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APPENDIX B: Omitted proofs

Proof of Lemma 2. Let

Kni := I[ηni ≤ x(1 + ρni)] − I[ηni ≤ x] −Hϑn
[x(1 + ρni)] + Hϑn

(x).

Then, for ϑn ∈ B,

1

n

n∑

i=1

γ2
niE[K2

ni|Fni] ≤
1

n

n∑

i=1

γ2
ni sup

ϑn∈B
sup
|z|≤b

|Hϑn
{x(1 + z)} −Hϑn

(x)| ≤ a

n

n∑

i=1

γ2
ni.

Now, from Lemma 1 with Dni = n−1γniKni, it follows that for any η, c > 0,

Pn

(
[|Ũn(x) − Un(x)| > η] ∩ Πn

)

≤ Pn

([
|n−1/2

n∑

i=1

γniI{|γni| ≤ an−1/2}Kni| > η
]
∩
[ n∑

i=1

E(D2
ni | Fni) ≤ ac

])

≤ exp{−η2/2a(η + c)}.

�
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Proof of Lemma 3. Fix x ≥ 0 and ε, η > 0. Choose c > 0 and a positive inte-

ger n1 such that Pn(n−1
∑n

i=1 γ
2
ni > c) < ε for all n ≥ n1. Select a > 0 to have

exp{−η2/2a(η + c)} < ε. Further, choose δ > 0 and b0 > 0 such that a − δ > 0 and

 L0 := sup|z|≤b0 |Hϑ0
{x(1 + z)} −Hϑ0

(x)| < δ. Then,  Ln := sup|z|≤b0 |Hϑn
{x(1 + z)} −

Hϑn
(x)| forms a real sequence such that  Ln →  L0 as n → ∞. Therefore, there exists

an n2 ∈ N such that  Ln <  L0 + a − δ < a for all n ≥ n2. We also have that ϑn ∈ B

for all n ≥ n0 for some n0. For each n ∈ {n0, n0 + 1, . . . ,max(n1, n2)}, there exists a

bn > 0 such that sup|z|≤bn |Hϑn
{x(1 + z)} −Hϑn

(x)| < a.

Now, let b := min{bn0
, bn0+1, . . . , bmax(n1,n2), b0}. Then, for each ϑn ∈ B,

sup|z|≤b |Hϑ0
{x(1 + z)} −Hϑ0

(x)| < a.

Therefore, supϑn∈B sup|z|≤b |Hϑ0
{x(1 + z)} − Hϑ0

(x)| < a. Thus, it follows from

Lemma 2 that for ϑn ∈ B,

Pn(|Ũn(x) − Un(x)| > η) ≤ Pn([|Ũn(x) − Un(x)| > η] ∩ Πn) + Pn(Πc
n)

≤ exp{−η2/2a(η + c)} + Pn(max
i

|γni| > an−1/2)

+Pn(n−1

n∑

i=1

γ2
ni > c) + Pn((max

i
|ρni| > b).

The first term of the last upper bound is less than ε; the second and fourth terms are

o(1), and the third term is less than ε for all n ≥ n1. Consequently,

lim supn→∞ Pn(|Ũn(x) − Un(x)| > η) < 2ε.

Since ε is arbitrary, we have |Ũn(x) − Un(x)| = opn(1). �

Proof of Lemma 4. Fix δ and b such that 0 < δ < 1 and 0 ≤ b < 1. Choose

KB
1δ > 0 such that supϑ∈B Hϑ(KB

1δ) ≤ δ2/2. Let x0 = KB
1δ/(1+b), and define ‖hϑ‖B∞ :=

supϑ∈B supx≥0 |hϑ(x)|, where hϑ is the density of Hϑ. Choose an integer NB
δ > 0 to

have δ2/4 ≤ supϑ∈B{1−Hϑ(KB
2δ)} ≤ δ2/2, where KB

2δ := (1−b)[x0+NB
δ δ2/{2‖hϑ‖B∞}].

