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Abstract

This supplementary material contains a detailed description of a

procedure to simulate a dependent multiplier sequence, a section illus-

trating the runtime performance of the proposed tests and a section

containing the proofs of Lemma C.4, C.6 and C.7 from the main paper.

E Practical issues for the choice of the mul-

tipliers

As described in Section 3.1, the bootstrap version of the test statistic in

Section 2 depends crucially on a sequence of dependent multipliers satisfying

the conditions in Definition A.1 in Appendix A. Within this section, we

present a slight modification of the approach in Bücher and Kojadinovic

(2014), Section 5.2, originating from Bühlmann (1993) and Politis and White

(2004), showing how to simulate such a sequence.
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E.1 Simulating dependent multipliers

First of all, choose a bandwidth parameter `n (see Section E.2 below) and

set bn = round{(`n + 1)/2}. Let κ be a positive, bounded function which is

symmetric around zero such that κ(x) > 0 for all x ∈ (−1, 1). Within the

simulation study, we use the Parzen-kernel defined as

κP (x) = (1− 6x2 + 6|x|3)1(|x| ≤ 1/2) + 2(1− |x|)31(1/2 < |x| ≤ 1).

Now, for j = 1, . . . , `n, define weights ω̃jn = ωjn(
∑`n

i=1 ω
2
in)−1/2 where ωjn =

κ{(j − bn)/bn}. Finally, let ξ1, . . . , ξn+2bn−2 be i.i.d. random variables which

are independent from the sample X1, . . . ,Xn with E[ξ1] = 0, E[ξ2
1 ] = 1 and

E[|ξ1|m] < ∞, for any m ≥ 1. Then, the sequence of random variables

Z1,n, . . . , Zn,n defined as

Zi,n =
`n∑
j=1

ω̃jnξj+i−1

asymptotically satisfies the conditions in Definition A.1, see Bücher and Ko-

jadinovic (2014). For a detailed discussion on the properties of these multi-

pliers and an alternative simulation procedure for the multpliers see Bücher

and Kojadinovic (2014).

E.2 Choosing the bandwidth parameter `n

The simulation method described in the previous section depends on the

choice of the ‘bandwidth’ parameter `n. Within the context of empirical

copulas, Bücher and Kojadinovic (2014) derived a closed-form formula for a

theoretically optimal choice, where optimality is to be understood as opti-

mality with respect to a certain MSE-minimizing criterion. Moreover, they

proposed a data-adaptive estimation procedure for this (theoretically) opti-

mal bandwidth. In the following, we adapt their approach to the processes

underlying the goodness-of-fit tests in Section 2.

For u,v ∈ [0, 1]d, let σ(u,v) denote the characterizing covariance kernel

of the process u 7→ CC(u)−∇Cθ0(u)Θ. Its bootstrap approximation, for a
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fixed b ∈ {1, . . . , B}, is given by C(b)
n (u)−∇Cθn(u)Θ

(b)
n . The main idea of the

subsequent developments is as follows: if σ̂n denotes the covariance kernel of

the bootstrap process, conditional on the data, then a theoretically optimal

choice of `n is given by the minimizer of the integrated mean squared error of

σ̂n(u,v), seen as an estimator for σ(u,v), with respect to `n. Unfortunately,

necessary closed form expressions for the mean or the variance of σ̂n are out

of reach, whence we follow the proposal of Bücher and Kojadinovic (2014)

and consider an asymptotically equivalent form of C(b)
n (u) − ∇Cθn(u)Θ

(b)
n

instead, for which calculations are feasible.

More precisely, define B̃(b)
n (u) = n−1/2

∑n
i=1 Z

(b)
i,n{1(Ui ≤ u) − Cθ0(u)}

and Θ̃
(b)
n = n−1/2

∑n
i=1 Z

(b)
i,n{Jθ0(Ui) + Ki,θ0}, where Ki,θ0 is defined in Theo-

rem 2.2, and let C̃(b)
n (u) = B̃(b)

n (u)−
∑d

l=1C
[l]
θ0

(u)B̃(b)
n (ul). It follows from the

arguments in the proof of Theorem 2.2 that

sup
u∈[0,1]d

∣∣∣C(b)
n (u)−∇Cθn(u)Θ(b)

n − {C̃(b)
n (u)−∇Cθ0(u)Θ̃(b)

n }
∣∣∣ = oP (1).

