main paper for notation.

Proof of Theorem 1. For the proof of this theorem we will need the following results which
can be found in e.g. Hamilton (1994), Chapter 17.

S−1
T X ′TXTS

−1
T →̃

(
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(1−
∑p
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∗
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∫ 1
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0 Σ

)
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T X ′T ε→̃

(
σ2

(1−
∑p
j=1 βj)

∫ 1

0
WrdWr

Z

)
=: B. (2)

We shall also make use of the fact that the least squares estimator, (ρ̂I , β̂
′
I), of (ρ∗, β∗′) in

(1) of the main paper satisfies that
∥∥∥ST [(ρ̂I , β̂′I)′ − (ρ∗, β∗′)′]∥∥∥

`2
∈ Op(1)

The idea of the proof is as in the proof of Theorem 2 in Zou (2006). Alternatively,
one could follow the route of Wang and Leng (2008), which is very different from the one
here. First, let u = (u1, u

′
2)
′ where u1 is a scalar and u2 a p × 1 vector. Set ρ = u1/T and

βj = β∗j + u2j/
√
T which implies that (2) in the main paper as a function of u can be written

as

ΨT (u) =

∥∥∥∥∥∆y − u1

T
y−1 −

p∑
j=1

(
β∗j +

u2j√
T

)
∆y−j

∥∥∥∥∥
2

`2

+ λTw
γ1
1

∣∣∣∣u1

T

∣∣∣∣+ λT

p∑
j=1

wγ22j

∣∣∣∣β∗j +
u2j√
T

∣∣∣∣ .
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Let û = (û1, û
′
2)
′ = arg min ΨT (u) and notice that û1 = T ρ̂ and û2j =

√
T (β̂j − β∗j ) for

j = 1, ..., p. Define

VT (u) = ΨT (u)−ΨT (0)

= u′S−1
T X ′TXTS

−1
T u− 2u′S−1

T X ′T ε+ λTw
γ1
1

∣∣∣∣u1

T

∣∣∣∣+ λT

p∑
j=1

wγ22j

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)
.

Consider the first two terms in the above display. It follows from (1) and (2) that

u′S−1
T X ′TXTS

−1
T u− 2u′S−1

T X ′T ε→̃u′Au− 2u′B (3)

for all u ∈ Rp+1. Furthermore,

λTw
γ1
1

∣∣∣∣u1

T

∣∣∣∣ = λT
1

|ρ̂I |γ1

∣∣∣∣u1

T

∣∣∣∣ = |u1|
λT
T 1−γ1

1

|T ρ̂I |γ1
→

{
∞ in probability if u1 6= 0

0 in probability if u1 = 0
(4)

since T ρ̂I is tight. Also, if β∗j 6= 0

λTw
γ2
2j

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)

= λT

∣∣∣∣ 1

β̂I,j

∣∣∣∣γ2 u2j√
T

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)
/
( u2j√

T

)
=

λT
T 1/2

∣∣∣∣ 1

β̂I,j

∣∣∣∣γ2 u2j

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)
/
( u2j√

T

)
→ 0 in probability (5)

since (i): λT/T
1/2 → 0, (ii):

∣∣1/β̂I,j∣∣γ2 → ∣∣1/β∗j ∣∣γ2 <∞ in probability and

(iii): u2j

(∣∣∣β∗j +
u2j√
T

∣∣∣−∣∣∣β∗j ∣∣∣) /( u2j√T )→ u2jsign(β∗j ).

Finally, if β∗j = 0,

λTw
γ2
2j

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)

=
λT
T 1/2

∣∣∣∣ 1

β̂I,j

∣∣∣∣γ2∣∣u2j

∣∣ =
λT

T 1/2−γ2/2

∣∣∣∣∣ 1√
T β̂I,j

∣∣∣∣∣
γ2∣∣u2j

∣∣
→

{
∞ in probability if u2j 6= 0

0 in probability if u2j = 0
(6)

since (i): λT
T 1/2−γ2/2 →∞ and (ii):

√
T β̂I,j is tight.

Putting together (3)-(6) one concludes:

VT (u)→̃Ψ(u) =

{
u′Au− 2u′B if u1 = 0 and u2j = 0 for all j ∈ Ac

∞ if u1 6= 0 or u2j 6= 0 for some j ∈ Ac

Since VT (u) is convex and Ψ(u) has a unique minimum it follows from Knight (1999) that
arg minVT (u)→̃ arg min Ψ(u). Hence,

û1→̃δ0 (7)

û2Ac→̃δ|A
c|

0 (8)

û2A→̃N(0, σ2[ΣA]−1) (9)
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where δ0 is the Dirac measure at 0 and |Ac| is the cardinality of Ac (hence, δ
|Ac|
0 is the

|Ac|-dimensional Dirac measure at 0). Notice that (7) and (8) imply that û1 → 0 in probability
and û2Ac → 0 in probability. An equivalent formulation of (7)-(9) is

T ρ̂→̃δ0 (10)
√
T (β̂Ac − β∗Ac)→̃δ

|Ac|
0 (11)

√
T (β̂A − β∗A)→̃N(0, σ2[ΣA]−1) (12)

(10)-(12) yield the consistency part of the theorem at the rate of T for ρ̂ and
√
T for β̂.

