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S.1 Proof of Identification (Theorem 2.1)

Proof of Theorem 2.1. Let Q(f, )\, f) = E(HY _B.X — Af'||§’A0,f0,w), where 8 €
RE, N € RV*E and f € RT*E, We have
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In the last step we used Assumption ID(i7). Because E [Tr (e'e)

Y fo,w] is independent of

B, A, f, we find minimizing Q(5, A, f) is equivalent to minimizing Q*(3, A, f). We decompose
Q*(B, A, f) as follows

Q" (8. f)
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(Y = Af = (8= 8% X) Moysoy (A" = A = (8= 8- X)] A0, %, w}
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= B {0 (8" = 5) ) Mo (5 = 52) - Xi)| X, £, 0}
Ethgh?gl\igll 2)
FE{Tr [(XF = A = (8= 8) - X) Pooy (OF" = Af = (8= 8% - X)| | 19, w},

where (™" —

given by

EQIOW(B,AJ)

BN - Xnigh = 2 pegy 1 (B — )Xo A lower bound on Q" (8M", 3) is
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thgh (ﬂhigh’ )\)
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(S.1.1)

Because Q*(3, \, f), Qe"(5"8" \), and Q'"(53, ), f), are expectations of traces of positive
semi-definite matrices we have Q*(8, \, f) > 0, Q™Meb(gM&" X) > 0, and Q'(3, \, f) > 0 for

all 3, \, f
Q*<67 A7 f)

Let 3, A and f be the parameter values that minimize Q(S, ), f), and thus also
Because Q*(8% \°, %) = 0 we have Q*(3, )\, f) = ming,; Q* (6, A, f) = 0. This

implies thgh(,@high, A) = 0 and Q"%(B, )\, f) = 0. Assumption ID(v), the lower bound (S.1.1),



and thgh(ﬁhigh, A) = 0 imply Bhigh = pOMieh  Uging this, we find

AP NF (Blow _ golow 'Xlow)/ ()\Ofo’ CAF - (BIOW _ golow) 'X10w>:| ‘)\07 o w} ’

> minE {Tr [()\Ofo' —\f - (Blow — Bolowy . X10W>/ </\0f0' —\f — (BIOW — polowy . Xlow>:| ’)\0, 12, w}
E {Tr {(Aofo’ — (B — gy Xlow)' M; (Aofo’ — (B — gy Xlow)} ]AO, e w} ,
(S.1.2)

where (BIOW — B Xjgw = 5121(51 — BN X;. Because Q% (5, A, f) = 0 and the last expression

in (S.1.2) is non-negative we must have

E {Tr {()\Ofo’ _ (Blow _ golowy Xlow)/Mx ()\OfO/ _ (Blow _ golow) 'Xlow):|

Y fo,w} =0.
Using M5 = M5 Mj5 and the cyclicality of the trace we obtain from the last equality:

Tr{M;AM;} — 0,

_ _ /
where A = E |:<)\0f0/ - (BIOW _ /80,10W) . X10W> ()\OfO/ o (Blow _ /BO,IOW) . Xlow) ‘)\0’ fo,w] _ The
trace of a positive semi-definite matrix is only equal to zero if the matrix itself is equal to zero,

so we find
M5 AM;5 =0,

This together with the fact that A itself is positive semi definite implies (note that A positive
semi-definite implies A = C'C” for some matrix C, and M5 AM; = 0 then implies M;C =0, i.e.,
C = P;C)

A= P AP,
and therefore rank(A) < rank(P5) < R. We have thus shown

rank {E {(AO FO (B — godowy . X10W> <)\0 7Y (B — ooy . X10W>/ ‘)\0, 70, w} } <R.



We furthermore find
0 p0/ plow 0,low 0 £0r 2low 0,low "1\o (0
RZTank{EK)\f _<ﬂ _ﬁ7 )'Xlow) (>\f _(ﬂ _ﬂ7 )'Xlovv) )A7f7w1}
0,00 [ Rlow 0,low 0,0 [ Rlow 0,low ! 0 (0
Zrank{MwE [(A JO = (B = )« Kiow ) Pro (XY = (B = 8™) - Xiow ) M|\, f w}}
0,00 (plow 0,low 0,00 (plow 0,low ! 0 (0
+rank PwE (Af _(6 _B7 )'Xlovv)Mfo()\f _<6 _57 )'Xlow) Pw’)\7f7w
> rank [M,\° f fOAY M,
—_ _ !
+ rank {E [((ﬁlow — polewy . Xlow) Mo ((BIOW — polew) -Xlow> ’)\0, 1o, w] } .
Assumption ID(iv) guarantees rank (M, A’ f” fOAYM,,) = rank (A\°f¥ fOA”) = R, that is, we
must have

E {((51‘” _ goowy . Xlow) Mo ((BIOW _ g0y . Xlow)/ ‘AO, 70 w] —0.

According to Assumption ID(#ii) this implies BIOW = B%°% je., we have 8 = ° This also
implies Q*(B, A, f) = [|\°f¥ — Af'||% = 0, and therefore Af' = A°f*. g

S.2 Examples of Error Distributions

The following Lemma provides examples of error distributions that satisty ||e|| = O,(y/max(N,T))
as N,T — oo. Example (i) is particularly relevant for us, because those assumptions on e;; are

imposed in Assumption 5 in the main text, i.e., under those main text assumptions we indeed
have |le|| = O,(y/max(N,T)).

Lemma S.2.1. For each of the following distributional assumptions on the errors ey, 1 =

L...,N, t=1,...,T, we have |le|| = Op(y/max(N,T)).

(i) The ey are independent across i and t, conditional on C, and satisfy E(e;|C) = 0, and
E(e}|C) is bounded uniformly by a non-random constant, uniformly over i,t and N,T.
Here C can be any conditioning sigma-field, including the empty one (corresponding to

unconditional expectations).



(ii) The ey follow different MA(co) processes for each i, namely

en= Wty fori=1.. N t=1.T, (S.2.1)
=0
where the uy, 1 =1...N, t = —o0...T are independent random variables with Eu; = 0

and Eu}, uniformly bounded across i,t and N,T. The coefficients 1, satisfy

2
Z; T max ¢ < B, Z; max [0, < B, (5.2.2)

for a finite constant B which is independent of N and T.

(iii) The error matriz e is generated as e = o'/ uX"?, where u is an N x T matriz with
independently distributed entries uy and Buy = 0, Eu?, = 1, and Euj, is bounded uniformly
across 1,t and N,T. Here o is the N x N cross-sectional covariance matrix, and . is the

T x T time-serial covariance matriz, and they satisfy

N T
P ; lo| < B, max ; Y| < B, (S.2.3)

for some finite constant B which is independent of N and T. In this example we have

Eé’itejr = OijEtT'

Proof of Lemma S.2.1, Example (i). Latala (2005) showed that for a N x T matrix e with

independent entries, conditional on C, we have

1/4
SE@EL) SEIETE] ) SR ETE] R

where ¢ is some universal constant. Because we assumed uniformly bounded 4th conditional

moments for e;; we thus have |le]| = Op(VT) +Op(V/N)+Op((TN)V*) = O,(\/max(N,T)). n

1/2 1/2

E (||e| |C) < ¢ max +

+ max
J

Example (ii). Let ¢, = (¢y;,...,¢y;) be an N x 1 vector for each j > 0. Let U_; be an
N x T sub-matrix of (u;) consisting of uy,i=1...N,t=1—j,...,T — 7. We can then write

equation (S.2.1) in matrix notation as

diag(¢j )U-;

i
I

0

J

diag(v;) U_; + ryr,

Il
.Mﬂ

<
Il
o



where we cut the sum at 7', which results in the remainder ry; = Z‘;‘;T 41 diag(wj) U_;. When
approximating an MA(oo) by a finite MA(T') process we have for the remainder

N T

E(lrarle) =3 3 E(rar)l, <233 3 w3

=1 t=1 i=1 t=1 j=T+1

where 02 is the variance of u;. Therefore, for T — oo we have

(||7“NT||F)2
E <—N > — 0,

which implies (||ry7||r)° = Op(N), and therefore ||ryr|| < [rnrllr = Op(VN).

Let V be the N x 27T matrix consisting of u;, t=1... N, t=1-T,...,T. For j =0...T
the matrices U_; are sub-matrices of V, and therefore ||[U_;|| < [|[V]|. From example (i) we know
V]| = Op(y/max(N, 2T)). Furthermore, we know || diag(¢;)| < max; (|¢;]).

Combining these results we find

lell < Z | diag ()| 1T + lIrwr

IN

Zmax []) IV + 0,(VN)

Z max W@J‘

< O,(v/max(N,T)),

L(v/max(N, 2T)) + 0,(VN)

<

as required for the proof. i

Example (iii). Because o and ¥ are positive definite, there exits a symmetric N x N matrix
¢ and a symmetric T x T matrix ¢ such that ¢ = ¢* and ¥ = 1*. The error term can then be
generated as e = ¢ut), where u is an N x T' matrix with iid entries u; such that E(u;) = 0 and

E(u?t) < 0o. Given this definition of e we immediately have Ee;; = 0 and Ee;ejr = 0;;3.. What



is left to show is |le|]| = O,(y/max(N,T)). From example (i) we know ||u| = O,(y/max(N,T)).
Using the inequality ||o]| < +v/||o]l1]|ollec = ||o]|1, where ||o||1 = ||o||« because ¢ is symmetric
we find

N
ol < ol = o, 3 fowl < £,
1=

and analogously ||X|| < L. Because ||o]| = |[¢]|> and ||X]| = |||, we thus find |le| <

[@lllullll¢ll < LO(ymax(N,T)), ie., || = Op(y/max(N,T)).

S.3 Comments on Assumption 4 on the regressors

Consistency of the LS estimator B requires the regressors not only satisfy the standard non-
collinearity condition in assumption 4(i), but also the additional conditions on high- and low-
rank regressors in assumption 4(ii). Bai (2009) considers the special cases of only high-rank
and only low-rank regressors. As low-rank regressors he considers only cross-sectional invari-
ant and time-invariant regressors, and he shows that if only these two types of regressors
are present, one can show consistency under the assumption plimy -, Wyr > 0 on the re-
gressors (instead of assumption 4), where Wy is the K x K matrix defined by Wyr gk, =
(NT)"' Tr(Myo X}, Myo Xj,). This matrix appears as the approximate Hessian in the profile
objective expansion in theorem 4.1, i.e., the condition plimy _, ., Wt > 0 is very natural in the
context of the interactive fixed effect models, and one may wonder whether also for the general
case one can replace assumption 4 with this weaker condition and still obtain consistency of
the LS estimator. Unfortunately, this is not the case, and below we present two simple counter

examples that show this.

(i) Let there only be one factor (R = 1) f° with corresponding factor loadings A}. Let there
only be one regressor (K = 1) of the form X;; = w;v; + /\? fP. Assume the N x 1 vector
w = (wy,...,wy)’, and the T' x 1 vector v = (vy,...,vy)" are such that the N x 2 matrix
A = (A\°,w) and and the T x 2 matrix F = (f°,v) satisfy plimy ;o (A’A/N) > 0, and
plimy 7., (F'F/T) > 0. In this case, we have Wyp = (NT) ™" Tr(Mo vw' Myo wv'), and

therefore plimy 7, Wy = plimy 1, oo (NT) ™" Tr(Myo vw' Myo wo') > 0. However, § is



not identified because 3°X + \°f¥ = (8 + 1) X —wv/, i.e., it is not possible to distinguish
(B, N ) = (8% A% f9) and (B, ), f) = (B° + 1, —w,v). This implies that the LS estimator
is not consistent (both (% and B° + 1 could be the true parameter, but the LS estimator

cannot be consistent for both).

(ii) Let there only be one factor (R = 1) f° with corresponding factor loadings \’. Let the N x
1 vectors X’, wy and w, be such that A = (A°, wy, w») satisfies plimy ;.. (A’A/N) > 0. Let
the T'x 1 vectors [, vy and vy be such that F = (f°, vy, vy) satisfies plimy 1, (F'F/T) >
0. Let there be four regressors (K = 4) defined by X; = wyv], Xo = wavh, X3 = (w; +
M) (va+ £0), Xy = (wa+A°)(v1 4 £°). In this case, one can easily check plimy 7, Wit >
0. However, again (3 is not identified, because Zizl BOX + A\ fY = Zizl(ﬁg + 1) X, —
(A + wy + wy)(fY + v + vy, ie., we cannot distinguish between the true parameters
and (BN, f) = (B°+ 1, =\° —w; — wy, f¥ + v + vy). Again, as a consequence the LS

estimator is not consistent in this case.