In contrast to σ̂n, the (conditional) covariance kernel of the (unobservable)

process C̃(b)
n (u)−∇Cθ0(u)Θ̃

(b)
n can be calculated explicitly, at least up to the

first-order terms. We have

σ̃n(u,v) = CovZ{C̃(b)
n (u)−∇Cθ0(u)Θ̃(b), C̃(b)

n (v)−∇Cθ0(v)Θ̃(b)}

=
1

n

n∑
i,j=1

EZ [Z
(b)
i,nZ

(b)
j,n]f(Ui,u)f(Uj,v)

=
1

n

n∑
i,j=1

ϕ{(i− j)/`n}f(Ui,u)f(Uj,v)

where CovZ and EZ denote covariance and expectation conditional on the

data, respectively, and where, for i = 1, . . . , n and u ∈ [0, 1]d,

f(Ui,u) = 1(Ui ≤ u)− Cθ0(u)−
d∑
l=1

C
[l]
θ0

(u){1(Uil ≤ ul)− ul}

− ∇Cθ0(u){Jθ0(Ui) +Kθ0,i}.
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Mimicking the proofs of Proposition 5.1 and Proposition 5.2 in Bücher and

Kojadinovic (2014), we obtain the following results regarding bias and vari-

ance of σ̃n, seen as an estimator for σ.

Lemma E.1. Additionally to the conditions assumed in (iii) of Theorem 2.2

suppose that a defined in Condition VI satisfies a > 3(2 + ν)/ν and that ϕ

defined in Definition A.1 is twice continuously differentiable on [−1, 1] with

ϕ′′(0) 6= 0. Then, for any u,v ∈ [0, 1]d,

E[σ̃n(u,v)]− σ(u,v) =
Γ(u,v)

`2
n

+ rn,1(u,v),

where supu,v∈[0,1]d |r1,n(u,v)| = o(`−2
n ) and Γ(u,v) = ϕ′′(0)

2

∑
k∈Z k

2γ(k,u,v)

with γ(k,u,v) = Cov{f(U0,u), f(Uk,v)}).

Additionally, provided the function ϕ is Lipschitz-continuous and provided∫
[0,1]d

∏d
l=1 rl(ul)

4+2νdCθ0(u) < ∞, where r1, . . . , rd are defined in Condition

V, then

Var{σ̃n(u,v)} =
`n
n

∆(u,v) + rn,2(u,v),

where ∆(u,v) =
∫ 1

−1
ϕ(x)2dx{σ(u,u)σ(v,v) + σ(u,v)2} and where the re-

mainder term satisfies supu,v∈[0,1]d |rn,2(u,v)| = o(`n/n).

As a consequence of Lemma E.1, the (pointwise) mean integrated squared

error of σ̃n(u,v) can be written as

MSE{σ̃n(u,v)} =
{Γ(u,v)}2

`4
n

+ ∆(u,v)
`n
n

+ r2
n,1(u,v) + rn,2(u,v).

Furthermore, the integrated mean squared error is given by

IMSE(σ̃n) =

∫
[0,1]2d

MSE{σ̃n(u,v)}d(u,v) =
Γ̄2

`4
n

+ ∆̄
`n
n

+ o(`−4
n ) + o(`n/n),

where Γ̄ =
∫

[0,1]2d
Γ(u,v)d(u,v) and ∆̄ =

∫
[0,1]2d

∆(u,v)d(u,v). Obviously,
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the function `n 7→ Γ̄/`4
n + ∆̄`n/n is minimized for

`n,opt =
(4Γ̄2

∆̄

)1/5

n1/5,

which can be considered as a theoretically optimal choice for the bandwidth

parameter `n.

In practice, the unknown quantities in `n,opt need to be estimated, namely

σ(u,v) =
∑

k∈Z γ(k,u,v) and M(u,v) =
∑

k∈Z k
2γ(k,u,v). For that

purpose, we can closely follow Bücher and Kojadinovic (2014) again. Let

L ∈ {1, . . . , n} be the smallest number such that the marginal autocorrela-

tions at lag L appear to be negligible, see Bücher and Kojadinovic (2014) and

Politis and White (2004) for details. Let K denote the trapezoidal kernel,

defined as K(x) = [{2(1− |x|)} ∨ 0] ∧ 1. Then, set

σ̂n(u,v) =
L∑

k=−L

K(k/L)γ̂n(k,u,v), M̂n(u,v) =
L∑

k=−L

K(k/L)k2γ̂n(k,u,v),

where, for u,v ∈ [0, 1]d and k ∈ {−L, . . . , L},

γ̂n(k,u,v) =

n−1
∑n−k

i=1 f̂(Ûi,u)f̂(Ûi+k,v), k ≥ 0

n−1
∑n

i=1−k f̂(Ûi,u)f̂(Ûi+k,v), k < 0
,

and where

f̂(Ûi,u) = 1(Ûi ≤ u)− Cn(u)−
d∑
l=1

C [l]
n (u){1(Ûil ≤ ul)− ul}

− ∇Cθn(u){Jθ0(Ûi) + K̂i,n,θn}.