Notice that this also implies that no β̂j, j ∈ A will be set equal to 0 since for all j ∈ A, β̂j
converges in probability to β∗j 6= 0. (12) also yields the oracle efficient asymptotic distribution

for β̂A, i.e. part (3) of the theorem. It remains to show part (2) of the theorem; P (ρ̂ = 0)→ 1
and P (β̂T,Ac = 0)→ 1.

First, assume ρ̂ 6= 0. Then the first order conditions for a minimum read:

2y′−1

(
∆y −XT (ρ̂, β̂′)′

)
+ λTw

γ1
1 sign(ρ̂) = 0

which is equivalent to

2y′−1

(
∆y −XT (ρ̂, β̂′)′

)
T

+
λTw

γ1
1 sign(ρ̂)

T
= 0

Consider first the second term:∣∣∣∣λTwγ11 sign(ρ̂)

T

∣∣∣∣ =
λT
T 1−γ1

1

|T ρ̂I |γ1
→∞ in probability

since T ρ̂I is tight. For the first term one has:

2y′−1

(
∆y −XT (ρ̂, β̂′)′

)
T

=
2y′−1

(
ε−XTS

−1
T ST [ρ̂, β̂′ − β∗′]′

)
T

=
2y′−1ε

T
−

2y′−1XTS
−1
T ST [ρ̂, β̂′ − β∗′]′

T

By (2),
y′−1ε

T
→̃ σ2

1−
∑p
j=1 β

∗
j

∫ 1

0
WrdWr. Furthermore,

y′−1XTS
−1
T

T
→̃
((

σ
1−

∑p
j=1 β

∗
j

)2 ∫ 1

0
W 2
r dr, 0, ..., 0

)
by (1). Hence,

y′−1ε

T
and

y′−1XTS
−1
T

T
are tight. We also know that ST [ρ̂, β̂′ − β∗′]′ converges

weakly by (10)-(12) which implies it is tight as well. Taken together,
2y′−1(∆y−XT (ρ̂,β̂′)′)

T
is tight

and so

P (ρ̂ 6= 0) ≤ P

(
2y′−1

(
∆y −XT (ρ̂, β̂′)′

)
T

+
λTw

γ1
1 sign(ρ̂)

T
= 0

)
→ 0
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Next, assume β̂j 6= 0 for j ∈ Ac. From the first order conditions

∆y′−j(∆y −XT (ρ̂, β̂′)′) + λTw
γ2
2j sign(β̂j) = 0

or equivalently,

2∆y′−j

(
∆y −XT (ρ̂, β̂′)′

)
T 1/2

+
λTw

γ2
2j sign(β̂j)

T 1/2
= 0

First, consider the second term∣∣∣∣∣λTw
γ2
2j sign(β̂j)

T 1/2

∣∣∣∣∣ =
λTw

γ2
2j

T 1/2
=

λT

T 1/2−γ2/2 |T 1/2β̂I,j|
γ2 →∞

since
√
T β̂I,j is tight. Regarding the first term,

2∆y′−j

(
∆y −XT (ρ̂, β̂′)′

)
T 1/2

=
2∆y′−j

(
ε−XTS

−1
T ST [ρ̂, β̂′ − β∗′]′

)
T 1/2

=
2∆y′−jε

T 1/2
−

2∆y′−jXTS
−1
T ST [ρ̂, β̂′ − β∗′]′

T 1/2

By (2)
∆y′−jε

T 1/2 →̃N(0, σ2Σj) where in accordance with previous notation Σj is the jth

diagonal element of Σ.
∆y′−jXTS

−1
T

T 1/2 →̃(0,Σ(j,1), ...,Σ(j,p)) by (1). Hence,
∆y′−jε

T 1/2 and
∆y′−jXTS

−1
T

T 1/2

are tight. The same is the case for ST [ρ̂, β̂′ − β∗′] since it converges weakly by (10)-(12).

Taken together,
2∆y′−j(∆y−XT (ρ̂,β̂′)′)

T 1/2 is tight and so

P (β̂j 6= 0) ≤ P

(
2∆y′−j

(
∆y −XT (ρ̂, β̂′)′

)
T 1/2

+
λTw

γ2
2j sign(β̂j)

T 1/2
= 0

)
→ 0

We next turn to proving part b). The proof runs along the same lines as the proof part a).
For the proof we will need (13) and (14) below which can be found in e.g. Hamilton (1994),
Chapter 8. Notice that by definition of xt = (yt−1, z

′
t)
′ the lower right hand (p× p) block of

Q is Σ.
We shall make use of the following limit results:

1

T
X ′TXT

p→ Q (13)