In example (ii), there are only low-rank regressors with rank(X;) = 1. One can easily check
assumption 4 is not satisfied for this example. In example (i) the regressor is a low-rank regressor
with rank(X) = 2. In our present version of assumption 4 we only consider low-rank regressors
with rank(X) = 1, but (as already noted in a footnote in the main paper) it is straightforward
to extend the assumption and the consistency proof to low-rank regressors with rank larger than
one. Independent of whether we extend the assumption or not, the regressor X of example (i)
fails to satisfy assumption 4. This justifies our formulation of assumption 4, because it shows

in general the assumption cannot be replaced by the weaker condition plimy 7, W7 > 0.

S.4 Some Matrix Algebra (including Proof of Lemma A.1)

The following statements are true for real matrices (throughout the whole paper and supplemen-
tary material we never use complex numbers anywhere). Let A be an arbitrary n x m matrix.

In addition to the operator (or spectral) norm ||A|| and to the Frobenius (or Hilbert-Schmidt)



norm ||A||g, it is also convenient to define the 1-norm, the co-norm, and the max-norm by
n m
1Al = max YAyl Al = max >[4yl [ Allwe = max max |4y .
Jj=1l.m P i=1...n = i=1..n j=1..m

Lemma S.4.1 (Some useful inequalities). Let A be an n x m matriz, B be an m X p matriz,
and C'" and D be n X n matrices. Then we have:
() JAll < [|Alp < A rank (4)'
(i) [[AB| < [[A|l]B]l
(iir)  [[AB|lp < Al 1Bl < [[Alp IBllg
(w)  [Te(AB)| < [[AllpIBllp ., forn=p,
(v) [T (C)] < |[C rank (C)
(vi) IC|I < Tr (C) for C' symmetric and C > 0,
(vii)  IAI* < (AL [[All
(viii) || Allmax < (Al < v || Allmax
(ix) |A'CA| < ||A'DA] , for C' symmetric and C' < D.
For C', D symmetric, and i =1,...,n we have:
(z) 1:(C) + pp (D) < pi(C+ D) < 11,(C) + iy (D)
(ﬂ;) ,uz(c) S :uz(C + D) ) fO’I“ D Z O?
(i) w(C)~ DIl € i(C+D) < w(C)+ D .
Proof. Here we use notation s;(A) for the ith largest singular value of a matrix A.
(i) We have [|A]| = s,(A), and [|A[|2 = S5 (5,(A))%. The inequalities follow directly from
this representation. (ii) This inequality is true for all unitarily invariant norms, see, e.g., Bhatia
(1997). (iii) can be shown as follows
|AB||5 = Tr(ABB'A’)
— TH{| B2 AA’ — A(I BT - BB) A
< IBIPTH(AA) = B |1 AJ5 |
where we used A(||B||?I — BB’)A’ is positive definite. Relation (iv) is just the Cauchy Schwarz

inequality. To show (v) we decompose C' = UDO’ (singular value decomposition), where U and

9



O are n x rank(C) that satisfy U'U = O'O =1 and D is a rank(C') x rank(C') diagonal matrix
with entries s;(C). We then have |O|| = [|[U|| =1 and ||D|| = ||C|| and therefore

'Tr(C)| = |[Tx(UDO")| = |Tx(DO'U)|
rank(C)
= Z ;DO Un;
i=1
rank(C)
< > IPIIONT] = rank(O)[C] -

i=1
For (vi) let e; be a vector that satisfies |le;|| = 1 and ||C|| = €{Ce;. Because C' is symmetric
such an e; has to exist. Now choose e;, © = 2,...,n, such that e;, ¢ = 1,...,n, becomes a
orthonormal basis of the vector space of n x 1 vectors. Because C' is positive semi definite we
then have Tr (C) = >, eiCe; > e1Cey = ||C], which is what we wanted to show. For (vii) we
refer to Golub and van Loan (1996), p.15. For (viii) let e be the vector that satisfies ||e|| = 1 and
|A'CA|| = ¢ A’C' Ae. Because A'C'A is symmetric such an e has to exist. Because C' < D we
then have ||C|| = (e/A")C(Ae) < (¢!A")D(Ae) < ||A'DA||. This is what we wanted to show. For
inequality (ix) let e; be a vector that satisfied |le;|| = 1 and ||A'C'A|| = €] A’C'Ae;. Then we have
|ACA| = eADAe; — e\ A (D — C)Ae; < efA'DAe; < ||ADA|. Statement (x) is a special
case of Weyl’s inequality, see, e.g., Bhatia (1997). The inequalities (xi) and (xii) follow directly
from (ix) because p,(D) > 0 for D > 0, and because —||D| < p;(D) < ||D|| fori=1,...,n. 1

Definition S.4.2. Let A be an n X r; matriz and B be an n X ry matriz with rank(A) = ry

and rank(B) = ry. The smallest principal angle 045 € [0,7/2] between the linear subspaces

span(A) = {Aa|a € R} and span(B) = {Bb|b € B} of R" is defined by

o) a'A'Bb
cosltan) = 02X oA TAa|[BY]

Lemma S.4.3. Let A be an n X r1 matriz and B be an n X ry matriz with rank(A) = r; and
rank(B) = ry. Then we have the following alternative characterizations of the smallest principal

angle between span(A) and span(B)

: _ M A
sin0a.n) = 0ackn | Aall
o IMaBY
0£beR2 || B

10



Proof. Because ||Mp Aal|* + ||Ps Aa|* = ||[Aa|* and sin(645)* + cos(fap)? = 1, we find

proving the theorem is equivalent to proving

cos(fap) = min —||PBAa||: min —”PABbH
MBS otackn  [[Aal|  ogber  ||Ab||

This last statement is theorem 8 in Galantai and Hegedus (2006), and the proof can be found

there. 1

Proof of Lemma A.1. Let
S(2) = min T [(Z = A) (2= )]
So(Z) = mfinTr(Z My Z') ,
Sy(7) = min TH(Z' M, 7) |

Si(Z) = min Tr(M5z Z M3 Z')
7f

>

T
S(2)= 3 w(22)
i=R+1
N
S6(Z) = Z ui(ZZ")
i=R+1
The theorem claims

We find:

(i) The non-zero eigenvalues of Z'Z and ZZ' are identical, so in the sums in S5(Z) and in

Se(Z) we are summing over identical values, which shows S5(Z) = Sg(Z).

(ii) Starting with S;(Z) and minimizing with respect to f we obtain the first-order condition

NZ=N\f.

11



(i)

Putting this into the objective function we can integrate out f, namely

Te [(Z =X (Z=Mf)] =Tr

"7 — Z'Af)

T (Z'Z — Z'ANN)HNN) )

(Z
(
(
(Z'

T (27 — ZANA) T VAN 2)

Tr Z) .

This shows S1(Z) = S5(Z). Analogously, we can integrate out A to obtain S1(Z) = Sa(2).

Let M5 be the projector on the N — R eigenspaces corresponding to the N — IR smallest
eigenvalues' of ZZ', let P; = Iy — Ms, and let wg be the R’th largest eigenvalue of ZZ'.
We then know the matrix P[ZZ' —wrly| P — M5 [ZZ'—wrly]Ms is positive semi-definite.

Thus, for an arbitrary N x R matrix A with corresponding projector M), we have

0 < Te { (P[22’ — wily|P; = M3 22" — wpln|Ms) (My — M5)*}
=Tr { (P’X[ZZ/ — wRHN]PX + MX[ZZ/ - WRHN]M’)\\) (M)\ — MX)}

=Tv[Z' My Z) — Tv [Z' M5 Z] + wg [rank(M),) — rank(M5)] ,
and because rank(M5) = N — R and rank(M,) < N — R we have
Tv [2/ M; 2] < T [Z' My 2] .

This shows M5 is the optimal choice in the minimization problem of S3(Z), i.e., the optimal
A = \ is chosen such that the span of the N-dimensional vectors A (r=1...R) equals to
the span of the R eigenvectors that correspond to the R largest eigenvalues of ZZ’. This
shows S3(7) = Se¢(Z). Analogously one can show Sy(Z) = S5(7).

In the minimization problem in S4(Z) we can choose A such that the span of the N-
dimensional vectors Xr (r = 1...Ry) is equal to the span of the R; eigenvectors that
correspond to the R; largest eigenvalues of ZZ’. In addition, we can choose fvsuch that
the span of the T-dimensional vectors ﬁ (r = 1...R,) is equal to the span of the Ry
eigenvectors that correspond to the (R; + 1)-largest up to the R-largest eigenvalue of Z'Z.
With this choice of A and fwe actually project out all the R largest eigenvalues of Z'Z

12



and ZZ'. This shows that Sy(Z) < S5(Z). (This result is actually best understood by

using the singular value decomposition of Z.)

We can write M5 Z My = 7 — Z, where
Z =P ZM;+ZP;.

Because rank(Z) < rank(P; Z M5) + rank(Z Pr) = Ry + Ry = R, we can always write
Z =\ f' for some appropriate N x R and T' x R matrices A and f. This shows that
Si(Z) = win Te(M5 2 M5 7

> min T(Z-2)(Z-2))
{Z : rank(Z)<R}

= minTr [(Z = Af) (2 = N)] = $i(2)

Thus we have shown here S1(Z) < S4(Z) < S5(Z), and this holds with equality because
S1(Z) = 95(Z) was already shown above.

S.5 Supplement to the Consistency Proof (Appendix A)

Lemma S.5.1. Under assumptions 1 and 4 there exists a constant By > 0 such that for the

matrices w and v introduced in assumption 4 we have

w' Myow — Byw' w >0, wpal,

v Mpv — Byv'v>0, wpal.

Proof. We can decompose w = w w, where w is an N x rank(w) matrix and w is a rank(w) x K
matrix. Note w has full rank, and M,, = M.

By assumption 1(i) we know A”A°/N has a probability limit, i.e., there exists some B; > 0
such that A”A\°/N < Byl wpal. Using this and assumption 4 we find for any R x 1 vector
a # 0 we have

M, X al> @AM, Na _ B

= > — 1.
A2 dN N B
IA™al

13



Applying Lemma S.4.3 we find

VW' Myowb . d\"M,\ae B
min — = = min ————F— > —, wpal.
07£b€Rrank(w) b/ 'l,U/ w b O;AaGRR CL/ )\ )\ a Bl

Therefore we find for every rank(w) x 1 vector b that b (W' Myow — (B/By)w'w )b > 0, wpal.
Thus W' Myow — (B/By)w'w > 0, wpal. Multiplying from the left with @’ and from the
right with @ we obtain w’ My w — (B/B;)w'w > 0, wpal. This is what we wanted to show.

Analogously we can show the statement for v. n

As a consequence of the this lemma we obtain some properties of the low-rank regressors

summarized in the following lemma.

Lemma S.5.2. Let the assumptions 1 and 4 be satisfied and let Xiow o = leill o X, be a linear

combination of the low-rank regressors. Then there exists some constant B > 0 such that

. HX10W70¢ Mfo Xllow,ozH
(oMY a]=1} NT Z B el
. HM)\O XIOVV:Ol Mfo Xl,ow,a MAOH
(o BRI ol=1} NT 2B el
Proof. Note ||MA0 Xiow,a Mo Xipy o M/\OH < HXIOW,O[ Myo Xioy o||, because [[Myo| = 1, ie., if

we can show the second inequality of the lemma we have also shown the first inequality.

We can write Xjoy,o = wdiag(a)v'.