Now, partition R
+ ∪ {0} as

[0, x0] ∪ (x0, x1] ∪ . . . ∪ (xNB
δ
,∞), (B.1)
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where xNB
δ

= KB
2δ/(1 − b) > 0 and xk − xk−1 = δ2/{2‖hϑ‖B∞}, k = 1, . . . , NB

δ . In

this partition, there are NB
δ subintervals of length δ2/{2‖hϑ‖B∞} covering the interval

(x0, xNB
δ

]. Because x0 = KB
1δ/(1 + b) > 0,

NB
δ = (1 − b2)−1{(1 + b)KB

2δ − (1 − b)KB
1δ}2‖hϑ‖B∞/δ2.

Since x0 > 0, we also have {x(1 + b)} ≤ KB
1δ for x ∈ [0, x0]. Therefore,

[µB
b (x, y)]2 ≤ 2 supϑ∈B Hϑ(KB

1δ) ≤ δ2 for x, y ∈ [0, x0].

For x, y ∈ (xNB
δ
,∞), we have {x(1 − b)} ≥ KB

2δ and {y(1 − b)} ≥ KB
2δ, and hence,

[µB
b (x, y)]2 ≤ 2 supϑ∈B |1 −Hϑ(KB

2δ)| ≤ δ2 for x, y ∈ (xNB
δ
,∞).

Because 0 ≤ b < 1, by applying the mean value theorem,

[µB
b (x, y)]2 ≤ δ2{2‖hϑ‖B∞}−1 (1 + b)‖hϑ‖B∞ ≤ δ2, for x, y ∈ (xk−1, xk], k = 1, . . . , NB

δ .

Thus, each interval in the partition (B.1) has diameter less than δ with respect to the

pseudo-metric µB
b . Therefore, N (δ, b) ≤ 2 + NB

δ , and hence,

N (δ, b) ≤ 2 + (1 − b2)−1{(1 + b)KB
2δ − (1 − b)KB

1δ}2‖hϑ‖B∞/δ2. (B.2)

Now, let µϑ = E(ǫϑ) and µB = supϑ∈B µϑ, where ǫϑ ∼ Hϑ. It follows by applying

Markov’s inequality that

δ2/4 ≤ sup
ϑ∈B

{1 −Hϑ(KB
2δ)} = sup

ϑ∈B
Pr(ǫϑ ≥ KB

2δ) ≤ sup
ϑ∈B

E(ǫϑ)/KB
2δ ≤ µB/K

B
2δ.

Thus, KB
2δ ≤ 4µB/δ

2. Further, KB
1δ > 0 and 0 < δ < 1. Therefore, it follows

from (B.2) that N (δ, b) ≤ D(b)/δ4, where

D(b) := 2(1 − b2)−1[(1 − b2) + 4(1 + b)µB‖hϑ‖B∞].

Because D(b) is increasing in b, we have that I(b) =
∫ 1

0
[logN (u, b)]1/2du < ∞ for

0 ≤ b < 1. �
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Proof of Lemma 6. Fix M < ∞. From (C2) and (E3) it follows that

sup
{φ∈Φ, √

n‖φ−φn‖≤M}
max
1≤i≤n

{vni(φ) − (φ− φn)⊤λi(φn)} = opn(n−1/2).

Further, because max1≤i≤n n
−1/2λi(φn) = opn(1) and n−1

∑n
i=1 ‖λi(φn)‖ = Opn(1),

one obtains that sup{φ∈Φ,√n‖φ−φn‖≤M} n
−1/2

∑n
i=1 |vni(φ)| = Opn(1).

Let An = {(x, φ) : x ≥ 0, φ ∈ Φ and
√
n‖φ − φn‖ ≤ M}. Let a > 0 be as

in Condition (C3). Then, there exists an n0 > 0 such that for all n > n0 and

(φ, x) ∈ An, Fθn(x+xvni(φ))−Fθn(x) = xvni(φ)fθn(x) + 2−1{xvni(φ)}2f ′
θn

(x(1 + δ∗x)),

where δ∗x is a real number satisfying |δ∗x| < a.