1√
T
X ′T ε→̃Np+1(0, σ2Q) =: B̃ (14)

where the definition of B̃ means that B̃ is a random vector distributed as Np+1(0, σ
2Q)

We shall also make use of the fact that the least squares estimator is
√
T consistent under

stationarity, i.e.
∥∥∥√T [(ρ̂I , β̂′I)′ − (ρ∗, β∗′)′]∥∥∥

`2
∈ Op(1)
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First, let u = (u1, u
′
2)
′ where u1 is a scalar and u2 a p × 1 vector. Set ρ = ρ∗ + u1/

√
T

and βj = β∗j + u2j/
√
T and

ΨT (u) =

∥∥∥∥∥∆y −
(
ρ∗ +

u1√
T

)
y−1 −

p∑
j=1

(
β∗j +

u2j√
T

)
∆y−j

∥∥∥∥∥
2

`2

+ λTw
γ1
1

∣∣∣∣ρ∗ +
u1√
T

∣∣∣∣+ λT

p∑
j=1

wγ22j

∣∣∣∣β∗j +
u2j√
T

∣∣∣∣
Let û = (û1, û

′
2)′ = arg min ΨT (u) and notice that û1 =

√
T (ρ̂−ρ∗) and û2j =

√
T (β̂j−β∗j )

for j = 1, ..., p. Define

ṼT (u) = ΨT (u)−ΨT (0)

=
1

T
u′X ′TXTu− 2

1√
T
u′X ′T ε+ λTw

γ1
1

(∣∣∣∣ρ∗ +
u1√
T

∣∣∣∣−|ρ∗|
)

+ λT

p∑
j=1

wγ22j

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)

Consider the first two terms in the above display. It follows from (13) and (14) that

1

T
u′X ′TXTu− 2

1√
T
u′X ′T ε→̃u′Qu− 2u′B̃ (15)

for all u ∈ Rp+1. Furthermore, since ρ∗ 6= 0

λTw
γ1
1

(∣∣∣∣ρ∗ +
u1√
T

∣∣∣∣−|ρ∗|
)

= λT

∣∣∣∣ 1

ρ̂I

∣∣∣∣γ1 u1√
T

(∣∣∣∣ρ∗ +
u1√
T

∣∣∣∣−|ρ∗|
)
/
( u1√

T

)
=

λT
T 1/2

∣∣∣∣ 1

ρ̂I

∣∣∣∣γ1 u1

(∣∣∣∣ρ∗ +
u1√
T

∣∣∣∣−|ρ∗|
)
/
( u1√

T

)
→ 0 in probability (16)

since (i): λT/T
1/2 → 0, (ii):

∣∣1/ρ̂I∣∣γ1 → ∣∣1/ρ∗∣∣γ1 <∞ in probability and

(iii): u1

(∣∣∣ρ∗ + u1√
T

∣∣∣−|ρ∗|) /( u1√
T

)
→ u1sign(ρ∗).

Similarly, if β∗j 6= 0

λTw
γ2
2j

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)

= λT

∣∣∣∣ 1

β̂I,j

∣∣∣∣γ2 u2j√
T

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)
/
( u2j√

T

)
=

λT
T 1/2

∣∣∣∣ 1

β̂I,j

∣∣∣∣γ2 u2j

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)
/
( u2j√

T

)
→ 0 in probability (17)

since (i): λT/T
1/2 → 0, (ii):

∣∣1/β̂I,j∣∣γ2 → ∣∣1/β∗j ∣∣γ2 <∞ in probability and

(iii): u2j

(∣∣∣β∗j +
u2j√
T

∣∣∣−∣∣∣β∗j ∣∣∣) /( u2j√T )→ u2jsign(β∗j ).
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Finally, if β∗j = 0,

λTw
γ2
2j

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)

=
λT
T 1/2

∣∣∣∣ 1

β̂I,j

∣∣∣∣γ2∣∣u2j

∣∣ =
λT

T 1/2−γ2/2

∣∣∣∣∣ 1√
T β̂I,j

∣∣∣∣∣
γ2∣∣u2j

∣∣
→

{
∞ in probability if u2j 6= 0

0 in probability if u2j = 0
(18)

since (i): λT
T 1/2−γ2/2 →∞ and (ii)

√
T β̂I,j is tight.

Putting (15)-(18) together one concludes:

ṼT (u)→̃Ψ(u) =

{
u′Qu− 2u′B̃ if u2j = 0 for all j ∈ Ac

∞ if u2j 6= 0 for some j ∈ Ac

Since ṼT (u) is convex and Ψ(u) has a unique minimum it follows from Knight (1999) that
arg min ṼT (u)→̃ arg min Ψ(u). Hence,

(û1, û
′
2A)′→̃N

(
0, σ2[QB]−1

)
(19)

û2Ac→̃δ|A
c|

0 (20)

where δ0 is the Dirac measure at 0 and |Ac| is the cardinality of Ac (hence, δ
|Ac|
0 is the

|Ac|-dimensional Dirac measure at 0). Notice that (20) implies that û2Ac → 0 in probability.
An equivalent formulation of (19) and (20) is( √

T (ρ̂− ρ∗)√
T (β̂A − β∗A)

)
→̃N

(
0, σ2[QB]−1

)
(21)

√
T (β̂Ac − β∗Ac)→̃δ

|Ac|
0 (22)

(21) and (22) establish the consistency part of the theorem at the oracle rate of
√
T . Note

that this also implies that for no j ∈ A will β̂j be set equal to 0 since for each j ∈ A, β̂j
converges in probability to β∗j 6= 0. The same is true for ρ̂. (21) also yields the oracle efficient
asymptotic distribution, i.e. part (3) of the theorem. It remains to show part (2) of the
theorem; P (β̂Ac = 0)→ 1.