Lemma S.4.1 we find

Using Lemma S.5.1 and part (v), (vi) and (ix) of

HMAO Xiowa Mpo X,

low,a

M/\OH = || Mo wdiag(a’) v" Mo v diag(a’) w' Myo||

> By ||M,o wdiag(a’) v vdiag(a’) w' Myol|

B
> ?0 Tr [M,0 wdiag(a’) v" vdiag(a’) w' M,o]
1

B
= ?0 Tr [v diag(a’) w' M,ow diag(a’) v']
1

B
> ?0 ||v diag(a) w' Myow diag(a’) v'||
1

B2
> FO ||v diag(a’) w'w diag(a’) /|
1

BZ
> ?(; Tr [v diag(a’) w'w diag(a’) v']
B2

— ?%Tr [Xlow,aXllow,a} :

14



Thus we have || Myo Xigwa Mo X/}, o Myo|| /(NT) > (Bo/K1)* o/ WY o , where the K; x K,
matrix W%y is defined by Wy, = (NT)™'Tr (X, X},), i.e., it is a submatrix of Wxr. Because
Wit and thus W converges to a positive definite matrix the lemma is proven by the inequality

above. g

Using the above lemmas we can now prove the lower bound on §](\?)T(6, f) that was used in

the consistency proof. Remember

K K l
S5, ) = o T (AO 4D (8- mm) M; (AO 4> (8- m)xk) Po,u)

k=1 k=1

We want to show under the assumptions of theorem 3.1 there exist finite positive constants ay,

ai, as, ag and ay such that

low 0,low 2
52 8, f) > aOHﬁ - B ”
NT Hﬁlow o /BO,]OW”Q + a ||ﬁlow . ﬁO,lowH + as

— a3 Hﬁhigh o ﬁO,hith —ay Hﬂhigh o ﬂO,hith H/BIOW o 60,10WH ’ Wpal

Proof of the lower bound on gj(\?)T(ﬂ, f). Applying Lemma A.1 and part (xi) of Lemma S.4.1

15



we find

K ! K
~NT(B7 f) = NlT HRt1 [(AO 7+ 2(52 - Bk)Xk> P30 ) ()\0 o+ Z(ﬁg - 5k)Xk:>]

k=1 k=1
- % PRr+1 [ <)‘0 7+ Z — Bw Uz) (AO 7+ Z — B Ul)
! K
(Ao £ 4 Z — B))wy v,) P30 ) Z (B — B,)Xm
- m=K,

+ > (8% = Ba)X,P, <>\0f0’+z -5 wm)

m;Kl .
+ Z (B?TL - ﬁm)XTInP()\O,w) Z (Bgn - /Bm)Xm]

m=K, m=K1

Vv

Ky
%“RH[(AOJCO,‘FZ Bl — b)) wl“z) <)‘0f0,+z — A wlvl)

=1

(/\OfO/JFZ - B) wl”z) Py w) Z (B = Bon) Xom

m=K1
K
+ 378 - B XL (AO P+ Z — 8w w) ]
m=K1
1 &
Z NT Hrt (AOfOIﬂLZZ; Bl = 5) wl“z) <)\0f0/+z — B wl“z)
— as Hﬂhigh o 5O,hith —ay H/@high o 5O,hith H/@low o 50,10W|| ’ Wpal,

where a3 > 0 and a4 > 0 are appropriate constants. For the last step we used part (xii) of

Lemma S.4.1 and the fact that

1 K K
NT > (B = Bu) X1 P (/\0 4> 8 = Bw Uz’) H
m=K1 =1

(s )
VNT|| \|lVNT NT|)
Our assumptions guarantee the operator norms of \° f%/v/NT and X,,/v/NT are bounded

S K Hﬁhigh _ /BO,hith mrgx + K Hﬁlow . BO,]OW” mlax

from above as N, T — oo, which results in finite constants a3 and ay.
We write the above result as gﬁ)T(ﬁ, f) > pipe(A’A)/(NT) + terms containing A™&"| where
we defined A = \° f¥ + leill(ﬂlo — B))wv). We also write A = Ay + Ay + A, with A; =

16



My APjo = My, X\ f¥ Ay = Py AMpo = 31 (8 — B) wyvf Myo, Az = Py APpo = P, A f¥ +
KB — B))wiv) Pr. We then find A’A = A} Ay + (A} + A3)(Ay + As) and
AA > AA—(a'"PAL + a0 VPAY) (0P As + a2 Ay)
= [AllAl — ((l — ]_) AéAg] + (1 — G_I)AéAQ s

where > for matrices refers to the difference being positive definite, and a is a positive number.
We choose a = 1+ (A} A1)/ (2]]A3]]?). The reason for this choice becomes clear below.

Note [A]A; — (a — 1) A A3] has at most rank R (asymptotically it has exactly rank R).
The non-zero eigenvalues of A’A are therefore given by the (at most) R non-zero eigenvalues

of [A]A; — (a — 1) A5A3] and the non-zero eigenvalues of (1 — a~')A) Ay, the largest one of the

latter being given given by the operator norm (1 — a™')||As||>. We therefore find
o et (AA) 2 i (A A — (0= 1) AGAy) + (1— ) 434
> min {(1— a4l g 414 — (0 — 1) A4}
Using Lemma S.4.1(xii) and our particular choice of a we find
pr [A1AL = (0 = 1) A3As] > pgp(A1Ar) — [[(a — 1) A3 As||
= S nl(ALAY

Therefore
1 1 : 2|42
— A'A) > AL A 1
NT i ( ) > ONT pr(ATA) mm{ T2 As |2+ pp(ALA)
L [[Ag|® pgp(A)AL)
T NT 2|[A|]? + pp(AAr)
where we used [|A|| > [|As]| and ||A|| > [|As]|-

Our assumptions guarantee there exist positive constants ¢y, ¢1, co, and c3 such that

A )\Ofol = wlvl W W
AL YT, 50— gyl < oy g — oo, wpat

VNT = VNT & VNT
AL A 0 )\0/ Mw /\0 07
MR(NlT ) _ ke (f u f)zc2, wpal
K1 Kl

142
NT M Z( ?1 — A1) wiy vy, Mo Z(ﬁ?z = B1,) vy

l1=1 lo=1

2
Z 3 ||610W i /BOJOVVH , Wpal ’

17



were for the last inequality we used Lemma S.5.2.

We thus have

1 cs Hﬁlow . ﬁO,lOWH2
— A'A) > :
NT IuR+1( ) - 1+%(co_i_ClHBIOW_ﬁo,lowH)Q

wpal .

c2

Defining ay = 2% 5 we thus obtain
1

= 2,
2c]

alz%andagz

1 ag Hﬁlow - 50’10WH2
g, (AA) >
NT R+1( ) HBIOW . 50’10WH2 T Hﬁlow o /80,1OWH + ay

,  wpal ,

i.e., we have shown the desired bound on §](\?)T(ﬂ )

S.6 Regarding the Proof of Corollary 4.2

As discussed in the main text, the proof of Corollary 4.2 is provided in Moon and Weidner (2015).
All that is left to show here is the matrix Wy = WNT()\O, 10, X}) does not become singular

as N, T"— oo under our assumptions.

Proof. Remember

1
WNT = ﬁTr(MfO X]/ﬁ M)\O sz) .

The smallest eigenvalue of the symmetric matrix W(A°, f°, X}) is given by

. CL/ WNT a
i Wnr) = min —
K( ) {a€RK, a0} ||CL||2

K K
= min ——=Tr | My ap. X1 | Mo an. X
{aeRX a0} NT ||(LH2 f <k12:1 k1 k1> A (kZZ:l ko kg)]
_ i Tr [Myo (Xow o + Xligha) My (Xiow,e + Xnigha)]
(e g er NT (ol + #1P) =
a#0, p#0}

where we decomposed a = (¢', o)’ with ¢ and « being vectors of length K7 and K5, respectively,

and we defined linear combinations of high- and low-rank regressors:

Ky K
Xlow,go = E ' Xl ) Xhigh,a = E 7% Xm .
=1 m=Ki+1

18



Here, as in assumption 4 the components of « are denoted ag, 11, ..., ax to simplify notation.
We have Mo = M0 .,y + Pa,ow), Where w is the N X K; matrix defined in assumption 4,

ie., (A%, w)is an N x (R+ K,) matrix, whereas M,ow is also an N x K; matrix. Using this we

obtain
x Wnr)
1
= min Tr | M X/ +X/ M Xow +X1 «
e TS ||a||2>{ (Mo Kiow o+ Xisga) Moty Ko + Xisn)
» #0, a#0}
+ Tr [Mfo (Xllow,go +X1,1igh,a) P(M)\Ow) (Xlow,cp +Xhigh,a)} }
1
= min Tr (Mo X]i o M, Xhigh,a
fwerf acri: NT ([o]? + Hau2>{ (Mo Xisgho Moo ) Xrigo)
@ #0, a#0}

+ Tr [Mfo (Xllow © + Xllligh,oc) P(M/\Ow) (X10W7<P + Xhigh,oz):|
(3.6.1)

We note there exists finite positive constants ¢q, ¢o, and ¢z such that

1
T [Myo X},

NT igh,a M()\U Xhlgh a

allal®,  wpal,

1

WTr [Mfo (Xllow,cp + Xllligh,a) P(Mkow) (XIOWSO + Xh1gha
1

] >
)] =
WTY [ Mo Xio o Pt gw) Xiowsp] = €2 HSDHQ wpal,
)
] >

1
WTI‘ [Mfo Xllow,cp PM ow Xhlgha
1
WTI‘ [Mfo Xhlgha P M,ow) Xh1gha

| \/

||90||||0z|| wpal,

0, (5.6.2)

and we want to justify these inequalities now. The second and the last equation in (S.6.2) are
true because, e.g., Tr [Mfo Xhigh.o P01, 0w) Xhigh,a] = Tr [Mfo Xhigh.oo P01, 0w) Xnigh,a Mfo], and
the trace of a symmetric positive semi-definite matrix is non-negative. The first inequality in
(S.6.2) is true because rank(f°) +rank(A\’,w) = 2R+ K, and using Lemma A.1 and assumption

4 we have

1 1
—NT’|&|’2TY [Mfo X}/ﬂgh,a M()\va) Xhigh,a} > N—THOJH2M2R+K1+1 [Xhighyoé Xllqigh,oé} >b , Wpal’

i.e., we can set ¢; = b. The third inequality in (S.6.2) is true because according Lemma S.4.1(v)
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we have

1 K
WTI” [Mfo Xllow,go P(M)\ow) Xhigh,a} > — = ||X10W 80“ ||Xh1gha||
Kl
> A il Kool
Xk Xk
> - KKl ol s | ] e
LK1 F =K1 F

>

C3
5 leltflad

where we used that assumption 4 implies HXk /VN TH < C holds wpal for some constant C'
F

as, and we set c3 = K; K; K5 C?. Finally, we have to argue that the third inequality in (S.6.2)

holds. Note X{ ., P(ar,gw) Xiow,y = X]

Tow.» M0 Xiow e, 1.€., we need to show

1
WTI‘ [Mfo Xl/ow,np M)\O Xlow,cp} > C ||90H2

Using part (vi) of Lemma S.4.1 we find

LTF [Mfo Kiow,p Mo XIOW’“’} -

1
T ——Tr [Myo Xiow,p Mo Xy, - Mo]

NT

HM/\O XlowsoMfOX M,\OH )

low,p

and according to Lemma S.5.2 this expression is bounded by some positive constant times ||p]|?
(in the lemma we have ||| = 1, but all expressions are homogeneous in ||¢||).

Using the inequalities (S.6.2) in equation (S.6.1) we obtain

1
W, min — ¢ |la)]* + max [0, ¢ Z_¢ Q
K( NT) (o €REY. o € R H30H2+H ‘2{ 1” H [ QHSDH 3”@”” H]}
©#0, a#0}
2
Co C1C5
>m1n(2, C§+C§) ,  wpal.

Thus, the smallest eigenvalue of Wiy is bounded from below by a positive constant as N, T —

00, i.e., Wyr is non-degenerate and invertible. 1

S.7 Proof of Examples for Assumption 5

Proof of Example 1. We want to show the conditions of Assumption 5 are satisfied. Condi-

tions (i)-(iii) are satisfied by the assumptions of the example.

20



For condition (iv), notice Cov (X, Xis|C) = E (UyUss). Because |3°| < 1 and sup;, E(e?) <

00, it follows

;| M7 1 UL
7 D0 D 1Cov (X, XilC)| = N—EZIE (Uil

i=1 t,s=1 7 s=
1 N T 0o
_ +
= — E E E YPTIE ( elt_peis_q)| < 0.

For condition (v), notice by the independence between the sigma field C and the error terms

’ﬂ

—_

1

o

{eir} that we have for some finite constant M,

‘COV <€it5(:is> €z‘u)~(w|c> ‘

‘COV (eitUisa eiuUiv)’

N T e
- T2 Z Z Z ‘ BO pJH]E (€ireis— pCiuCiv— q) (ﬁo)pE(eitez’sfp) (BO)qE(eiueivf(D

i=1 t,s,u,v=1
T o0
< = Z Z ‘60|p+q I{t=u}l{s—p=v—q}+I{t=v—q}I{s—p=u}]
t,s,u,v=1 p,q=0
M s—k+v—l 1 d 01S—u 1 d o|v—t
=T—Z S OX I T = T - B >0 [ 72 18
t,u,s,v=1 k=—o0 l=—00 85;1;:210 Uvjtzzlo
. L omidet 0 s+v— 2k 1 a 0|s—u 1 a o|v—t
S DI My DT X 18
s, =1 k=—c0 s,u=1 v,t=1

s—u>0 v—t>0
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Notice

T min{s,v}

_Z Z |ﬁos+v 2k

s,0=1 k=—c0

9 T s v - - 9 T s .
= p X X T X e

s=2 v=1 k=—00 s=1 k=—o0
T oo
_ —ZZ‘BOS 'L}Z‘ﬁoﬂ %Zz‘ﬁo‘ﬂ
s=2 v=1 s=1 [=0
2 1 gopes
2
R
( 1T )Z' T
= 0(1),

and
S

1 T . 1 T
72 1T =50
s=1 u=

s,u=1
s—u>0

1|ﬁ“\s ! Z!/ﬁO (1——) =0(1).