Because sup{φ∈Φ, √
n‖φ−φn‖≤M} n

−1/2
∑n

i=1 |vni(φ)| = Opn(1), it follows from the as-

sumptions in Condition (C3) that supx,φ,M n−1/2
∑n

i=1 2−1{xvni(φ)}2f ′
θn
{x(1 + δ∗x)} =

opn(1). By Conditions (C2), (C3), (C5), and Assumption (E3), one also obtains that

supx,φ,M |{n−1/2
∑n

i=1 xvni(φ)fθn(x)} −Bn(x)| = opn(1). Thus, the proof follows. �

Proof of Lemma 7. We indicate only the main idea of the proof. Recall that

ġθ(t) = (∂/∂θ)gθ(t) = [ġθ1(t), . . . , ġθq(t)]
⊤. Fix a j ∈ {1, . . . , q}. Because θ̂ =

arg maxθ∈Θ
∑n

i=1 gθ(ε̃i), under (E2),

0 =
∑n

i=1 ġθ̂j(ε̃i) =
∑n

i=1 ġθ0j (ε̃i) + (θ̂j − θ0j)
∑n

i=1

[
(∂/∂θj)ġθj(ε̃i) |θj=θ̄j

]
, (B.3)

for some θ̄j , where |θ̄j − θ0j | < |θ̂j − θ0j |. Let

H̃n(θ) = n−1
n∑

i=1

g̈θ(ε̃i), Hn(θ) = n−1
n∑

i=1

g̈θ(εi).

Suppose that H0 holds. Then, under (C1), (E1) and (E2), there exist an αL > 0,

0 < K < ∞, and an open neighbourhood B of θ0, such that

sup
θ∈B

‖H̃n(θ) −Hn(θ)‖

≤ Kn−1
n∑

i=1

|ε̃i − εi| = Kn−1
n∑

i=1

Zi

∣∣∣ 1

Ψ̃i(φ̂)
− 1

Ψi(φ̂)
+

1

Ψi(φ̂)
− 1

Ψi(φ0)

∣∣∣

≤ K

αLn

n∑

i=1

εi sup
φ∈Φ

|Ψ̃i(φ) − Ψi(φ)| +
K

αLn

n∑

i=1

Zi|Ψi(φ̂) − Ψi(φ0)|Ψ−1
i (φ0) + op(1)

= Sn1 + Sn2 + op(1), say.
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Since supφ∈Φ |Ψ̃i(φ) − Ψi(φ)| e.a.s.→ 0 by (C2) and {εi} are iid, it follows from Lemma

2.1 of Straumann and Mikosch (2006) that Sn1 = Op(n
−1). By Condition (C2),

Sn2 ≤ ‖n1/2(φ̂− φ0)
⊤‖ max

1≤i≤n
n−1/2‖λi(φ0)‖

K

αLn

n∑

i=1

Zi + op(n
−1/2).

Since n1/2(φ̂− φ0) = Op(1), it follows from Condition (C5) and the Ergodic Theorem

that the first term in the last upper bound is op(1). Hence, supθ∈B ‖H̃n(θ)−Hn(θ)‖ =

op(1). Therefore, one obtains by (B.3) that θ̂j − θ0j = n−1
∑n

i=1 hθ0j (ε̃i) + op(n
−1/2).

Now, apply a two-term Taylor series expansion for n−1
∑n

i=1 hθ0j (ε̃i) and verify that

the remainder term is op(n
−1/2). This completes the proof of the first part of Lemma 7.

For the second part, we establish the corresponding asymptotic expansion for

θ̂∗j − θ̂j, in probability. To this end, let (an) be a subsequence of (n). Because

(φ̂, θ̂) converges in probability to (φ0, θ0), the subsequence (an) contains a further

subsequence (rn) such that (φ̂rn , θ̂rn)
a.s.→ (φ0, θ0). Now, choose a sample path along

which (φ̂rn, θ̂rn) → (φ0, θ0). Then, it follows from (E3) that θ̂∗rn − θ̂rn = op∗rn (1) and

φ̂∗
rn − φ̂rn = Op∗rn

(r
−1/2
n ) along the chosen fixed sample path.