Assume β̂j 6= 0 for j ∈ Ac. From the first order conditions

2∆y′−j(∆y −XT (ρ̂, β̂′)′) + λTw
γ2
2j sign(β̂j) = 0

or equivalently,

2∆y′−j

(
∆y −XT (ρ̂, β̂′)′

)
T 1/2

+
λTw

γ2
2j sign(β̂j)

T 1/2
= 0

First, consider the second term∣∣∣∣∣λTw
γ2
2j sign(β̂j)

T 1/2

∣∣∣∣∣ =
λTw

γ2
2j

T 1/2
=

λT

T 1/2−γ2/2 |T 1/2β̂I,j|
γ2 →∞
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since
√
T β̂I,j is tight. Regarding the first term,

2∆y′−j

(
∆y −XT (ρ̂, β̂′)′

)
T 1/2

=
2∆y′−j

(
ε−XT [ρ̂− ρ∗, β̂′ − β∗′]′

)
T 1/2

=
2∆y′−jε

T 1/2
−

2∆y′−jXT

√
T [ρ̂− ρ∗, β̂′ − β∗′]′

T

By (14),
∆y′−jε

T 1/2 →̃N(0, σ2Q(j+1)) where in accordance with previous notation Q(j+1) is the

(j+ 1)th diagonal element of Q.
∆y′−jXT

T

p→ (Q(j+1,1), ..., Q(j+1,p+1)) by (13). Hence,
∆y′−jε

T 1/2 and
∆y′−jXT

T
are tight. The same is the case for

√
T [ρ̂− ρ∗, β̂′ − β∗′] since it converges weakly by

(21)-(22). Hence,

P (β̂j 6= 0) ≤ P

(
2∆y′−j

(
∆y −XT (ρ̂, β̂′)′

)
T 1/2

+
λTw

γ2
2j sign(β̂j)

T 1/2
= 0

)
→ 0

Proof. Denote by η̂λ = (ρ̂λ, β̂
′
λ)′ the adaptive Lasso estimator of η∗ = (ρ∗, β∗′)′ for the tuning

parameter λ. Let ε̂λ = ∆y − XT η̂λ be the corresponding vector of error terms, and set
Âλ = {j : β̂λ,j 6= 0} and B̂λ = {j : η̂λ,j 6= 0}. BICλ is the value of the information criterion
for the adaptive Lasso with tuning parameter λ. For any S ⊆ {1, ..., p+ 1}, XT,S denotes the

matrix which has picked out all columns of XT indexed by S 1. Define ε̂S,LS = ∆y−XT,S β̂S,LS
to be the vector of error terms from a least squares regression only involving the columns of
XT indexed by S. For any symmetric matrix A, let φmin(A) denote its smallest eigenvalue
and let. Let {λT} be a sequence satisfying the assumptions of Theorem 1.

a) Non-stationary case, ρ∗ = 0. Thus, B = A+ 1.
Case 1: relevant variable left out, i.e. λ is such that B̂λ 6⊇ B (or, equivalently, as ρ∗ = 0,
Âλ 6⊇ A). First, note that

ε̂′λT ε̂λT
T

=

∥∥∆y −XT η̂λT
∥∥2

`2

T

=
ε′ε

T
+

1

T

(
η̂λT − η∗

)′
STS

−1
T X ′TXTS

−1
T ST

(
η̂λT − η∗

)
− 2

1

T
ε′XTS

−1
T ST

(
η̂λT − η∗

)
= σ2 + op(1) (23)

since STS
−1
T X ′TXTS

−1
T = Op(1) by (1) and ε′XTS

−1
T = Op(1) by (2). Furthermore, we used

ST
(
η̂λT − η∗

)
= Op(1) by Theorem 1. Therefore, because |B̂λ| ≤ p+ 1,

BICλT := log

(
ε̂′λT ε̂λT
T

)
+ |B̂λT |

log(T )

T
= log(σ2) + op(1) (24)

1This is not in conflict with the notation introduced in the main paper, as we have only indexed square
matrices by sets so far.
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Next, note that for any non-random set S 6⊇ B