Therefore, we have the desired result

L XN N N
NT?2 Z Z ‘COV <ez’tXi57 eiuXiv|C>‘ =0,(1).

i=1 t,s,u,v=1

PRELIMINARIES FOR PROOF OF EXAMPLE 2

e Although we observe X;; for 1 <t < T, here we treat Z;; = (e, X;;) as having an infinite

past and future. Define
Gli)=CVo({Xys:7<s<t}) andH. (i) =CVo({Zy:T7<s<t}).

Then, by definition, we have G (¢) , 1L (i) C FL (3) for all 7,¢,i. By Assumption (iv) of Ex-
ample 2, the time series of {X;; : —00 <t < oo} and {Z;; : —oo < t < oo} are conditional

a-mixing conditioning on C uniformly in i.

e Mixing inequality: The following inequality is a conditional version of the a-mixing in-

equality of Hall and Heyde (1980), p. 278. Suppose X;; is a JF;-measurable random
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variable with E <|Xit|max{p’Q} |C> < 00, where p,qg > 1 with 1/p + 1/¢ < 1. Denote
1 Xitlle,, = (B (| X" IC))"/? . Then, for each i, we have

1_ 1

1-1i-1
Cov (Xit, XiesmlO)| < 8 Xaley, Xiesmlle,cm * " () (5.71)

Proof of Example 2. Again, we want to show the conditions of Assumption 5 are satisfied.
Conditions (i)-(iii) are satisfied by the assumptions of the example.

For condition (iv), we apply the mixing inequality (S.7.1) with p = ¢ > 4. Then, we have

T
Z |Cov (Xyt, Xis|C)|

1 t,s=1

IA

5 F~ 3~
= 1[V]=

EHMH

[
=
Mz

1§
W

T—t T—-1T-m
2

N
|00v (Xit, Xieym[C) = 75 D |Cov (Xit, Xit+m|C)]

i=1 i=1 m=0 t=1

<
Il

p—2

T HXz'tHc,p [ Xitmlle om (1) 7

i=1 m=0 t=1

6wM%M)ZaP

p (1),

—_

<

<

S

where the last line holds because sup,, || Xt |2 » = O, (1) for some p > 4 as assumed in the
00 —¢e=2

example (2), and >~ _, = Yom_om <P = 0O(1) because of ¢ > 34;)1—61 and p > 4.

For condition (v), we need to show

L N N N
NT?2 Z Z ‘COV (&'tXis, eiuXiv’C)‘ =0,(1).

i=1 t,s,u,v=1

Notice

Cov (eit)?m eiu)?iv‘(;,) )

T
i=1 t,s,u,v=1
1 N T _ _ _ _

= NT? Z Z E (eitXiseiuXiv|C) —E (eitXis|C) E (emXMC)‘

=1 t,s,u,v=1

N T N N L N1 T N 2
< Z Z E <€itXis€iuXiv|C)‘ + - Z (— Z E <€ti7,S|C>>
— 2

NT i=1 t,s,u,v=1 N i=1 T t,s=1

= [+ 11, say.
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First, for term I, there are a finite number of different orderings among the indices t, s, u, v. We
consider the case t < s < u < v and establish the desired result. The other cases can be shown

analogously. Note

S

—tT—k T-I

N T
1 ~ ~
NT?2 Z Z Z ’E (eitXit+keit+k+lXit+k+l+m|C> ’

=0 m=0

@
i
I
-
i
)
T
o
-

‘E <eit (Xit—i-keit—l-k—i-l)?it—&—k—i-l—&—m) |C>‘

=z =
sz
M-
]

i=1 t=1  0<i,m<k
0<k+I4+m<T—t

N
1 1 ~ ~
+N Z T2 Z Z ‘E |:<€itXit+k> <€z‘t+k+lXit+k:+l+m> |C}

i=1 t=1  0<k,m<lI
0<k+I+m<T—t

—-E <€it)?it+k‘c> E <€it+k+l)zit+k+l+m|c> ‘

N T
1 1 o Y
+ E — E § E <€itXit+k|C> E <€it+k+lXit+k+l+m|C>

i=1 t=1  0<k,m<l
0<k+I4+m<T—t

N T
1 1 ~ ~
+N Z T2 Z Z ‘E [<€itXit+k€z‘t+k+z> Xit+k+l+m|c} ‘

i=1 t=1 0<p,l<m
0<k+l+m<T—t

= Il +IQ—|—]3+I4, say.

By applying the mixing inequality (S.7.1) to ‘E <eit ()’Ewewﬂ)?it%ﬂm) |C>‘ with e;; and

Xit1k€it+k+1Xit+k+i+m, We have

‘E (eit (Xiit+keit+k+ljzit+k+l+m) ‘C> ‘

< 8lleille,

Xit1kCit k1 Xitthtltm Hc Qy, * (i)
»q

< 8 ||67ltHC,p

— ~ 1—1_1 )
Xz't+kHC3 ||€it+k:+l||c,3q Xit+k:+l+chgq o "1 (i),

;04 )

where the last inequality follows by the generalized Holder’s inequality. Choose p = 3¢ > 4.
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Then,

N

PA SRR o SR
1 = Ni:1T2 llCp

t=1  0<l,m<k
0<k+I4+m<T—t

X¢t+k+l+m‘ .

Xit—l—kHap ||€it+k+l||c,p

T
~ 2 1 1—-L
2
< 8 (sup ||€z‘tHc,p> (sup HXinHc ) Tz Z Z a,
2,t 2t P =1 0<l,m<k
0<k+I+m<T—t
2 v 2 - 9 1-3;
< 8 (SUP HeitHc,p> (sup HXitJrk‘ ) Zk‘ a, °
it it C.p om0
S Op (1) )
where the last line holds because we assume in example (2) that <Supit el p> sup; ; || X +k‘ =
' ’ ’ Cp
1—-L 4p—1
O, (1) for some p > 4,, and 3°°°_ m2an, * = 3% m* % = O (1) because of ¢ > 34;—81 and

p>4.

By applying similar arguments, we can also show

I, I3, 1, = O0,(1).

S.8 Supplement to the Proof of Theorem 4.3

Notation E; and Vare and Cove: In the remainder of this supplementary file we write E¢,

Vare and Cove for the expectation, variance and covariance operators conditional on C, i.e.,

Ec(A) = E(A|C), Varc(A) = Var(A|C) and Cove(A, B) = Cov(A, B|C).

What is left to show to complete the proof of Theorem 4.3 is that Lemma B.1 and Lemma B.2
in the main text appendix hold. Before showing this, we first present two further intermediate

lemmas.
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Lemma S.8.1. Under the assumptions of Theorem 4.3 we have for k=1,...

[Py Xy = 0,(VNT) |
| X4 Ppol| = 0,(VNT) |
| PoeXy]| = 0,(N*/?),

~~ o~ o~
S
NN N N

[ProePpoll = Op(1) .
Proof of Lemma S.8.1. # Part (a): We have

[ Pao Xill = X AYA) AV X |
< ACTAY) T IAY X

< IXIIAYAY) T HIAY Xl = Op(N TN X

where we used part (i) and (ii) of Lemma S.4.1 and Assumption 1. We have
N 2

Ec <Z )\?r;(m't)
i=1

oz (32, |

E [(A5,)*Varc (X))

E{Ec [IXXell3] } =E

1
Il
—
-
Il
—

I
&=

TR
1~ 1=
M) =

ﬁ
Il
—
o~
Il

1 =1

I
M=
NE
] =

\Z
I
—_
o
Il
—_

1

i

)

I

QS
=
~

n(

where we used )?k,it is mean zero and independent across i, conditional on C, and our bounds
on the moments of A% and Xj;. We therefore have ||\ X,||p = O,(V/NT) and the above
inequality thus gives || PyoXp| = O0,(VT) = 0,(V/NT).

# The proof for part (b) is similar. As above we first obtain [|X;Pjo| = ||PpX}| <
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O, (T~2)|| f¥ X, || #. Next, we have

Ee [Il/ 3] =

EC <Z fter zt)

T

ftr 0 Ec <5€k1t5€kzs)
R S N7
Z (mftx]fﬁl) Z Z |Cove (Xkit, Xnis)|
r=1 i=1 t,s=1

= O,(T*4*9YO,(NT) = 0,(NT?),

M= 1M
1 it7-

,3
I
—
Il
i

7 t,s

IA

where we used that uniformly bounded E| f2||**¢ implies max; |fo.| = O,(T(4+9)). We thus
have || f”X}||% = 0,(TV/N) and therefore H)N(kaoH = 0,(VNT).
# Next, we show part (c). First, we have

M:u

E {EC [(||)\0/6X]/€||F)2} } —E{E

(=3

14,

N 2
<Z Z )\?retik‘ ]t)

i=1 t=1

J

[y

s

[
M*TTMZ

Il
&=

T
Z > AnEe (€1 X i X js) }

14,4,l=1t,s=1

[
\E
] =

E [()‘?T)z]EC (eztil?,jt)} = O(N2T) )

1

~~
Il

r 1

where we used that E¢ (e;e;5Xy jt Xk js) is only non-zero if ¢ = [ (because of cross-sectional
independence conditional on C) and ¢t = s (because regressors are pre-determined). We can thus

conclude |\eX}||r = O,(NVT). Using this we find

[ProeXi] = A (AYA") AV e Xy
< A ATAT) TN e X
< NN HIIA"eXE ]| = Op(NTY2)Op(NVT) = Op(VNT) .

This is what we wanted to show.
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# For part (d), we first find eX’

N

= 0, (1), because

ot 177X

- ol [(E5e))

1
N T T
YIDIP I BN fP’A?A?’fS}

where we used e;; is independent across ¢ and over ¢, conditional on C. Thus we obtain
[PyoeProll = [IX(A"A")TINe fO (£ £O)71 Y]
< INIHOTN) A e NP
< O, (N0 (N YA [ rOp (T~ OH(TH?) = O,(1)
where we used part (i) and (ii) of Lemma S.4.1. §

Lemma S.8.2. Suppose A and B are T x T and N x N matrices that are independent of
e, conditional on C, such that Ec (||AH%) = O, (NT) and E (||B||§) = O, (NT), and let
Assumption 5 be satisfied. Then there exists a finite non-random constant ¢y such that

(a) Ee ({Tr[(¢'e — Ec (¢/e)) A]}*) < co NEe (JA}) |

(b) Ee ({Tr[(ee’ — Ec (e€) BI}*) < o TEe (IBI}) -
Proof. # Part (a): Denote A;s to be the

t,s  element of A. We have

—~
~—

Tr{(e'e — E¢ (e'e)) A} = Z Z ('e — Ec (e'e)),, Ais

t;l s;l N
= Z Z (Z (eiteis - EC (eiteis))) Ats-
t=1 s=1 =1

Therefore,

Ee (Tr{(¢'e — B¢ (¢'e)) A})®

t=1 s=1 p=1 g=1

E¢ (Atsqu) :

(Z (exeis — Ec (6it€is))> (Z (ejpeiq — Ec (ejpejq))>

i=1 j=1
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Let ¥ = Ec(e?). Then we find

Ec { <; (eireis — Ec (eieis) ) (; €ip€iq — ejpejq))) }

N N
= Z Z {Ec (excisejpejq) — Ec (eineis) Ee (ejpejq)

(5.5 if (t=p) # (s = q) and (i = )
it dlis if (t = Q) # (3 = P) and (Z = j)

Ee(eh)— %2 if (t=s=p=gq) and (i = j)

\ 0 otherwise.

Therefore,

Ee (Tr{(e'e — B¢ (¢e)) A})®

T N
S Z Z Z Eztzzs IEC ts + IEC Ats st + Z Z Eft ECA

t=1 s=1 i= t=1 i=1

Define X! = diag (3;1, ..., Zi7) . Then, we have

T T N N
DD Suti (Bed?) = Ee (ZTr (A’EiAEi))

t=1 s=1 i=1 i=1
N - N -
< D Ee[Alp < 3= Be ANl
i=1 i=1
< N (SupE?t) Ec || All% . (S.8.1)
it
Also,
T T N N
ZZZ zthsEC Ats st) = ]EC ZTI' (EZAAZZ)
t=1 s=1 =1 =1
= ZEC = Al [|A%] - < ZHWH Ec [|All7
i=1
< N (Sup23t> Ee || Al% . (S.8.2)
it
Finally,
T N
ZZ — Y2)EcAZ < N(supEc (e;*t)) Ee || Al7, (S.8.3)
it
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and sup;, E¢ (e},) is assumed bounded by Assumption 5(vi).