The plug-in principle finally yields an estimator ˆ̀
n,opt for `n,opt.
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F Runtime comparison

To compare the performance of our test to the test by Rémillard et al. (2012)

in terms of runtime, we simulated N = 100 test runs of both tests under the

null hypothesis for the Gaussian, the t4 and the Clayton copula with τ = 0.2.

The results can be found in Figure 1, where we depict the relative runtimes

rpb/rmb of the test by Rémillard et al. (2012) (rpb for parametric bootstrap)

compared to the runtime of the new test (rmb for multiplier bootstrap) as a

function of the sample size (with B = 200 bootstrap replications) and of the

number of bootstrap replications (with sample size n = 200), respectively. In

all considered scenarios the new test clearly outperforms the test by Rémillard

et al. (2012) in terms of computational costs, up to a factor of almost 70 for

the Clayton copula with B = 500 and n = 200.

Note that the function corresponding to the Clayton copula in the left

panel of Figure 1 is the only decreasing function. This is due to the fact

that, for the Clayton copula and with increasing sample size, the evaluation

of the score function in the data points in the multiplier bootstrap requires

comparatively more time than the simulation of a Markovian copula process

in the parametric bootstrap (even though all involved formulas are explicit).

G Remaining proofs

Proof of Lemma C.4. As in the proof of Lemma C.1, we may assume without

loss of generality that Ω = Ωn,D for some D > 0. Let us write L(b)

n2 = An+Bn,

where

An =
1√
n

n∑
i=1

Z
(b)
i,n{Jθ0(Ûi)− Jθ0(Ui)}, Bn =

1√
n

n∑
i=1

Z
(b)
i,n{K̂i,n,θ0 −Ki,n,θ0},

and consider each term separately. For η ∈ (0, 1/2), set Mη = [η, 1− η]d. By

the mean value theorem, there exist intermediate values Ũi between Ûi and

Ui such that we can write An =
∑d

l=1{An,l(Mη) +An,l(M
C
η )}, where, for any
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Figure 1: Relative runtimes of the test by Rémillard et al. (2012) compared
to the runtimes of the new testing procedure as a function of the sample size
(left) and the number of bootstrap replications (right) for the Gaussian, the
t4 and the Clayton copula.

M ⊂ [0, 1]d,

An,l(M) =
1√
n

n∑
i=1

Z
(b)
i,nJ

[l]
θ0

(Ũi)(Ûi,l − Ui,l)1(Ui ∈M).

We begin with the treatment of An,l(M
C
η ), for a fixed l. Since we may assume

Ω = Ωn,D, we can bound ‖An,l(MC
η )‖ by

D

n

n∑
i=1

|Z(b)
i,n |ql(Ui,l) sup

|u−Ui,l|
ql(Ui,l)

≤ B√
n

r̃l(u)
∏
l′ 6=l

sup
|u−Ui,l′ |
ql′ (Ui,l′ )

≤ B√
n

rl′(u)1(Ui ∈MC
η )

As in the proof of Lemma C.1, by Condition V, for sufficiently large n, the

expectation of the latter expression converges to zero as η → 0. Therefore,

it remains to consider An,l(Mη) for fixed η ∈ (0, 1/2).

Since maxni=1 ‖Ûi−Ui‖ ≤ D/
√
n, we get that An,l(Mη) = Ān,l(Mη)+oP (1)
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for n→∞, where

Ān,l(Mη) =
1√
n

n∑
i=1

Z
(b)
i,nJ

[l]
θ0

(Ũi)(Ûi,l − Ui,l)1(Ui ∈Mη, ‖Ûi −Ui‖ ≤ η/2).

By the Cauchy-Schwarz inequality, we obtain

E
[
‖Ān,l(Mη)‖2

]
= E

[
{Ān,l(Mη)}′{Ān,l(Mη)}

]
≤ sup

u∈Mη/2

‖J [l]
θ0

(u)‖2 × E
[ n

max
i=1
|Ûi,l − Ui,l|2

]
× 1

n

n∑
i,j=1

|E[Z
(b)
i,nZ

(b)
j,n]|.