η̂S,LS =
(
X ′T,SXT,S

)−1
X ′T,S∆y = η∗S +

(
X ′T,SXT,S

)−1
X ′T,SXT,Scη

∗
Sc +

(
X ′T,SXT,S

)−1
X ′T,Sε

such that by (1), (2), and ST,Scη
∗
Sc/
√
T = η∗Sc (since ρ∗ = 0),

ST,S
(
η̂S,LS − η∗S

)
√
T

=
(
S−1
T,SX

′
T,SXT,SS

−1
T,S
)−1

S−1
T,SX

′
T,SXT,ScS

−1
T,Sc

ST,Scη
∗
Sc√

T

+
(
S−1
T,SX

′
T,SXT,SS

−1
T,S
)−1 S

−1
T,SX

′
T,Sε√
T

→̃(AS)−1AS,Scη
∗
Sc

As there are only finitely many S 6⊇ B the convergence is actually joint over these (for
every S the converging matrix above is a continuous function of one and the same matrix
S−1
T X ′TXTS

−1
T ). Thus, for arbitrary S 6⊇ B, letting b̂(S) be the (p + 1) × 1 vector with

η̂S,LS filled into all entries indexed by S and 0 in all entries indexed by Sc, we get that

ST (b̂(S)− η∗)/
√
T→̃c(S) where c(S) is a (p+ 1)× 1 vector depending on S that has at least

one entry different from zero (at least one entry will equal one of the β∗j , j ∈ A). Furthermore,

ε̂S,LS = ∆y−XT,S η̂S,LS = ε−XT (b̂(S)− η∗). This implies, using that a finite minimum (over
S 6⊇ B) is a continuous function and Σ is positive definite,

min
S6⊇B

ε̂′S,LS ε̂S,LS

T
≥ ε′ε

T
+ min
S6⊇B

(b̂(S)− η∗)′ST√
T

S−1
T X ′TXTS

−1
T

ST (b̂(S)− η∗)√
T

− 2 max
S6⊇B

ε′XTS
−1
T

ST (b̂(S)− η∗)
T

→̃σ2 + min
S6⊇B

c(S)′Ac(S) ≥ σ2 + φmin(A) min
S6⊇B

c(S)′c(S)

≥ σ2 + φmin(Σ) min
S6⊇B

c(S)′c(S) ≥ σ2 + c

for a c > 0 since by assumption c(S) has a non-zero entry of at magnitude at least
min {|β∗j |, j ∈ A} which does not depend on S. The above display also allows us to conclude

that F (t) = P
(
σ2 + minS6⊇B c(S)′Ac(S) ≤ t

)
= 0 for all t < σ2 + c. As such t are continuity

points of F and so2

lim sup
T→∞

P

(
min
S6⊇B

ε̂′S,LS ε̂S,LS

T
≤ σ2 + c/2

)
= 0 (25)

Therefore, using that by construction ε̂′λε̂λ ≥ ε̂′B̂λ,LS
ε̂B̂λ,LS (as least squares minimizes the sum

of squared error terms), with probability tending to one

BICλ = log

(
ε̂′λε̂λ
T

)
+ |B̂λ|

log(T )

T
≥ log

( ε̂′B̂λ,LS ε̂B̂λ,LS
T

)
≥ min
S6⊇B

log

(
ε̂′S,LS ε̂S,LS

T

)
> log(σ2 + c/2) > log(σ2) (26)

2(25) also uses the following: Let UT and VT and be sequences of real random variables such that
for all T ≥ 1, UT ≥ VT . If VT →̃V and t is a continuity point of V , then lim supT→∞ P (UT ≤
t) ≤ lim supT→∞ P (VT ≤ t) = P (V ≤ t). In our case UT = minS6⊇B

ε̂′S,LS ε̂S,LS

T , VT =
ε′ε
T + minS6⊇B

(b̂(S)−η∗)′ST√
T

S−1T X ′TXTS
−1
T

ST (b̂(S)−η∗)√
T

− 2 maxS6⊇B ε
′XTS

−1
T

ST (b̂(S)−η∗)
T , and V = σ2 +

minS6⊇B c(S)′Ac(S).
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for all λ ≥ 0 : B̂λ 6⊇ B. In total, combining (24) and (26) and using that the latter is valid
uniformly over λ ≥ 0 : B̂λ 6⊇ B,

P

(
inf

λ≥0:B̂λ 6⊇B
BICλ > BICλT

)
→ 1

which implies that with probability tending to one BIC does not choose a λ for which the
adaptive Lasso leaves out a relevant variable.
Case 2: Overfitted model, i.e. λ is such that B ⊂ B̂λ (B is a proper subset of B̂λ). Let S be
any non-random set such that B ⊂ S. Then, by (1) and (2), and defining b̂(S) as previously