# Part (b): The proof is analogous to the proof of part (a). B

Proof of Lemma B.1. # For part (a) we have

Tr Pfoe P/\OXk

T (Pyo ¢’ Po Py XiPpo )

T ¢—

< = 1PoePol [P 1P0]

1
= \/ﬁ Op(l) Op(\/ﬁ) OP(D
= 0,(1),

where the second-last equality follows by Lemma S.8.1 (a) and (d).
# To show statement (b) we define ¢ ,;, = eit)?wt. We then have

&Tr (PoeXy) = i [ ( A?O)ll

r,q=1

0
zr)\]qu,ijt :

s

We only have E¢ (C kijtC k:,lms) # 0 if t = s (because regressors are pre-determined) and i = [

and j = m (because of cross-sectional independence). Therefore

1 T N
E{Ec(A,)} =E { T Do Do Nrdigdr g Ee (Qk,ijtck,lms)}

ts—lijlm—l

N3T Z Z E )‘31«)‘]2(1 Ec Ckz]t)} =O(1/N) = Op(1)~

t=1 4,5=1

We thus have Ay ,, = 0,(1) and therefore also ﬁTr <P)\0 e)?é) = 0,(1).
# The proof for statement (c) is similar to the proof of statement (b). Define &, ;;, =
eit)?k,is — EC (6“)2]@7;3). We then have

g {re (5w (8]} - 2 [(F)] s B e
_ka,rq
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Therefore

T

N
Z Z fsqfurquEC (fk ztsfk juv)

EC( k’rq

maX |ft7’ ) T3N Z Z ‘COVC <etik 189 equk ]’U>

i,j=1t,s,u,v=1

7N

VR

max | fer| > Z ‘COVC <€it)~(k,m €m)?k,w)

=1 t,s,u,v=1

T3N
= O,(T“N0,(1/T)
= op(1),

where we used uniformly bounded E|| f2||**¢ implies max, | f2| = O, (TY/(4+9),

# Part (d) and (e): We have [[A” (X"X°) 7 (f7f0) 1 fY]] = Op((NT)7'72), |lell = Op(N'2),
Xl = O,(VNT) and || PyePl|| = O,(1), which was shown in Lemma S.8.1. Therefore:
P A ! P

1 \0\—1 |0r
\/WTI (GPfO 6/ M/\O Xk fo (fO/fO)_l ()‘0 )‘0) ' >\0 )

_ \/%Tr (PwePpo e Myo Xp 0 (F7 ) (AVA) 1 \Y)
\/— | PyoeProll llel I Xkl |£2 (f£2) 7 (WYX M AY|| = Op(NTH2) = 0,(1) .

which shows statement (d). The proof for part (e) is analogous.
# To prove statement (f) we need to use in addition ||Pyo e X}|| = 0,(N*/?), which was also

shown in Lemma S.8.1. We find

Tr (6/]\4>\0 Xk MfO 6, )\0 (AOI/\())_I (fO/fO)—l fOl)

1
= \/WTY (€IM>\0 Xk 6/ P)\O )\0 ()\0/)\0>71 (fO/fO)fl fO/)

1
- VNT
R / — / — /
< ml|e||||P)\0€Xl/c“ XY (AN O )
_ R
vVNT
=0,(1) .

1
VNT

Tr (¢'Myo Xi Po e’ Pyo A (AYX°) (Y )~ %)

el Xkl [l Pyo € ProllIA® (AYA)7H (7 £0) 7 £
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# Now we want to prove part (g) and (h) of the present lemma. For part (g) we have

\/%Tr {[66/ . EC (66,)] M)\o Xk f() (fO/fO)—l ()\0/)\0)—1 /\0/}

1 / / BV / —1 / —1 /!
= \/WTr{[ee — Ec (e€)] Myo Xy fO(f7 071 (AYA%) 1A}

1
* VNT
= jl\f_TTr {[ee' — E¢ (66/)] Mo Yk fo (fO/fO)_l (AO/)‘O>_1 AO/}
1
- VNT
1

= \/WTr {[ee’ —Ec (e€)] Myo Xy fO(f7f0)1 (AO/)‘O )‘0/} + 0p(1

Thus, what is left to prove is \/%—TTr {[ee’ — B¢ (e€)] Myo X fO(fOfO) =1 (AN~ )\0/} = 0,(1).

Tr {[ee’ — Ee (e€)] Myo X3 Ppo fO(fOf0) 1 (AYN0) )\0’}

|lee” — Ec (e€')|| H)N(kao

10 (P 0~ (AYA0) Y|

For this we define
By = M)\O 71{ fO (fO/fO)fl ()\O/AO)fl )\0/ )
Using part (i) and (ii) of Lemma S.4.1 we find

IBellm < RY?|| By
< R1/2H7k|’ Hfo (fO/fO) (/\0/)\0 )\O/H
< R1/2H7k”F Hfo (fO/fO) ()\0/)\0 )\0/”
and therefore
Ee (IIBll3) < RO (7507 A0 AY || Ee (1IXk]13)
=0(1),

where we used E¢ (|| X||%) = O(NT), which is true because we assumed uniformly bounded

moments of X} ;. Applying Lemma S.8.2 we therefore find

1 / / ? T 2\ __
Be (T (1 = Bo ()] B} ) < oy e (1) = ol0) .

and thus

1 / / .
\/WTI" {lee' — Ec (e€")] Br} = 0,(1) ,
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which is what we wanted to show. The proof for part (h) is analogous.
# Part (i): Conditional on C the expression e%X; X!, — Ec (e? X;; X!,) is mean zero, and it
is also uncorrelated across 7. This together with the bounded moments that we assume implies

N

1 T
Varc {W >N [eh X X}, — Be (¢ Xa x;t)]} = O,(1/N) = 0,(1),

=1 t=1
which shows the required result.
# Part (j): Define the K x K matrix A = 55 SV € (X + Xy) (X — Xiy)'. Then

we have

NE

1
NT 4

(2

Z e, (X Xy — X X)) =

1 t=1

1 /
5 (A+A).

Let By be the N x T matrix with elements By = €2 (Xki + Xiit). We have || Bg|| < || Bi|lr =
O,(VNT), because the moments of By, ;; are uniformly bounded. The components of A can be
written as Aj, = ﬁTr[Bl(.'fk — X)']. We therefore have

1
|Alk| < Wrank(%k - Xk)HBlH H%k - XkH :

We have X, — X}, = )N(k Po + Pyo )N(k Mpo. Therefore rank(X; — &) < 2R and

)

+ [P X)) = ZE0,(VNT)o(VAT) = 0,1,

2R =
Aul < S Bl (|| % Pyo

—+ HP/\O )Z'k Mfo

IN

2R ~
s 5
NT” Al k Pyo

where we used Lemma S.8.1. This shows the desired result. §

Proof of Lemma B.2. Let ¢ be a K-vector such that ||¢|| = 1. The required result follows by

the Cramer-Wold device, if we show

N T
1
WZZeitlﬂtc = N(O,CIQC) .
i=1 t=1

For this, define §;, = e;Xj;,c. Furthermore define &,, = &/, = {yra, With M = NT and
m=T>G—1)+te{l,...,M}. We then have the following:

(i) Under Assumption 5(i), (iz), (iz7) the sequence {¢,,, m = 1,..., M} is a martingale dif-

ference sequence under the filtration F,,, = C V o({&,, : n < m}).
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(ii) E(&}) is uniformly bounded, because by Assumption 5(vi) Eeel, and Ee (|| X5]|*t€) are
uniformly bounded by a non-random constant (applying Cauchy-Schwarz and the law of

iterated expectations).

(iif) & Som_ &2 = Qe+ o,(1).
2
This is true, because firstly under our assumptions we have E¢ { [ﬁ ZMf (ffn — Ec(gfn))] } =

m=1
Ee { 3 S0y (€2~ Ee(€2))"} = Op(1/M) = 0p(1), implying we have & S0 €2, =
= Z%zl Ec(£2,) +0,(1). We furthermore have - Z%zl Ee(€2) = Vare(M~1/? Z%zl &),
and using the result in equation (14) of the main text we find Vare(M -2 "M ¢ ) =
Vare((NT) ™2 500, 30 &) = ¢Qc + 0p(1).

These three properties of {£,,, m = 1,..., M} allow us to apply Corollary 5.26 in White (2001),
which is based on Theorem 2.3 in Mcleish (1974), to obtain % Z% 1€ —a N(0,¢Qc). This

concludes the proof, because f Zm 16m ﬁ Zz S e Xe

S.9 Expansions of Projectors and Residuals

The incidental parameter estimators fand X as well as the residuals € enter into the asymptotic
bias and variance estimators for the LS estimator B To describe the properties of f, X and e, it
is convenient to have asymptotic expansions of the projectors M5 () and M fA(B) that correspond
to the minimizing parameters ;\\(6) and f(ﬁ) in equation (4). Note the minimizing X(ﬁ) and
fA(ﬁ) can be defined for all values of 3, not only for the optimal value g = B The corresponding
residuals are e(f) =Y — - X — X(ﬁ) f’(ﬁ)

Theorem S.9.1. Under Assumptions 1, 3, and 4(i) we have the following expansions

K

M;(B) = Myo + MSB) + M@ _ Z (B, — B) M. M(rem ).

k=1

(8, = B2) M7) + MI™(5)

Mx

M(B) = Myo + M) + M2 —
1

(8, — B) &) + ™ () |

Mx

e(B) = Myoe My + ) —
k=1
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where the spectral norms of the remainders satisfy for any series nyp — 0:

(rem)
sup 0 HMX (B)H 0 =0,(1),
(85— | <y 18 = B2+ (NT)=2 le]| [|8 = B°)| + (NT)=5/2|e]|?
(rem)
sSup 0 ‘ MfA (ﬁ)H 0 =0,(1) ,
(8|55 || <nwpy 18 = B2+ (NT)Z2 el I8 = B + (NT) =32 le]]®
- [0 o

@15 <nery VDNB = B2+ [ell 18 — £° + (VT) el

and we have rank(e™™(B3)) < TR, and the expansion coefficients are given by

M) = = Myoe fO (f7L)7 OX) TN = AT ()T (L)Y e My
M) = = Mo X fO (7 F0)7H 0N TN = A7 (X0 (1O F0) Y X My
MY = Myoe fO (f7F°) 7 QTN TN e 2 (2 F0)7H (M%) 1A

+ AT AN TSN (AN T (FO )T S e My

— Myoe Mpo e A (XY A%) 71 (FYF0)7H (AYAY)THAY

— X QYN) )TN TN e Mo €f Miyo

= Myoe fO(f7 )T AMX) T e My

+ AT O TELOSO)TFE Myo e O (S0 THATA) TN,

analogously

MJEAIG) — — My ¢/ \O ()\0/)\0)71 (fo’fo)*lfo’ o fo (f0/f0>71 ()\0/)\0)71 )\o/ero ’

(1)
Mf,k

_ Mfo X]; /\O ()\0/)\0)—1 (fOlfO)—lfOl . fO (fO/fO)—l ()\0/)\0)—1 )\0/ Xk Mfo :
M](?Qe) — Mo ¢/ \O ()\0/)\0)—1 (fmfo)—1f0/ ¢/ \O ()\0!)\0)—1 (fo/fo)—1fo/

+ f() (fO/fO)—l ()\0/)\0)—1 /\0/ efo (fO/f0>—1 ()\0//\0)—1 )\0/ e Mfo

. Mfo 6/ M}\O e fO (fO/fO)fl ()\0/)\0)71 (fO/fO)fl fO/

_ fO (fO/f(])fl ()\0/)\0)71 (fO/fO)fl fO/ 6/ M)\o e Mfo

. Mf“ 6/ )\D ()\0/)\0)—1 (fO/fO)—l ()\O/)\O)—l )\0/ 6]\4}00

+ fO (fO/fO)—l ()\0/)\0)—1 /\0/ e Mfo e/ /\O ()\0//\0)—1 (fOIfO)—lfO/ 7
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and finally

e = Myo X Mo,

e = =My e Myo ! A” (X"A") T (£ )Y
= AT AT T Myo e Mo
= Myoe fO(f7f) A TTN e Mo .