The first factor on the right-hand side is bounded by Condition V. The second

factor is bounded by D2/n as we may assume that Ω = Ωn,D. Regarding the

third factor, note that 1
n

∑n
i,j=1 |E[Z

(b)
i,nZ

(b)
j,n]| = O(`n) as shown in (C.3). We

can conclude that Ān,l(Mη) is of order Op(n
−1/4−κ/2) = oP (1), and therefore

also An = oP (1).

For the proof of the lemma, it remains to be shown that Bn = oP (1). We

can decompose Bn =
∑d

l=1(Bn,1,l +Bn,2,l +Bn,3,l), with

Bn,1,l =
1√
n

n∑
i=1

Z
(b)
i,n

1

n

n∑
j=1

{J [l]
θ0

(Ûj)− J [l]
θ0

(Uj)}{1(Ui,l ≤ Uj,l)− Uj,l}

Bn,2,l =
1√
n

n∑
i=1

Z
(b)
i,n

1

n

n∑
j=1

{J [l]
θ0

(Ûj)− J [l]
θ0

(Uj)}(Uj,l − Ûj,l)

Bn,3,l =

{
1√
n

n∑
j=1

J
[l]
θ0

(Uj)(Ûj,l − Uj,l)
}
×
{

1

n

n∑
i=1

Z
(b)
i,n

}
.

Bn,3,l converges in probability to zero: the first factor is of order OP (1) by

a similar argumentation as before based on the fact that we may assume

Ω = Ωn,D, and the second factor is of order OP (`
1/2
n /n1/2) by (C.3).

Regarding Bn,1,l, we can bound

‖Bn,1,l‖ ≤
{

1√
n

sup
u∈[0,1]

∣∣∣ n∑
i=1

Z
(b)
i,n

1(Ui,l ≤ u)− u
ql(u)

∣∣∣}
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×
{

1

n

n∑
j=1

‖J [l]
θ0

(Ûj)− J [l]
θ0

(Uj)‖ql(Uj,l)
}
.

The first factor on the right-hand side is of order OP (1) by Lemma D.1. The

second factor converges to 0 in probability by the same argumentation as for

the treatment of (C.2) in the proof Lemma C.1.

A similar argumentation also works for Bn,2,l: on the set Ωn,D, we have

‖Bn,2,l‖ ≤
{ 1

n

n∑
i=1

|Z(b)
i,n |
}
×
{D
n

n∑
j=1

‖J [l]
θ0

(Ûj)− J [l]
θ0

(Uj)‖ql(Uj,l)
}
,

and this expression is oP (1) since E[|Z(b)
i,n |] <∞ and by the same reasons as

in the proof of Lemma C.1.

Proof of Lemma C.6. Using Condition III, tightness of the vector of pro-

cesses follows from marginal tightness of B̃n and B̃(b)
n , see Theorem 3.1 in

Bücher and Kojadinovic (2014).

Regarding weak convergence of the finite dimensional distributions, we

only consider (B̃n, Θ̃n, B̃(b)
n , Θ̃

(b)
n ) for the ease of reading. By the Cramér-Wold

device, we have to show that, for any q, q′ ∈ N, any c1, . . . , cq, c̄1, . . . , c̄q′ ∈ R,

c, c̄ ∈ Rp and any u1, . . . ,uq,v1, . . . ,vq′ ∈ [0, 1]d,

Vn :=

q∑
s=1

csB̃n(us) +

q′∑
s=1

c̄sB̃(b)
n (vs) + c′Θ̃n + c̄′Θ̃(b)

n

 V :=

q∑
s=1

csBC(us) +

q′∑
s=1

c̄sB(b)
C (vs) + c′Θ + c̄′Θ(b).

First of all, we decompose

Vn =
1√
n

n∑
i=1

Wi +W
(b)
i + Ti + T

(b)
i

with Wi =
∑q

s=1 cs{1(Ui ≤ us) − Cθ0(us)},W
(b)
i =

∑q′

s=1 Z
(b)
i,n c̄s{1(Ui ≤

vs) − Cθ0(vs)}, Ti = c′{Jθ0(Ui) + Ki,θ0} and T
(b)
i = Z

(b)
i,n c̄
′{Jθ0(Ui) + Ki,θ0}.
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The subsequent proof is based on the ‘big block-small block’-technique. The

assumption on a in Condition VI is equivalent to 1
2(1+ν)

< 1
2
− 2+ν

aν
whence,

noting that also κ > 1
2(1+ν)

by assumption, we may choose 0 < η1 < η2 <

κ such that 1
2(1+ν)