Further, because the bootstrap is carried out under H0, it follows by proceeding

as in the proof of the first part that

θ̂∗rnj − θ̂rnj = rn
−1

rn∑

i=1

{h∗
θ̂rnj

(ε∗i ) − (φ̂∗
rn − φ̂rn)⊤ε∗iλ

∗
i (φ̂rn)h∗′

θ̂rnj
(ε∗i )} + op∗rn (r−1/2

n ).

Because this holds true for almost all sample paths, (A.5) holds in probability. �

In the technical details involving the bootstrap method, we often need to show that

certain terms are small, in the sense that they are op∗n(1), in probability. To establish

this, it suffices to restrict the arguments to a subsequence (rn) for which (φ̂rn, θ̂rn)

converges almost surely to (φ0, θ0), and to work along a fixed sample path for which

(φ̂rn, θ̂rn) → (φ0, θ0). Hence, for showing that a quantity is op∗n(1) in probability, one

may assume without loss of generality that (φ̂, θ̂) → (φ0, θ0) along almost all sample

paths (see for example Theorem 5 of Salinetti, Vervaat and Wets, 1986). In the

following lemmas, we restrict attention to such a fixed sample path. Thus, the terms

‘e.a.s.’ and ‘a.s.’ below may correspond to P ∗
n probability, along a fixed sample path

for which (φ̂, θ̂) → (φ0, θ0).
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Proof of Lemma 8. Recall that L
∗(m)
n (φ) =

∑n
i=1{logΨ

∗(m)
i (φ) + Z

∗(m)
i /Ψ

∗(m)
i (φ)}

and φ̂∗(m) = arg minφ∈Φ L
∗(m)
n (φ). Let ∆∗

n(φ) := (∂/∂φ){L∗(m)
n (φ) − L∗

n(φ)}, and

ai(φ) := {Ψ ∗(m)
i (φ̂)/Ψ

∗(m)
i (φ)}{λ∗(m)

i (φ) − λ∗
i (φ)},

bi(φ) := λ∗
i (φ){Ψ ∗(m)

i (φ̂) − Ψ ∗
i (φ̂)}/Ψ ∗(m)

i (φ),

ci(φ) := λ∗
i (φ){Ψ ∗

i (φ̂)/Ψ ∗
i (φ)}{Ψ ∗

i (φ) − Ψ
∗(m)
i (φ)}/Ψ ∗(m)

i (φ).

Then, ∆∗
n(φ) =

∑n
i=1{λ

∗(m)
i (φ) − λ∗

i (φ)} − {ai(φ) + bi(φ) + ci(φ)}ε∗i . Now, let ei1 =

‖Ai(·)‖ and ei2 = ‖Bi(·)‖, where Ai(φ) = {Ψ ∗(m)
i (φ)−Ψ ∗

i (φ)} and Bi(φ) = {Ψ̇ ∗(m)
i (φ)−

Ψ̇ ∗
i (φ)}. Then, it follows from Conditions (C6) and (E3) that ei1, ei2

e.a.s.→ 0. Further,

λ
∗(m)
i (φ) − λ∗

i (φ) = {Ψ̇ ∗(m)
i (φ)}/{Ψ ∗(m)

i (φ)} − {Ψ̇ ∗
i (φ)}/{Ψ ∗

i (φ)}

=
1

Ψ
∗(m)
i (φ)

Bi(φ) − λ∗
i (φ){ 1

Ψ
∗(m)
i (φ)

}Ai(φ).

Thus, for some fixed α > 0, ‖λ∗(m)
i (·) − λ∗

i (·)‖ ≤ α−1ei2 + α−1‖λ∗
i (·)‖ei1.

Because ‖λ∗
i (·)‖, i = 1, 2 . . . are identically distributed and ei1, ei2

e.a.s.→ 0 as

i → ∞, then it follows from Lemma 2.1 of Straumann and Mikosch (2006) that

‖λ∗(m)
i (·) − λ∗

i (·)‖
e.a.s.→ 0, as i → ∞. Therefore,

∑n
i=1 ‖λ

∗(m)
i (·)− λ∗

i (·)‖ converges to a

random variable (a.s.). Further, for some fixed α > 0, we have that

‖ai(·)‖ ≤ ei1α
−1|Ψ ∗

i (φ̂)|‖λ∗(m)
i (·) − λ∗

i (·)‖,

‖bi(·)‖ ≤ ei1α
−1‖λ∗

i (·)‖, ‖ci(·)‖ ≤ ei1α
−2|Ψ ∗

i (φ̂)|‖λ∗
i (·)‖.