Proof. The general expansion of M5(f) is given in Moon and Weidner (2015), and in the
theorem we just make this expansion explicit up to a particular order. The result for M f(ﬁ) is

just obtained by symmetry (N <> T, A <> f, e <> €/, X, <> X}). For the residuals € we have

€=My (Y—Z Eka> =My [e— (B-8") - X + A7) ,
k=1

and plugging in the expansion of M; gives the expansion of . We have €(8) = Ay + A" f¥ —

(B)f’(ﬁ) where Ag =e—>_, (B, — BY) X} Therefore €™ (3) = A, + Ay + Az with A} = Ag —
Mo Ag Mo, Ay = N0 f¥ — A(ﬁ)f(ﬁ) and Az = —¢t"). We find rank(A;) < 2R, rank(As) < 2R,
rank(Az) < 3R, and thus rank(2™(3)) < 7R, as stated in the theorem. g

Having expansions for M5(8) and M#(3), we also have expansions for P5(3) = Iy — Mz(53)
and Pr(8) = Ir — M#(3). The reason why we give expansions of the projectors and not
expansions of /):(B) and f(ﬁ) directly is for the latter we would need to specify a normalization,
whereas the projectors are independent of any normalization choice. An expansion for X(ﬂ) can,
for example, be defined by X(ﬁ) = PX(ﬁ))\O, in which case the normalization of X(ﬁ) is implicitly
defined by the normalization of \°.

S.10 Consistency Proof for Bias and Variance Estimators

(Proof of Theorem 4.4)

It is convenient to introduce some alternative notation for Definition 1 in section 4.3 of the main

text.
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Definition Let I' : R — R be the truncation kernel defined by I'(x) = 1 for |x| < 1, and
I'(z) = 0 otherwise. Let M be a bandwidth parameter that depends on N and T'. For an N x N

matriz A with elements A;; and a T X T matriz B with elements Bys we define

(i) the diagonal truncations A™P = diag[(Ay)i=1... n] and BT = diag[(By)i=1

,,,,,

(ii) the right-sided Kernel truncation of B, which is a T x T matriz B™ R with elements

BimneR =T (528) By for t < s, and B{f*™® = 0 otherwise.

Here, we suppress the dependence of B™R on the bandwidth parameter M. Using this

notation we can represent the estimators for the bias in Definition 1 as follows:

By =~ Tr [Pp(@x,)™ "]

ZIH

Bay = 2T [@0)™ My X F(PH T ANTR]

»—"ﬂ|"

B = T [@&™ P M X XA (T T
Before proving Theorem 4.4 we establish some preliminary results.
Corollary S.10.1. Under the Assumptions of Theorem 4.3 we have v NT (B — ﬁo> = 0,(1).

This corollary directly follows from Theorem 4.3.

Corollary S.10.2. Under the Assumptions of Theorem 4.4 we have

|15 = Pol| = (|25 = M| = Op(N7H72)
= 0,(T7?).

HPf—Pfo

_ HMf—Mf0

Proof. Using |le|| = O,(N'/?) and || X}|| = O,(N) we find the expansion terms in Theorem S.9.1

satisfy

a2 = oy
’ e

= OP(N_I) ) H

Together with corollary S.10.1 the result for HMX — Mo H immediately follows. In addition we

have Py — Pyo = —M5 4+ Mjo. The proof for Mz and Pj is analogous. i
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Lemma S.10.3. Under the Assumptions of Theorem 4.4 we have

@
I
-
o~
Il
—_

Lemma S.10.4. Let f and f° be normalized as J?’J?/T =1 and f¥f°/T = 1. Then, under

the assumptions of Theorem 4.4, there exists an R X R matrix H = Hynr such that
|- rou|| =00, R=xa =000

Furthermore

R

NANTFH T =2 QN (0

0, (N2 .

Here, the matrix H depends on N,T, but we write H instead of Hyr to keep notation

simple.

Lemma S.10.5. Under the Assumptions of Theorem 4.4 we have

(i) N~ Ee(e'Xg) — (@ Xp) ™™ || = 0,(1)
(ii) N7 {[Ee(ee) — (@8)™P|| = 0,(1) ,
(iii) 71 HEC<66') — @) | = 0,(1) .

Lemma S.10.6. Under the Assumptions of Theorem 4.4 we have

(i) N[ @ x| = oy
(i) N @Eam| = o,

(iii) T ||@e)™ || = 0,(1) .

The proof of the above lemmas is given section S.11 below. Using these lemmas we can now

prove Theorem 4.4.

38



Proof of Theorem 4.4, Part I: show W=Ww-+ 0p(1).
Using |Tr (C)| < ||C||rank (C') and corollary S.10.2 we find:

‘/Wklkzg —~WNT sk |

_ (NT)—lTr [(MX — My) Xp, MAX,’CZ] + (NT)"'Tr [MAO X, (Mf— Mfo) X,;2]

< HM Myol| IIXklllllezll T ||M7— Mo
NT

2R 2R
= FONTYO,NT) + —

= 0y(1) .

Xk I X

=20 (T- )O,(NT)

Thus we have W = Wyr + 0p(1) =W +0,(1). 1

Proof of Theorem 4.4, Part II: show Q=0+ 0p(1).
Let Qnr = w7 SN ST e X, &L We have Q = Qg + op(1) = Q4+ Ay + Ay + 0p(1) =
Q +op(1), where A; and A, are defined in Lemma S.10.3, and the lemma states A; and A, are

op(1). 0

Proof of Theorem 4.4, Part III: show B, = B, + op(1).
Let By nr = N7 Tr[Pjo Ec (¢/ Xj)]. According to Assumption 6 we have By, = By nr+0,(1).
What is left to show is By y n7 = ELk + 0,(1). Using |Tr (C)| < ||C|| rank (C') we find

By kNt — 31‘ =

1 runc
Ee {NTr(Pfoe Xkl - T | Pr (@)

‘—Tr Ppo — PA) jirunc }

‘_Tr P [Ec X - (@ X)tmncRm

|

R runc
+ 5 1Pl ||Be (¢ Xi) = @X0)™"

<2, - i

We have || Pjo|| = 1. We now apply Lemmas S.10.5, S.10.2 and S.10.6 to find

By g, Nt — By

= N7 (Op(NTVHO,(MNTY®) + 0,(N)) = 0,(1) .
This is what we wanted to show.
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Proof of Theorem 4.4, final part: show §2 = By + 0,(1) and §3 = B3 + 0,(1).
Define

1
By g nT = fTr [Ec (ee") Myo X, f° (fO/fO)—l ()\0/)\0)—1 )\0/] '

According to Assumption 6 we have By = By N1 + 0,(1). What is left to show is By vy =
B\zk + 0,(1). We have

~ 1
Bog = By = Tr [Ec (e€') Myo Xp £ (f7fO) (A"A%) 71 AY]

_ iT |:(A/\/)truncD M, X, f(ﬁA)’l (X,X)’l X,}

T
=T [@8)™ My X (£ (010 ON) A F(PH T R R))]
+ ;Tr (@)™ (Mo — M) X [0 (F %) (0N 1A
+ 1Tr{[EC - A”)“‘mcD] Mo X5, £0 (F7f0) L (A%20)~! /\0’} .

Using |Tr (C)| < ||C||rank (C') (which is true for every square matrix C') we find

Bo— Bo| <7 H | £ )T TR = FPH T AN TR
T H (@@ truncD ) HM)\O MAH 11X Hfo (F O 0/>\0 /\OIH
i = HEC (e¢') — (/é/é/)truncD ‘ 1| ||f0 (FY£9) "L (AN~ /\OIH
Here we used |[Mp|| = HMJ? = 1. Using || Xi|| = O,(v/NT), and applying Lemmas S.10.2,

S.10.4, S.10.5 and S.10.6, we now find

]Bz,k ~ By

_r [Opm O,((NT)V2) 0,(N-2)
£ O,(T) 0,(N"12) O,(NT)") O,((NT)?)
(T O,(NT)Y2) O,(NT) )| = 0,(1) .

This is what we wanted to show. The proof of By = By + 0p(1) is analogous. B

S.11 Proof of Intermediate Lemma

Here we provide the proof of some intermediate lemmas that were stated and used in section S.10.

The following lemma gives a useful bound on the maximum of (correlated) random variables
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Lemma S.11.1. Let Z;, i = 1,2,...,n, be n real valued random variables, and let v > 1 and
B > 0 be finite constants (independent of n). Assume max; E¢|Z;|Y < B, i.e., the v’th moment

of the Z; are finite and uniformly bounded. For n — oo we then have
max | Z;| = O, (nl/w) . (S.11.1)

Proof. Using Jensen’s inequality one obtains Ee max; | Z;| < (Ee max; | Z;)"7 < (B¢ > |Z,~|7)1/7 <

(n max; IEC]ZZ-P)U7 < n'/7 BY/7. Markov’s inequality then gives equation (S.11.1). &

Lemma S.11.2. Let

N
Zzg,lt)T =N"1/? Z leitXkir — Ec (€aXkir)]
=1
N
70 = NP3 —Ee ()]
=1
T
21(3) _ T71/2 Z [elgt —E, (e?t)} .
t=1

Under assumption 5 we have
7(1)
Ec|Zyi| < B
Ec|Z2| <B.

Z%

7 —

Ec

or some B > 0, 1.e., the conditional expectations ZW , 2(2), and 72 are uni ormly bounded
k,tr ttT 7

over t, T, or 1, respectively.

Proof. # We start with the proof for Z,ilt)T. Define Z,glt)”. = € Xkir — Ec (€4 Xk ir). By assump-
tion we have finite 8th moments for e; and Xj ;, uniformly across k,i,t,7, and thus (using

Cauchy Schwarz inequality) we have finite 4th moment of Z,S)

2

uniformly across k,i,t,7.
For ease of notation we now fix k,¢,7 and write Z; = Z,g’lt)m. We have E¢(Z;) = 0 and

Ee(Z:Z;Z,2)) = 0 if @ ¢ {j,k,l} (and the same holds for permutations of ¢,7j,k,l). Using
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this we compute

N 4 N
¢ (Z Zi> N Ee(Z2,7%2)
i=1

4,9,k 0=1
=3 Ec (27 7)) +ZEC (Z4)
i#j
N N
=33 Ee(22) B (23) + Y {Be(2)) - 3[Ec (22)]°} .
7,7=1 =1

Because we argued E¢ (Z}) is bounded uniformly, the last equation shows Z ,St)T = N~1/2 va 1 Z ,ilt)T J
is bounded uniformly across k, ¢, 7. This is what we wanted to show.

# The proofs for Zt(2) and Zi(g) are analogous. 1

Lemma S.11.3. For a T x T matriz A we have

HAtruncRH < M HAtrunCRH = M max max ‘AtT|7
max t  t<r<t+M

Here, for the bounds on 7 we could write max(1,t— M) instead of t — M, and min(7, ¢t + M)
instead of t + M, to guarantee 1 < 7 < T'. Since this would complicate notation, we prefer the

convention A,, =0fort <lorT7<loft>Tor7>1T.

Proof. For the 1-norm of A™R we find

t+M
truncR _
At = max ) Al

T=t+1

<M max |A,| =M |ATR

t<r<t+M max ’

and analogously we find the same bound for the co-norm HA“““CR”OO. Applying part (vii) of

Lemma S.4.1 we therefore also get this bound for the operator norm || A" g

Proof of Lemma S.10.3. # We first show A; = (NT)™! 2511 Zthl e (Xl-t)(i’t — fitjei@) =
Op(]_>. Let Bl,it = Xit — ‘)?it’ Bgﬂ't = 612tXit, and Bg)it = th)/(\;‘t. Note Bl, BQ, and B3 can either be
viewed as K-vectors for each pair (i,t), or equivalently as N x T matrices By y, By, and Bsy

for ecach k = 1,..., K. We have Ay = (NT)™' 32, >, (BruBh;; + BsuBi ;). or equivalently

1
—Tr (Bl,leg,kQ + Bog, B;J@) .

At ks = NT
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Using [ M5 — Myol| = Op(N~12), M7 — Mpo|| = Op(N~2), | Xyl = Op(VNT) = Oy(N), we
find for By, = (Myo — M) X Mo + M5 Xy, (Mo — M) that || By || = Op(N'/?). In addition we
have rank(B; ;) < 4R. We also have

1Boell* < 1| Ball

N T
= (Z Z e?thQ,it

i=1 t=1

)
< (iid@) (Z X,“t> — O,(NT)O,(NT),

i=1 t=1 i=1 t=1
which implies || By || = O,(VNT), and analogously we find || Bs || = O,(V NT'). Therefore
4R

Al < 1 (1B M1 Bssll + 1B |1 B )
4R
= 7 (OUNY)O,(VNT) + O,(VNT)O,(N'2)) = 0,(1)

This is what we wanted to show.