< η1 < η2 < 1
2
− 2+ν

aν
. Now, set bn = bn1/2−η1c (the

length of the big blocks), sn = bn1/2−η2c (the length of the small blocks)

and kn = bn/(bn + sn)c (the number of big or small blocks). Notice, that

kn = O(n1/2+η1). For j = 1, . . . , kn, set

Bjn =

(j−1)(bn+sn)+bn∑
i=(j−1)(bn+sn)+1

Wi +W
(b)
i + Ti + T

(b)
i ,

Sjn =

j(bn+sn)∑
i=(j−1)(bn+sn)+bn+1

Wi +W
(b)
i + Ti + T

(b)
i ,

such that we can write

Vn =
1√
n

kn∑
j=1

Bjn +
1√
n

kn∑
j=1

Sjn +
1√
n
Rn,

where Rn =
∑n

i=kn(bn+sn)+1Wi+W
(b)
i +Ti+T

(b)
i is the sum over the remaining

indices that are not part of a big or a small block.

First of all, let us show that the variance of Vn is equal to Var( 1√
n

∑kn
j=1Bjn)+

o(1) as n→∞, i.e., that

1

n
Var

( kn∑
j=1

Sjn

)
+

1

n
Var(Rn) +

2

n

kn∑
j,j′=1

Cov(Bjn, Sj′n)

+
2

n

kn∑
j=1

Cov(Bjn, Rn) +
2

n

kn∑
j=1

Cov(Sjn, Rn) (F.1)

vanishes as n → ∞. To this end, we will frequently exploit the following

bounds which are consequences of Lemma 3.9 and Lemma 3.11 in Dehling
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and Philipp (2002)

|E[WiWi′ ]| =
∣∣∣ q∑
s,s′=1

cscs′E[{1(Ui ≤ us)− Cθ0(us)}{1(Ui ≤ us′)− Cθ0(us′)}]
∣∣∣

≤ 4

q∑
s,s′=1

|cscs′ |α(|i− i′|) ≤ const×α(|i− i′|)

|E[WiTi′ ]| =
∣∣∣ q∑
s=1

csc
′E[{1(Ui ≤ us)− Cθ(us)}Jθ0(Ui′)]

∣∣∣
≤ 20‖c‖

q∑
s=1

|cs|α(|i− i′|)
1+ν
2+νE[‖Jθ0‖2+ν ]

1
2+ν ≤ const×α(|i− i′|)

1+ν
2+ν

|E[TiTi′ ]| = |c′E[Jθ0(Ui)Jθ0(Ui′)
′]c| ≤ 40‖c‖2α(|i− i′|)

ν
2+νE[‖Jθ0‖2+ν ]

2
2+ν

≤ const×α(|i− i′|)
ν

2+ν .

Analogously, |E[W
(b)
i W

(b)
i′ ]| ≤ const×α(|i−i′|)), |E[W

(b)
i T

(b)
i′ ]| ≤ const×α(|i−

i′|)
1+ν
2+ν and |E[T

(b)
i T

(b)
i′ ]| ≤ const×α(|i−i′|)

ν
2+ν . Notice that all the other pairs

of random variables are uncorrelated and that the largest bound is a constant

multiple of α(|i− i′|)
ν

2+ν . Now, we can begin with the discussion of the first

summand in (F.1). We have

1

n
Var

( kn∑
j=1

Sjn

)
=

1

n

kn∑
j=1

Var(Sjn) +
2

n

∑
j 6=j′

Cov(Sjn, Sj′n). (F.2)

Since the distance between any two summands in Sjn and Sj′n for j 6= j′ is at

least bn, their covariance is of order α(bn)
ν

2+ν = O(b
−aν/(2+ν)
n ). Observing that

Sjn consists of sn summands, we obtain that the second term in the last dis-

play is of order O(k2
ns

2
nb
−aν/(2+ν)
n n−1) = O(n1−aν/(4+2ν)+η1(2+aν/(2+ν))−2η2) =

O(n1−aν/(4+2ν)+η2aν/(2+ν)) = o(1) since, by construction, η1 < η2 <
1
2
− 2+ν

aν
.

For the first sum on the right-hand side of (F.2), we have, by dominated

convergence,

1

n

kn∑
j=1

Var(Snj) =
1

n

kn∑
j=1

E[S2
nj] ≤ const× 1

n

kn∑
j=1

sn∑
i=−sn

(sn − |i|)α(|i|)
ν

2+ν
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= O(knsnn
−1) = O(nη1−η2) = o(1).