ε̂′λT ε̂λT − ε̂
′
S,LS ε̂S,LS =

∥∥∆y −XT η̂λT
∥∥2

`2
−
∥∥∆y −XT,S η̂S,LS

∥∥2

`2

=
(
η̂λT − η∗

)
S ′TS

−1
T X ′TXTS

−1
T ST

(
η̂λT − η∗

)
− 2ε′XTS

−1
T ST

(
η̂λT − η∗

)
−(

b̂(S)− η∗
)′
STS

−1
T X ′TXTS

−1
T ST

(
b̂(S)− η∗

)
+ 2ε′XTS

−1
T ST

(
b̂(S)− η∗

)
= Op,S(1)

where Op,S(1) indicates an Op(1) depending on S. Furthermore, we used ST
(
η̂λT − η∗

)
=

Op(1) by Theorem 1, and ST,S
(
η̂S,LS − η∗S

)
= Op(1) by the properties of the least squares

estimator in a model including all relevant variables. Therefore, as there are only finitely
many sets S which contain B, we conclude∣∣ε̂′B̂λ,LS ε̂B̂λ,LS − ε̂′λT ε̂λT ∣∣ ≤ max

S:B⊂S

∣∣ε̂′λT ε̂λT − ε̂′S,LS ε̂S,LS∣∣ = Op(1) (27)

which by (23) implies ε̂′B̂λ,LS
ε̂B̂λ,LS/T

p→ σ2. Thus, using ε̂′λε̂λ ≥ ε̂′B̂λ,LS
ε̂B̂λ,LS

T
(
BICλ −BICλT

)
= T

(
log(ε̂′λε̂λ)− log(ε̂′λT ε̂λT )

)
+
(
|B̂λ| − |B̂λT |

)
log(T )

≥ T
(
log(ε̂′B̂λ,LS ε̂B̂λ,LS)− log(ε̂′λT ε̂λT )

)
+
(
|B̂λ| − |B̂λT |

)
log(T ) (28)

First, by the mean value theorem there exists a c̃ on the line segment joining ε̂′B̂λ,LS
ε̂B̂λ,LS

and ε̂′λT ε̂λT such that

T
∣∣log(ε̂′B̂λ,LS ε̂B̂λ,LS)− log(ε̂′λT ε̂λT )

∣∣ = T

∣∣ε̂′B̂λ,LS ε̂B̂λ,LS − ε̂′λT ε̂λT ∣∣
c̃

≤

∣∣ε̂′B̂λ,LS ε̂B̂λ,LS − ε̂′λT ε̂λT ∣∣
ε̂′B̂λ,LS

ε̂B̂λ,LS/T ∧ ε̂
′
λT
ε̂λT /T

= Op(1)

by (27) and convergence in probability of the denominator to σ2 > 0. Finally,
(
|B̂λ| − |B̂λT |

)
log(T )

tends to infinity in probability as |B̂λT | = |B| with probability tending to one and |B̂λ| > |B|.
Therefore, as the above arguments are valid uniformly in λ ≥ 0 : B ⊂ B̂λ, we conclude

P

(
inf

λ≥0:B⊂B̂λ
(BICλ −BICλT ) > 0

)
= P

(
inf

λ≥0:B⊂B̂λ
T (BICλ −BICλT ) > 0

)
→ 1

which completes the proof in the non-stationary setting.
b) Next we consider the stationary setting where ρ∗ 6= 0. Thus, the non-zero entries of η∗

have indices B = {1} ∪ (A+ 1) the true active subset of {1, ..., p+ 1}.
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Case 1: relevant variable left out, i.e. λ is such that B̂λ 6⊇ B. First, note that

ε̂′λT ε̂λT
T

=

∥∥∆y −XT η̂λT
∥∥2

`2

T

=
ε′ε

T
+
(
η̂λT − η∗

)′ X ′TXT

T

(
η̂λT − η∗

)
− 2

1

T

ε′XT√
T

√
T
(
η̂λT − η∗

)
= σ2

ε + op(1) (29)

since X ′TXT/T = Op(1) by (13) and ε′XT/
√
T = Op(1) by (14). Furthermore, we used√

T
(
η̂λT − η∗

)
= Op(1) by Theorem 1. Therefore, because |B̂λ| ≤ p+ 1,

BICλT := log

(
ε̂′λT ε̂λT
T

)
+ |B̂λT |

log(T )

T
= log(σ2

ε ) + op(1) (30)

Next, note that for any non-random set S 6⊇ B

η̂S,LS =
(
X ′T,SXT,S

)−1
X ′T,S∆y = η∗S +

(
X ′T,SXT,S

)−1
X ′T,SXT,Scη

∗
Sc +

(
X ′T,SXT,S

)−1
X ′T,Sε

such that by (13) and (14)