# Finally, we want to show A, = (NT)™! vazl Zthl (€% —¢2) ?/(\Zt.)?l’t = 0,(1). According
to theorem S.9.1 we have e — e = Cy + Cy, where we defined C; = — Zle (Ek — 52) X}, and
=YK (Bk - ﬁi) (Pyo Xi Mo + Xy Ppo) + Pyo e Myo + e Po — Y — 80em) which satisfies
|Cs]| = O,(NY?), and rank(Cy) < 11R (actually, one can easily prove < 5R, but this does not

follow from theorem S.9.1). Using this notation we have

N T
1 o o~ o~
A= N7 D0 (ew+ ) (Cris + Coit) XXy

i=1 t=1
which can also be written as
5 . 1 1
Az iy = — Z (5k3 - 5k3> (Cskikaks + Cb krkoks) + NT Tr (C Cs pyky) + NT Tr (C2 Cupyry)
k=1

where we defined

C3 yko it = €it Xy it Xio it

C4,k1k2,it = eithl,ithg,it )

1 N T
C5k:kk:—g E €t Xi it Xk it X fou
Jk1kaks NT it Vky it Lko it<N k3 it
i=1 t=1
1 N T
CGkkk:_E g Cir Xoor i1 X0 it X pow s
yR1R2K3 NT it VEy it Vko it<N k3 it -
i=1 t=1
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Again, because we have uniformly bounded 8th moments for e;; and X}, ;;, we find

HC3J€1/€2 H4 < HC3J€1/€2 H%

N T 2
_ 2 P2 2
= E E eithl,ithg,it

z']:V1 t;l i

< (Z Z €?t> (Z Z lel ,itleg,it>
i=1 t=1 i=1 t=1

= OP(N2T2) )

i.e., [|Cshks || = Op(VNT). Furthermore

HC4J€1/€2 H2 < HC3J€11€2 H%

N T
_ 2 p2 2
= E § :etik;l tikQ,it

i=1 t=1

T
~2 Y2 2
< (ZZ it) Jpax  max, (‘Xk1,it‘)€k27it>
N T
2 2 52
< (Z Z eit) H}m]{v tInla:)% (Xkl it Xy zt)
O

B (NT)OR(NT) WD) = o, (NT)*) .

Here we used the assumption that X, has uniformly bounded moments of order 8 + ¢ for some

€>0. Wealsousedzl 1Zt 1 zt—zz 121& L €5
For C'5 we find

N T
1 1
052,k21k’2k3 S <NT Z Z e’?t) (NTXkl Zth‘Q Zth3 ’Lt)
i=1 t=1
- Op(1> )

.., Os kkoks = Op(1), and analogously C xx,ks = Op(1), because ST STT 22 <V S 2.

Using these results we obtain

1

1R
|A2,k1k2|s—ZHﬂk3 80| 1€ st + Gl + S IO ot |+ S ol [

ka=1

= O,((NT) 2)0,(1) + SMO,(N"2)0,(VNT) + T 0,(NY2)o,(NT)*) = 0,(1) .

This is what we wanted to show. g
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Remember, the truncation Kernel I'(.) is defined by I'(x) = 1 for |z| < 1 and I'(x) = 0
otherwise. Without loss of generality we assume in the following the bandwidth parameter M
is a positive integer (without this assumption, one needs to replace M everywhere below by the

largest integer contained in M, but nothing else changes).

Proof of Lemma S.10.4. By Lemma S.10.2 we know asymptotically Pz is close to P and
therefore rank(PfPfo) = rank(PpPp) = R, ie., rank(PffO) = R asymptotically. We can
therefore write J?: PffOH , where H = Hy7 is a non-singular R x R matrix.

We now want to show ||H| = O,(1) and ||H || = O,(1). Because of our normalization of 7
and f° we have H = (f'P;f°/T)~" = (J'f°/T)~", and therefore | H'|| < [|][||f[l/T = O,(1).
We also have [ = fOH + (P; — Ppo)f°H, and thus H = f¥f/T — f"(P; — Pp)f°H/T, ie.,
IH| < Oy(1) + |H||O, (T~'/?) which shows ||H|| = O,(1). Note all the following results only
require ||H|| = O,(1) and ||H || = Op(1), but apart from that are independent of the choice of

normalization.

The advantage of expressing ]? in terms of Pf as above is that the result HPJ?— Pro
O, (T*1/2) of Lemma S.10.2 immediately implies

|7-ron| =00 .

The FOC wrt A in the minimization of the first line in equation (4) reads
AN AN AN K —~ ~
Af= <Y - Zm&) f (S.11.2)

which yields

5= ey (B - 8) X

k=1

F(F7)

= _Aofo’ + i (81— Bi) X+ e| P fD’Pff°>1 (H")™!
L k=1

=X ()T 0 (P B ) 1 (£Pp)

4 A0 fO g0 {(fmpﬂw) - (fOIfO)—1:| (H/>—1

i(ﬁg_BOXk‘l’e

k=1

+ PR (17P5°) ()
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We have (fD’PffO/T)_l — (fofo/T)t = O,(T~1/2), because

P]’E—Pfo

— 0, (T"2) and
fYf9/T by assumption is converging to a positive definite matrix (or given our particular
choice of normalization is just the identity matrix Iz). In addition, we have |le|| = O,(V/T),

| Xk|| = Op(VNT') and by corollary S.10.1 also HB — 8% = O,(1/V/NT). Therefore

A=y

=0,(1) , (S.11.3)

which is what we wanted to prove.

Next, we want to show

SR\ (e @y N e
(7)) - () o
(1) (o) o,wom . s

Let A= N"'X\ Xand B= N1 (H)"" A\” \° (H")"". Using (S.11.3) we find

14 Bl = o [|[X+ 7 0] [0 ]+ 7= o 2] R )]

= NTO,(N'?)0,(1) = 0, (N2 .

)\0/)\0 -1
()

and thus also || B7!|| = O,(1), and therefore || A7!|| = O,(1) (using || A—B|| = 0,(1) and applying
Weyl’s inequality to the smallest eigenvalue of B). Because A™! — B™t = A7 (B — A)B~! we
find

By assumption 1 we know

= Op(l) )

|A™ =B < A7 B 1A= Bl

—0, (N2 .

Thus, we have shown the first statement of (S.11.4), and analogously one can show the second
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one. Combining (S.11.3), (S.11.2) and (S.11.4) we obtain
i }\\/_A -1 J/c\/]? -t J?/ - 20 <)\0/>\0) -1 <f0/f0> -1 fo
VN T VT VN \ N T VT

N
2 (XX)‘I <f'f>‘1 P ((H)_IAO’AO(H’)_1>_1 (H’fo’foH)_l H' [
s (2 (E -
@)

N T VT

A~~~ o~

which is equivalent to the statement in the lemma. Note also A ()\/)\)*1 (ff)~' f is independent

of H, i.e., independent of the choice of normalization. §

Proof of Lemma S.10.5. # Part A of the proof: We start by showing

N*l

Ec [eka - (e'X,C)“““R} H = 0,(1) . (S.11.5)

Let A = ¢X;, and B = A — A"™nR_ By definition of the left-sided truncation (using the
truncation kernel I'(.) defined above) we have B, = 0 fort < 7 < t+M and By, = A;, otherwise.
By assumption 5 we have E¢(A;;) = 0 for ¢t > 7. For t < 7 we have E¢(A;,) = vazl Ec(eit Xk ir)-
We thus have E¢(By,) = 0 for 7 < t+M, and B¢ By, = .8 Ee(ey Xyir) for 7 > t4+M. Therefore

T
[Ee(B)l, = max > [Be(Bir)

T=1
T N T
< max > D EelenXii)| < N max Y el =t ) =0, (N),
r=t+M+1 | i=1 T=t+M+1
where we used M — oo. Analogously we can show ||E¢(B)||,, = 0,(N). Using part (vii) of

Lemma S.4.1 we therefore also find ||E¢(B)|| = 0,(V), which is equivalent to equation (S.11.5)

we wanted to show in this part of the proof. Analogously we can show

~—

Nt HEC [e’e - (e'e)trunCD} H =0,(1

T*l

‘ — 0,(1). (S.11.6)



Using Lemma S.11.3 we have

<M max max N7 e, Xy, — Ee (e, X))

N H €' X — Ee (¢ X;)] "0k

N
-1
< M max max N E leitXkir — Ec (€ Xk ir)]
t o t<r<t+M
i=1
_ =(1
<MN /2 max  max Z,it)T .
t t<r<t+M | %

4
According to Lemma S.11.2 we know E¢ ‘Z ,SQT‘ is bounded uniformly across ¢ and 7. Applying

Lemma S.11.1 we therefore find max, max,.,<;+y Zo) = O,((MT)*/*). Thus we have

Z(l)

M N7Y2 max max o

t  t<r<t+M

=0, (M N2 (MT)"*) = 0,(1) .

Here we used M®/T — 0. Analogously we can show

N7 l[ee — Ec (e'e)]™ P ‘ =0,(1),
Tfl [66/ . EC <€e/>]truncD ‘ _ 0p<1>
# Part C of the proof: Finally, we want to show
N—l H[ele o /e\/Xk]truncR ‘ = 0p(1) . (8117)

According to theorem S.9.1 we have € = Myoe M jo+€yem, Where €en, = é{el)—fo:l (Bk - ﬁg) ’eél)—k
elrem) We then have

N_1 H[@le - /é,Xk]truncR

<Nt H e X, et ’ + N7Y||[Ppoe’ Myo X5 ™ ¢/ Pyo X"

AR

Using corollary S.10.1 we find the remainder term satisfies ||eem| = O,(1). Using Lemma S.11.3
we find

M
N-1 H[eiem Xk]truncR ‘ = oy max Crem.t Xhyr
t,T
M
< F H}%X ||€rem,t|| ||X1€17'||
M
< N [ €xem| max [ X7

M
< ﬁop(l)op(NlmTl/B) = Op(l) )
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where we used the fact that the norm of each column eéyep, ¢ is smaller than the operator norm
of the whole matrix €. In addition we used Lemma S.11.1 and the fact that N=Y2||.X, || =
\/N—1 SN X2 iir has finite 8’th moment to show max, || Xy || = O,(NY/2TY8). Using again
Lemma S.11.3 we find

N—l H [Pfo e/M)\OXk]truncR

} <N'M max_ |ft0 (fo f0)-1 fo G/M)\oXk77.|

< NTEM el I mase | £ max | X |

= N"' M O,(NY?) Op(TY?) O(T 1) Op(NV2TVF) = 0,(1) |
and

t R
H e Pyo X

‘ <N~ 1/2M Jmax ( WZ@N) NI 01 max (N‘lz)\?’th>
— NTEMO,(T)0,(1)0,(T) = 0,(1).
Thus, we proved equation (S.11.7). Analogously we obtain

N*l

[6/6 _ /é/é\]truncD

T*l

[66/ N /exé\/]truncD

# Combining (S.11.5), (S.11.6), and (S.11.7), we obtain N~! ||E¢(e'X,) — (¢ X;,)"™™ "

) _

Proof of Lemma S.10.6. Using theorem S.9.1 and S.10.1 we find ||[¢]| = O,(N'/2). Applying

0p(1). The proof of the other two statements of the lemma is analogous. 1

Lemma S.11.3 we therefore find

runc M
N[ xR ‘ < = max |2, X, |

N t,7
M .

< v max [l | Xl
M

< 57 2l max 1|
M

< FONOLNPT) = O,(MT')

where we used the result max, | Xy .|| = O,(N2T1/#) that was already obtained in the proof
of the last theorem.

The proof for the statement (ii) and (iii) is analogous. B
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S.12 Proofs for Section 5 (Testing)

Proof of Theorem 5.1. Using the expansion for Lyr(f) in Lemma S.1 in the supplementary
material of Moon and Weidner (2015) we find for the derivative (the sign convention ¢, = 35— f3,,

results in the minus sign below)

8LNT 1 o0 K K K . . .
G YD Y0 S SNSRI IR R S

g=2 k1=0 ko=0 Kg—1 0

2 1 1
_ 0
= [QWNT(ﬁ -3 )}k — WONT,k + WVRI,NT,I@ + WVRQ,NT,k ;
where
1
WNT,klkz = W L(Q) ()\Oa foa ka Xk'Q) )
1 &
C'NT,k = g (60)9_1 L(g) (/\07 f07 Xk) XO? s 7X0)
2VNT &
Ge g
= LO (X 2 X, e,....e) ,
£ 2y/NT % 5 i )
and
VRl,NT,k = - Z g <€0>g71 L(g) <>\07 f07 Xk7 X07 oo 7X0) )
g:Ge+1
= - Z gL(g)()\OafOJXkuea"'7e) )
g:Ge+1
00 g—1 g— 1 K K
VRanri= -3 g ( ) ) ST e ()
g=3 r=1 k1=1 kr=1

L9 (X 2 Xiy Xiyyoo oy Xiyy Xoy -+, Xo)

(B, = By,)

I
|
NE
Na)
N
T
S
L
N——
]~
]~
=
=

Q
Il
w
5
Il
—

L9 0 Xpy Xiyy ooy Xiyesenve)

50



The above expressions for Wy and Cyp are equivalent to their definitions given in theorem

4.1. Using the bound on LY and (Z) < 4™ we find

\VRinrik| < co

||ch Z g (01|| ||> !
VNT =, \VNT

< 2eo+ e 1L (%)Ge - (Y] v

2 =
~||=
(]

Q{\')
L
S
|
\D
=

Xz
\VRynTi| < coNT kz: |87 — Bk;||\|/—||

—2
e g

|X || HeH

g—2

Xill & o 1 Xzl o IXzl el
ng (dcy)? Z\ﬂk B\\/— Zwk BW_ T

9=3

< ¢

kH ol k“ HX H e H

where ¢y = 8 Rdyax (A’ fo)/2 and ¢; = 16dyax (A, fo)/dnmn()\0 f°) both converge to a constants
as N,T — oo, and the very last inequality is only true if 4¢; (Zk B — 50| |\|/X7H \ﬂi) <
1, and ¢ > 0 is an appropriate positive constant. To show VRjn7x = 0,(NT) we used

Assumption 3*. From the above inequalities we find for ny, — oo

sup ||VR1,NT(B)H -0 (1)
WHNTEIL _ o (1),
(8]|8-8 | <nwey  VNT
sup [V R nr(B)]] — 0, (1).