For the second term of (F.1), we have

1

n
Var(Rn) ≤ const× 1

n

n∑
i,i′=kn(bn+sn)+1

α(|i− i′|)
ν

2+ν

≤ const× 1

n

n−kn(bn+sn)∑
i=−{n−kn(bn+sn)}

(n− kn(sn + bn)− |i|)α(|i|)
ν

2+ν

= O({n− kn(bn + sn)}/n) = O((bn + sn)/n) = o(1),

where we used that kn ≥ n/(bn + sn)− 1.

Now, let us bound the third term in (F.1). First we notice that, if j = j′

or j′ = j − 1, we have |E[BjnSj′n]| ≤ const
∑bn

i=1

∑sn+bn
i′=bn+1 α(|i − i′|)

ν
2+ν ≤

const
∑sn+bn

i=1 iα(i)
ν

2+ν ≤ const < ∞, since aν/(2 + ν) > 2 + 1/ν by Condi-

tion VI. In the other cases the distance between the blocks Bjn and Sj′n is

at least bn, such that |E[BjnSj′n]| = O(bnsnα(bn)
ν

2+ν ). Together, this yields

2

n

kn∑
j,j′=1

E[BjnSj′n] = O(n−1kn) +O(k2
nbnsnb

−a ν
2+ν

n n−1)

= O(n−1/2+η1) +O(n1−a
2

ν
2+ν

+η1(1+a ν
2+ν

)−η2) = o(1),

where the last equality follows exactly as above for the treatment of the

first summand in (F.1). In the same manner, we get 2
n

∑kn
j=1 E[BjnRn] =

O(n
1
2
−a

2
ν

2+ν
−η1+a ν

2+ν
η2) = o(1) and 2

n

∑kn
j=1 E[SnjRn] = O(n

1
2
−a

2
ν

2+ν
−η2+a ν

2+ν
η1)+

O({bn + sn}/n) = o(1).

For the next step of the proof, let B′jn, j = 1, . . . , kn denote independent

random variables such that each B′jn has the same distribution as Bjn. We

will show that the characteristic function of n−1/2
∑kn

j=1Bjn is asymptotically

equivalent to the characteristic function of n−1/2
∑kn

j=1B
′
jn. For t ∈ R, define

Ψjn(t) = exp(itn−1/2Bjn) and notice that E[
∏kn

j=1 Ψjn(t)] and
∏kn

j=1 E[Ψjn(t)]

are the characteristic functions of n−1/2
∑kn

j=1 Bjn and n−1/2
∑kn

j=1B
′
jn, re-

spectively. The difference of the two characteristic functions can be decom-

12



posed as follows

∣∣∣E[ kn∏
j=1

Ψjn(t)
]
−

kn∏
j=1

E[Ψjn(t)]
∣∣∣ ≤ ∣∣∣E[ kn∏

j=1

Ψjn(t)
]
− E[Ψ1n(t)]E[

kn∏
j=2

Ψjn(t)]
∣∣∣

+ |E[Ψ1n(t)]| ×
∣∣∣E[ kn∏

j=2

Ψjn(t)
]
− E[Ψ2n(t)]E[

kn∏
j=3

Ψjn(t)]
∣∣∣

+ · · ·+
∣∣∣ kn−2∏
j=1

E[Ψjn(t)]
∣∣∣× ∣∣∣E[ kn∏

kn−1

Ψjn(t)
]
−

kn∏
j=kn−1

E[Ψjn(t)]
∣∣∣

Applying Lemma 3.9 in Dehling and Philipp (2002) (kn − 1) times, we get

∣∣∣E[ kn∏
j=1

Ψjn(t)
]
−

kn∏
j=1

E[Ψjn(t)]
∣∣∣

≤ 2π × (kn − 1) max
i=1,...,kn−1

α(σ(Ψin), σ{
kn∏

j=i+1

Ψjn(t)}),

which is of order O(knα(sn)) = O(n1/2−a/2+aη2+η1). Using that η1 < η2, this

expression converges to 0 by the choice of η2 and the fact that (2+v)/(aν) >

1/a > 1/(a + 1). As a consequence, provided n−1/2
∑kn

j=1B
′
jn converges

weakly, then so does n−1/2
∑kn

j=1 Bjn with the same limiting distribution.