(
η̂S,LS − η∗S

)
=

(
X ′T,SXT,S

T

)−1 X ′T,SXT,Sc

T
η∗Sc +

(
X ′T,SXT,S

T

)−1 X ′T,Sε

T

p→ (QS)−1QS,Scη
∗
Sc

Thus, for arbitrary S 6⊇ B, letting b̂(S) be the (p+1)×1 vector with η̂S,LS filled into all entries

indexed by S and 0 in all entries indexed by Sc, we get that (b̂(S)− η∗) p→ c(S) where c(S) is
a (p+1)×1 vector depending on S that has at least one entry different from zero (at least one
entry equals one of the η∗j , j ∈ B). Furthermore, ε̂S,LS = ∆y−XT,S η̂S,LS = ε−XT (b̂(S)−η∗).
This implies, using that a finite minimum (over S 6⊇ B) is a continuous function and Q is
positive definite,

min
S6⊇B

ε̂′S,LS ε̂S,LS

T
≥ ε′ε

T
+ min
S6⊇B

(b̂(S)− η∗)′X
′
TXT

T
(b̂(S)− η∗)− 2 max

S6⊇B

ε′XT

T
(b̂(S)− η∗)

p→ σ2 + min
S6⊇B

c(S)′Qc(S) ≥ σ2 + φmin(Q) min
S6⊇B

c(S)′c(S) ≥ σ2 + c

for a c > 0 since by assumption c(S) has a non-zero entry of at least min {|β∗j |, j ∈ A} ∧ |ρ∗|
which does not depend on S. Therefore, using that by construction ε̂′λε̂λ ≥ ε̂′B̂λ,LS

ε̂B̂λ,LS (as

least squares minimizes the sum of squared error terms), with probability tending to one

BICλ = log

(
ε̂′λε̂λ
T

)
+ |B̂λ|

log(T )

T
≥ log

( ε̂′B̂λ,LS ε̂B̂λ,LS
T

)
≥ min
S6⊇B

log

(
ε̂′S,LS ε̂S,LS

T

)
> log(σ2 + c/2) > log(σ2) (31)

for all λ ≥ 0 : B̂λ 6⊇ B. In total, combining (30) and (31), and using that the latter is valid
uniformly over λ ≥ 0 : B̂λ 6⊇ B,
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P

(
inf

λ≥0:B̂λ 6⊇B
BICλ > BICλT

)
→ 1

which implies that with probability tending to one BIC does not choose a λ for which the
adaptive Lasso leaves out a relevant variable.
Case 2: Overfitted model, i.e. λ is such that B ⊂ B̂λ (B is a proper subset of B̂λ), or
equivalently, A ⊂ Âλ. Let S be any non-random set such that B ⊂ S. Then, by (13) and
(14), and defining b̂(S) as previously

ε̂′λT ε̂λT − ε̂
′
S,LS ε̂S,LS =

∥∥∆y −XT η̂λT
∥∥2

`2
−
∥∥∆y −XT,S η̂S,LS

∥∥2

`2

=
(
η̂λT − η∗

)√
T
′X ′TXT

T

√
T
(
η̂λT − η∗

)
− 2

ε′XT√
T

√
T
(
η̂λT − η∗

)
−(

b̂(S)− η∗
)′√

T
X ′TXT

T

√
T
(
b̂(S)− η∗

)
+ 2

ε′XT√
T

√
T
(
b̂(S)− η∗

)
= Op,S(1)

where Op,S(1) indicates an Op(1) depending on S. Furthermore, we used
√
T
(
η̂λT − η∗

)
=

Op(1) by Theorem 1 and
√
T
(
η̂S,LS − η∗S

)
= Op(1) by the properties of the least squares

estimator in a model including all relevant variables. Therefore, as there are only finitely
many sets S which contain B, we conclude∣∣ε̂′B̂λ,LS ε̂B̂λ,LS − ε̂′λT ε̂λT ∣∣ ≤ max

S:B⊂S

∣∣ε̂′λT ε̂λT − ε̂′S,LS ε̂S,LS∣∣ = Op(1) (32)

which by (29) implies ε̂′B̂λ,LS
ε̂B̂λ,LS/T

p→ σ2. Thus, using that by construction ε̂′λε̂λ ≥
ε̂′B̂λ,LS

ε̂B̂λ,LS,

T
(
BICλ −BICλT

)
= T

(
log(ε̂′λε̂λ)− log(ε̂′λT ε̂λT )

)
+
(
|B̂λ| − |B̂λT |

)
log(T )

≥ T
(
log(ε̂′B̂λ,LS ε̂B̂λ,LS)− log(ε̂′λT ε̂λT )

)
+
(
|B̂λ| − |B̂λT |

)
log(T ) (33)

First, by the mean value theorem there exists a c̃ on the line segment joining ε̂′B̂λ,LS
ε̂B̂λ,LS

and ε̂′λT ε̂λT such that

T
∣∣log(ε̂′B̂λ,LS ε̂B̂λ,LS)− log(ε̂′λT ε̂λT )

∣∣ = T

∣∣ε̂′B̂λ,LS ε̂B̂λ,LS − ε̂′λT ε̂λT ∣∣
c̃

≤

∣∣ε̂′B̂λ,LS ε̂B̂λ,LS − ε̂′λT ε̂λT ∣∣
ε̂′B̂λ,LS

ε̂B̂λ,LS/T ∧ ε̂
′
λT
ε̂λT /T

= Op(1)

by (32) and convergence in probability of the denominator to σ2
ε > 0. Finally,

(
|B̂λ| − |B̂λT |

)
log(T )

tends to infinity in probability as |B̂λT | = |B| with probability tending to one and |B̂λ| > |B|.
Therefore, as the above arguments are valid uniformly in λ ≥ 0 : B ⊂ B̂λ, we conclude