(85— | <nwry NT 118 =5

Thus Ry (8) = Ry nr(B) + Ront(B) satisfies the bound in the theorem. 1

Proof of Theorem 5.2. Using Theorem 4.3 it is straightforward to show W D}, has limiting
distribution x2.
For the LR test we have to show the estimator ¢ = (NT)*lTr(’e\(B) E’(B)) is consistent for

~

¢ = Ece?. As already noted in the main text we have ¢ = Lyt (5), and using our expansion

and v/ NT-consistency of /B we immediately obtain
1

/C\: WTI'(M/\OGMJCOE/) + Op(l) .
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Alternatively, one could use the expansion of € in Theorem S.9.1 to show this. From the above

result we find

1 1
c— WTr(ee/) =NT |Tr(PyoeMyoe') + Tr(ePpoe)| + 0,(1)
2R
< 2B o)+ 0,(1) = 0,01

By the weak law of large numbers we thus have

N T
~ 1 2
‘= szeit+0p(1)20+0p(1),

i=1 t=1
i.e., ¢ is indeed consistent for ¢. Having this one immediately obtains the result for the limiting
distribution of LR} .

For the LM test we first want to show equation (9) holds. Using the expansion of € in

Theorem S.9.1 one obtains

~ 2 ,
_ 30 2 w0 0 2 @0 0

= 2VNTWyr (B=8")] +=CO00 %, Xie) + 70PN, £, X )

2

VNT

Tr (Xpete™)

_ {2 VNT Wyr (B - 50) + %CNT] + 0,(1)

k

_ JNT [VLNT(B)L +0,(1),

which is what we wanted to show. Here we used |Tr (X;e0™) | < 7R[| X, |[et™ || = O,(N?/?).
Note that || Xi|| = O,(N), and Theorem S.9.1, and v/ NT-consistency of 3, together imply
[etem™) || = 0,(v/N). We also used the expression for V Ly7(53) given in Theorem 5.1, and the
bound on VRy7(5) given there.

We now use equation (10) and W = W 40,(1), @ = Q+0,(1), and B = B+0,(1) to obtain

LMyr — (C = BYW'H'(HW 'QWH) "' HW *(C - B) .

Under Hy we thus find LMY —q X2 8

52



S.13 Additional Monte Carlo Results

We consider an AR(1) model with R factors

R
Yi = pOY;,tfl + Z)‘?T ffi + €4t -

r=1
We draw the e;; independently and identically distributed from a t-distribution with five degrees
of freedom. The )\?T are independently distributed as A(1,1), and we generate the factors
from an AR(1) specification, namely fj. = p; f{_ |, + s, for each r = 1,..., R, where u, ~
1dMN (0, (1 — p?)aQ). For all simulations we generate 1,000 initial time periods for f? and Yj
that are not used for estimation. This guarantees the simulated data used for estimation are
distributed according to the stationary distribution of the model.

For R =1 this is exactly the simulation design used in the main text Monte Carlo section,
but DGPs with R > 1 were not considered in the main text. Table S.1 reports results for which
R =1 is used both in the DGP and for the LS estimation. Table S.2 reports results for which
R =1 is used in the DGP, but R = 2 is used for the LS estimation. Table S.3 reports results
for which R = 2 is used both in the DGP and for the LS estimation. The results in Table S.1
and S.2 are identical to those reported in the main text Table 1 and 2, except we also report
results for the CCE estimator. The results in Table S.3 are not contained in the main text.

The CCE estimator is obtained by using Atpmxy = N3 (Yi, Yis—1)" as a proxy for the
factors and then estimating the parameters p, \j1, Ao, ¢ = 1,..., N, via OLS in the linear
regression model Yi; = pYii—1 + Ait :plroxy + \io At%roxy + ej.

The performance of the CCE estimator in Table S.1 and S.2 are identical (up to random
MC noise), because the number of factors need not be specified for the CCE estimator, and the
DGPs in Table S.1 and S.2 are identical. These tables show for R = 1 in the DGP, the CCE
estimator performs very well. From Chudik and Pesaran (2015) we expect the CCE estimator
to have a bias of order 1/7" in a dynamic model, which is confirmed in the simulations: the bias
of the CCE estimator shrinks roughly in inverse proportion to 7', as T' becomes larger. The 1/T
bias of the CCE estimator could be corrected for, and we would expect the bias-corrected CCE
estimator to perform similarly to the bias-corrected LS estimator.

However, if there are R = 2 factors in the true DGP, then it turns out the proxies ﬁpmxy do
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not pick those up correctly. Table S.3 shows for some parameter values and sample sizes (e.g.,
P’ =03 and T = 10, or p° = 0.9 and T = 40) the CCE estimator is almost unbiased, but for
other values, including T" = 80, the CCE estimator is heavily biased if R = 2. In particular,
the bias of the CCE estimator does not seem to converge to zero as T' becomes large in this
case. By contrast, the correctly specified LS estimators (i.e., correctly using R = 2 factors in
the estimation) performs very well according to Table S.3. However, an incorrectly specified
LS estimator, which would underestimate the number of factors (e.g., using R = 1 factors in
estimation instead of the correct number R = 2) would probably perform similarly to the CCE
estimator, because not all factors would be corrected for. Overestimating the number of factors
(i.e., using R = 3 factors in estimation instead of the correct number R = 2) should, however,

not pose a problem for the LS estimator, according to Moon and Weidner (2015).

Notes

'If an eigenvalue has multiplicity m, we count it m times when finding the N — R smallest eigenvalues. In

this terminology we always have exactly N eigenvalues of ZZ’, but some may appear multiple times.
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Tables

Table S.1: Same as Table 1 in main paper, but also reporting pooled CCE estimator of Pe-
saran (2006).

P’ =0.3 P’ =0.9
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE
T = bias  0.1232 -0.1419 -0.0713 -0.1755 0.0200 -0.3686 -0.2330 -0.3298
(M =2) std 0.1444 0.1480 0.0982 0.1681 0.0723 0.1718 0.1301  0.2203
rmse 0.1898 0.2050 0.1213  0.2430 0.0750 0.4067 0.2669 0.3966

T =10 bias 0.1339 -0.0542 -0.0201 -0.0819 0.0218 -0.1019 -0.0623 -0.1436
(M =3) std 0.1148 0.0596 0.0423 0.0593 0.0513 0.1094 0.0747  0.0972
rmse 0.1764 0.0806 0.0469 0.1011 0.0557 0.1495 0.0973 0.1734

T =20 bias 0.1441 -0.0264 -0.0070 -0.0405 0.0254 -0.0173 -0.0085 -0.0617
(M =4) std 0.0879 0.0284 0.0240 0.0277 0.0353 0.0299 0.0219  0.0406
rmse 0.1687 0.0388 0.0250 0.0491 0.0434 0.0345 0.0235 0.0739

T =40 bias 0.1517 -0.0130 -0.0021 -0.0200 0.0294 -0.0057 -0.0019 -0.0281
(M =5) std 0.0657 0.0170 0.0160 0.0166 0.0250 0.0105 0.0089 0.0162
rmse 0.1654 0.0214 0.0161  0.0260 0.0386 0.0119 0.0091 0.0324

T =80 bias 0.1552 -0.0066 -0.0007 -0.0100 0.0326 -0.0026 -0.0006 -0.0136
(M =6) std  0.0487 0.0112 0.0109 0.0111 0.0179 0.0056 0.0053 0.0073
rmse 0.1627 0.0130 0.0109  0.0149 0.0372 0.0062 0.0053 0.0154
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Table S.2: Same as Table 2 in main paper, but also reporting pooled CCE estimator of Pe-
saran (2006).

P’ =0.3 P’ =0.9
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE
T =5 bias 0.1239 -0.5467 -0.3721 -0.1767 0.0218 -0.9716 -0.7490 -0.3289
(M =2) std 0.1454 0.1528 0.1299 0.1678 0.0731 0.1216 0.1341  0.2203
rmse 0.1910 0.5676 0.3942  0.2437 0.0763 0.9792 0.7609  0.3958

T =10 bias 0.1343 -0.1874 -0.1001 -0.0816 0.0210 -0.4923 -0.3271 -0.1414
(M =3)std 0.1145 0.1159 0.0758 0.0592 0.0518 0.1159 0.0970 0.0971
rmse 0.1765 0.2203 0.1256  0.1008  0.0559 0.5058 0.3412  0.1715

T =20 bias 0.1451 -0.0448 -0.0168 -0.0407 0.0255 -0.1822 -0.1085 -0.0618
(M =4) std  0.0879 0.0469 0.0320 0.0277 0.0354 0.0820 0.0528 0.0404
rmse 0.1696 0.0648 0.0362 0.0492 0.0436 0.1999 0.1207 0.0739

T =40 bias 0.1511 -0.0161 -0.0038 -0.0199 0.0300 -0.0227 -0.0128 -0.0282
(M =5)std 0.0663 0.0209 0.0177 0.0167 0.0250 0.0342 0.0225 0.0164
rmse 0.1650 0.0264 0.0181  0.0260  0.0390 0.0410 0.0258 0.0326

T =80 bias 0.1550 -0.0072 -0.0011 -0.0100 0.0325 -0.0030 -0.0010 -0.0136
(M =6) std  0.0488 0.0123 0.0115 0.0111 0.0182 0.0064 0.0057  0.0074
rmse 0.1625 0.0143 0.0116  0.0149 0.0372 0.0071 0.0058  0.0155
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Table S.3: Analogous to Table 2 in main paper, but with R = 2 correctly specified, and also
reporting pooled CCE estimator of Pesaran (2006).

P’ =0.3 P’ =0.9
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE
T =5 bias 0.1861 -0.4968 -0.3323 -0.1002 0.0309 -0.9305 -0.7057 -0.2750
(M =2)std 0.1562 0.1910 0.1580 0.2063 0.0801 0.1644 0.1754 0.2302
rmse 0.2429 0.5322 0.3680 0.2294  0.0859 0.9449 0.7272  0.3586

T =10 bias 0.1989 -0.1569 -0.0758 0.0036 0.0326 -0.4209 -0.2732 -0.1040
(M =3)std 0.1185 0.1018 0.0700 0.1074 0.0543 0.1607 0.1235 0.1070
rmse 0.2315 0.1870 0.1031 0.1074 0.0633 0.4505 0.2998  0.1492

T =20 bias 0.2096 -0.0592 -0.0185 0.0520 0.0366 -0.0741 -0.0406 -0.0310
(M =4) std 0.0884 0.0377 0.0287 0.0711 0.0356 0.0859 0.0552  0.0512
rmse 0.2274 0.0702 0.0341 0.0881 0.0511 0.1134 0.0686  0.0599

T =40 bias 0.2174 -0.0275 -0.0054 0.0759 0.0404 -0.0134 -0.0047 -0.0012
(M =5)std 0.0649 0.0192 0.0170 0.0500 0.0239 0.0166 0.0122 0.0281
rmse 0.2269 0.0335 0.0179  0.0908 0.0469 0.0214 0.0131 0.0281

T'=80 bias 0.2232 -0.0134 -0.0016 0.0873 0.0433 -0.0052 -0.0012 0.0125
(M =6) std 0.0472 0.0118 0.0113 0.0364 0.0164 0.0066 0.0058 0.0176
rmse 0.2281 0.0179 0.0114 0.0946 0.0463 0.0084 0.0059  0.0216
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