Therefore, in order to finalize the proof, it remains to be shown that

n−1/2
∑kn

j=1B
′
jn converges weakly to V . This will be accomplished by proving

that the variance of n−1/2
∑kn

j=1B
′
jn converges to Var(V ) as n→∞ and that

the Lindeberg-condition from the Lindeberg-Feller central limit theorem for

independent triangular arrays is met. We begin with the convergence of the

variance and note that

Var(V ) =

q∑
s,s′=1

cscs′
∑
i∈Z

γ(i,us,us′) +

q′∑
s,s′=1

c̄sc̄s′
∑
i∈Z

γ(i,vs,vs′)

+

q∑
s=1

csc
′
∑
ı∈Z

γ̄(i,us) +

q′∑
s=1

c̄sc̄
′
∑
i∈Z

γ̄(i,vs)

13



+ c′
∑
i∈Z

γ̃(i)c+ c̄′
∑
i∈Z

γ̃(i)c̄,

where γ(i,u,v) = Cov{1(U1 ≤ u),1(U1+i ≤ v)}, γ̄(i,u) = Cov{Jθ0(U1) +

K1,θ0 ,1(U1+i ≤ u)} and γ̃(i) = Cov{Jθ0(U1) + K1,θ0 , Jθ0(U1+i) + K1+i,θ0}.
Now, let us show that Var( 1√

n

∑kn
j=1B

′
jn) = Var(Vn)+o(1). To this end, note

that

Var
(
n−1/2

kn∑
j=1

B′jn

)
=

1

n

kn∑
j=1

Var(B′jn) =
1

n

kn∑
j=1

Var(Bjn)

= Var
(
n−1/2

kn∑
j=1

Bjn

)
− 1

n

∑
j 6=j′

Cov(Bjn, Bj′n).

Since we have already shown in the beginning of the proof that the variance

on the right-hand side equals Var(Vn) + o(1), it remains to be shown that
1
n

∑
j 6=j′ Cov(Bjn, Bj′n) = o(1). Since the distance between the random vari-

ables within the two blocks is at least sn, we have E[BjnBj′n] = O(b2
nα(sn)

ν
2+ν )

for j 6= j′. Therefore, n−1
∑

j 6=j′ Cov(Bjn, Bj′n) = O(n−1k2
nb

2
ns
−a ν

2+ν
n ) =

O(n1−a
2

ν
2+ν

+a ν
2+ν

η2), which is o(1) as shown above.

Now, let us show that Var(Vn)→ Var(V ) as n→∞. We can write Var(Vn)

as

1

n

n∑
i,i′=1

[{ q∑
s,s′=1

cscs′γ(i− i′,us,us′) +

q′∑
s,s′=1

c̄sc̄s′ϕ{(i− i′)/`n}γ(i− i′,vs,vs′)
}

+

{ q∑
s=1

c′csγ̄(i− i′,us) +

q′∑
s=1

c̄′c̄sϕ{(i− i′)/`n}γ̄(i− i′,vs)
}

+
{
c′γ̃(i− i′)c+ ϕ{(i− i′)/`n}c̄′γ̃(i− i′)c̄

}]
=

n∑
i=−n

n− |i|
n

[{ q∑
s,s′=1

cscs′γ(i,us,us′) +

q′∑
s,s′=1

cscs′ϕ(i/`n)γ(i,vs,vs′)

}

+

{ q∑
s=1

c′csγ̄(i,us) +

q′∑
s=1

c̄′c̄sϕ(i/`n)γ̄(i,vs)

}
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+
{
c′γ̃(i)c+ ϕ(i/`n)c̄′γ̃(i)c̄

}]
. (F.3)

For the sake of brevity, we will only show convergence of the terms in the

first curly brackets on the right-hand side of the last display to the respective

terms in Var(V ). We have

n∑
i=−n

n− |i|
n

q∑
s,s′=1

cscs′γ(i,us,us′)

=

q∑
s,s′=1

cscs′
n∑

i=−n

γ(i,us,us′)−
q∑

s,s′=1

cscs′
1

n

n∑
i=−n

|i|γ(i,us,us′).

Since |γ(i,u,v)| ≤ const×α(|i|) and
∑∞

i=1 |i|α(i) < ∞, the second term on

the right-hand side vanishes as n → ∞, whereas the first term converges to∑q
s,s′=1 cscs′

∑
i∈Z γ(i,us,us′).