P

(
inf

λ≥0:B⊂B̂λ
(BICλ −BICλT ) > 0

)
= P

(
inf

λ≥0:B⊂B̂λ
T (BICλ −BICλT ) > 0

)
→ 1

which completes the proof in the stationary setting.
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Proof of Theorem 6. We begin with part a). The setting is the same as in the proof of
Theorem 1a). Follow the proof of that theorem, with identical notation, until (3) with
γ1 = γ2 = 1. Next, notice that

λTw1

∣∣∣∣u1

T

∣∣∣∣ = λT
1

|ρ̂I |

∣∣∣∣u1

T

∣∣∣∣ = |u1|λT
1

|T ρ̂I |
→̃λ |u1|
|C1|

(34)

by (1) and (2) (and the form of the initial least squares estimator ρ̂I) since C1 has no
mass at 0. Furthermore, if β∗j 6= 0

λTw2j

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)

= λT

∣∣∣∣ 1

β̂I,j

∣∣∣∣ u2j√
T

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)
/
( u2j√

T

)
=

λT
T 1/2

∣∣∣∣ 1

β̂I,j

∣∣∣∣u2j

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)
/
( u2j√

T

)
→ 0 in probability (35)

since (i): λT/T
1/2 → 0, (ii):

∣∣1/β̂I,j∣∣→ ∣∣1/β∗j ∣∣ <∞ in probability and (iii):

u2j

(∣∣∣β∗j +
u2j√
T

∣∣∣−∣∣∣β∗j ∣∣∣) /( u2j√T )→ u2jsign(β∗j ). Finally, if β∗j = 0,

λTw2j

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)

=
λT
T 1/2

∣∣∣∣ 1

β̂I,j

∣∣∣∣∣∣u2j

∣∣ = λT

∣∣∣∣∣ 1√
T β̂I,j

∣∣∣∣∣∣∣u2j

∣∣ →̃λ |u2j|
|C2j|

(36)

by (1) and (2) (and the form of the initial least squares estimator β̂I,j) since (i): λT → λ
and (ii): C2j is 0 with probability 0 such that x 7→

∣∣1/x∣∣ is continuous almost everywhere
with respect to the limiting measure. Putting together (3) and (34)-(36) one concludes

VT (u)→̃u′Au− 2u′B + λ
|u1|
|C1|

+ λ

p∑
j=1

|u2j|
|C2j|

1{β∗j=0} := Ψ(u)

Hence, since VT (u) is convex and Ψ(u) has a unique minimum it follows from Knight
(1999) that arg minVT (u)→̃ arg min Ψ(u)

We now turn to proving part b). The setting is the same as in the proof of Theorem
1b). Follow the proof of that theorem, with identical notation, until (17) (as we now assume
λT → λ ∈ [0,∞) we clearly have λT/

√
T → 0 as required in that theorem) with γ1 = γ2 = 1.

For the case of β∗j = 0 one has

λTw2j

(∣∣∣∣β∗j +
u2j√
T

∣∣∣∣−∣∣∣β∗j ∣∣∣
)

=
λT
T 1/2

∣∣∣∣ 1

β̂I,j

∣∣∣∣∣∣u2j

∣∣ = λT

∣∣∣∣∣ 1√
T β̂I,j

∣∣∣∣∣∣∣u2j

∣∣ →̃λ |u2j|
|C̃2j|

(37)

by (13) and (14) (and the form of the initial least squares estimator β̂I,j) since (i): λT → λ,
(ii): C̃2j is 0 with probability 0 such that x 7→

∣∣1/x∣∣ is continuous almost everywhere with
respect to the limiting measure. Putting together (17)-(17) and (37) one concludes

ṼT (u)→̃u′Qu− 2u′B̃ + λ

p∑
j=1

|u2j|
|C̃2j|

1{β∗j=0} := Ψ̃(u)
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Hence, since ṼT (u) is convex and Ψ̃(u) has a unique minimum it follows from Knight (1999)
that arg min ṼT (u)→̃ arg min Ψ̃(u).

Proof of Theorem 7. a) First, consider the non-stationary setting. Just as in the proof of
part a) of Theorem 6 above we can follow the proof of Theorem 1a) and make the necessary
changes. In particular, one only has to omit w1 and w2j from (4)-(6), respectively and use
that λT/T → λ and µT/

√
T → µ to conclude part a).

b) Just as in the proof of Theorem 6b) above we can follow the proof of Theorem 1b) and
make the necessary changes. In particular, one only has to omit w1 and w2j from (16)-(18),
respectively, use that ρ∗ ∈ (−2, 0) (by stationarity of yt), λT/T → λ and µT/

√
T → µ to

conclude part b).
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