Moreover, as ϕ(h) = 0 for |h| > 1 and `n = o(n), we have

n∑
i=−n

n− |i|
n

q′∑
s,s′=1

c̄sc̄s′ϕ(i/`n)γ(i,vs,vs′)

=

q′∑
s,s′=1

c̄sc̄s′
∑
i∈Z

n− |i|
n

ϕ(i/`n)γ(i,vs,vs′),

By continuity of ϕ in 0, we have n−|i|
n
ϕ(i/`n) → 1 as n → ∞ for any fixed

i ∈ Z. Moreover, |n−|i|
n
ϕ(i/`n)γ(i,vs,vs′)| ≤ const×α(i) for all i ∈ Z and all

s, s′ = 1, . . . , q′. Therefore, by dominated convergence, as n→∞,

q′∑
s,s′=1

c̄sc̄s′
n∑

i=−n

n− |i|
n

ϕ(i/`n)γ(i,vs,vs′)→
q′∑

s,s′=1

c̄sc̄s′
∑
i∈Z

γ(i,vs,vs′).

The convergence of the remaining summands in (F.3) follows along similar

lines, exploiting that ‖γ̄(i,u)‖ ≤ const×α(i)
1+ν
2+ν , ‖γ̃(i)‖op ≤ const×α(i)

ν
2+ν

and that
∑∞

i=1 |i|α(i)
ν

2+ν <∞.
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Finally, let us prove the Lindeberg condition, i.e., that, for any ε > 0,

1

n

kn∑
j=1

E[B′2jn1(|B′jn| >
√
nε)] =

1

n

kn∑
j=1

E[B2
jn1(|Bjn| >

√
nε)]→ 0

as n→∞. To bound the former expression we use Hölder’s inequality with

p = (2 + ν)/2 and q = (2 + ν)/ν and Markov’s inequality to obtain

1

n

kn∑
j=1

E[B2
jn1(|Bjn| ≤

√
nε)] ≤ 1

n

kn∑
j=1

E[|Bjn|2+ν ]
2

2+νE[1(|Bjn| ≤
√
nε)

2+ν
ν ]

ν
2+ν

=
1

n

kn∑
j=1

E[|Bjn|2+ν ]
2

2+νP(|Bjn| ≤
√
nε)

ν
2+ν

≤ 1

n

kn∑
j=1

E[|Bjn|2+ν ]
2

2+νE[|Bjn|2+ν ]
ν

2+ν (
√
nε)−ν

=
1

n

kn∑
j=1

E[|Bjn|2+ν ](
√
nε)−ν

By Minkowski’s inequality, we can bound E[|Bjn|2+ν ]
1

2+ν by a sum over

bn summands of the form E[|Wi|2+ν ]
1

2+ν + E[|W (b)
i |2+ν ]

1
2+ν + E[|Ti|2+ν ]

1
2+ν +

E[|T (b)
i |2+ν ]

1
2+ν , whence E[|Bjn|2+ν ] = O(b2+ν

n ). This finally implies

1

n

kn∑
j=1

E[B2
jn1(|Bjn| ≤

√
nε)] = O(b2+ν

n knn
−ν/2−1) = O(n1/2−η1(1+ν)) = o(1),

by the definition of η1 and the Lemma is proved.

Proof of Lemma C.7. It follows from the mean value theorem that

√
n{Cθn(u)− Cθ0(u)} = ∇Cθ0(u)Θn +Rn(u),

where Rn(u) =
√
n
∑p

s=1

{
∂
∂θs
Cθ̃(u) − ∂

∂θs
Cθ0(u)

}
(θns − θ0s) and where θ̃

denotes an intermediate point lying between θ0 and θn. The Cauchy-Schwarz
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inequality allows to estimate

sup
u∈[0,1]d

‖Rn(u)‖ ≤ sup
‖θ′−θ0‖<‖θn−θ0‖

sup
u∈[0,1]d

‖∇Cθ′(u)−∇Cθ0(u)‖ × ‖Θn‖.

Since Θn = Θ̃n + op(1) for n→∞ as a consequence of Lemma C.1 and C.2,

we obtain that ‖Θn‖ = OP (1) from Lemma C.6 (note that Condition III was

used in Lemma C.6 only for the tightness part, whence we do not need to

assume it here). Fix η > 0. By Condition IV, we may choose δ > 0 such

that sup‖θ′−θ0‖<δ supu∈[0,1]d ‖∇Cθ′(u)−∇Cθ0(u)‖ ≤ η. Therefore,

P( sup
u∈[0,1]d

sup
‖θ′−θ0‖<‖θn−θ‖

‖∇Cθ′(u)−∇Cθ0(u)‖ > η) ≤ P(‖θn − θ0‖ > δ),

which converges to 0 as n→∞, since θn is a consistent estimator of θ0.
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