Therefore, each of supφ∈Φ |ai(φ)|, supφ∈Φ |bi(φ)|, and supφ∈Φ |ci(φ)| is bounded by

terms equal to the product of an identically distributed random variable and an-

other term that
e.a.s→ 0 as i → ∞. In view of Lemma 2.1 of Straumann and Mikosch

(2006), if {vi}i∈Z+ is a sequence of identically distributed random elements with val-

ues in a separable Banach space (e.g. R
p with Euclidean norm) and ζi

e.a.s→ 0, then
∑n

i=1 ζi‖vi‖ converges to a random variable (a.s.). Therefore, we obtain that

n∑

i=1

sup
φ∈Φ

|ai(φ) + bi(φ) + ci(φ)|ε∗i = Op∗n(1),

and hence, supφ∈Φ |∆∗
n(φ)| = Op∗n(1). This completes the proof of part (a).
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We indicate the main idea for the proof for part (b). To this end, it suffices to

consider the simpler case when φ is a scalar parameter. Let 0.5 < η < 1. Note that

for a given δ > 0, the curve n−1(∂/∂φ)L
∗(m)
n (φ) lies in the band n−1(∂/∂φ)L∗

n(φ) ±
δn−η with probability approaching 1 as n → ∞. Let S(φ) = −(∂/∂φ)n−1L∗

n(φ)

and J(φ) = −(∂/∂φ)n−1L
∗(m)
n (φ). Let φa and φb be chosen such that S(φa) = n−ηδ

and S(φb) = −n−ηδ. Then, there exists a K > 0 such that n1/2|φa − φ̂∗| < K and

n1/2|φb− φ̂∗| < K. Let B = {φ : n1/2|φ− φ̂∗| < K}. In view of Assumptions (E1) and

(E3), there exists c0 > 0, such that P ∗
n [supφ∈B |Ṡ(φ)| > c0] → 1 as n → ∞. In view

of the mean value theorem, for some φ̄a and φ̄b satisfying | φ̄a − φ̂∗ |≤| φa − φ̂∗ | and

|φ̄b − φ̂∗| ≤ |φb − φ̂∗|,

n−ηδ = S(φa) = S(φ̂∗) + (φa − φ̂∗)Ṡ(φ̄a) = 0 + (φa − φ̂∗)Ṡ(φ̄a),

−n−ηδ = S(φb) = S(φ̂∗) + (φb − φ̂∗)Ṡ(φ̄b) = 0 + (φb − φ̂∗)Ṡ(φ̄b).

Since φ̂∗− φ̂ = op∗n(1), then with P ∗
n probability → 1 as n → ∞, |φa−φb| ≤ 2n−ηδc−1

0 .

Because P ∗
n [−δ < nη supφ∈Φ(∂/∂φ){n−1L

∗(m)
n (φ) − n−1L∗

n(φ)} < δ] → 1, we have

J(φa) ≥ S(φa) − n−ηδ = 0 and J(φb) ≤ S(φb) + n−ηδ = 0, with P ∗
n probability → 1.

Thus, P ∗
n [φ̂∗(m) ∈ (φa, φb)] → 1, and hence, |φ̂∗(m) − φ̂∗| ≤ |φa − φb| ≤ 2n−ηδc−1

0 , with

P ∗
n probability → 1. Therefore, part (b) follows.

To prove part (c), let ℓ(θ) =
∑n

i=1 gθ(ε̃i). Then, the corresponding bootstrap terms

are ℓ∗(θ) =
∑n

i=1 gθ(ε̃
∗
i ) and ℓ∗(m)(θ) =

∑n
i=1 gθ(ε̃

∗(m)
i ). Further, for some ε̄i between

ε̃
∗(m)
i and ε̃∗i , |ℓ∗(m)(θ) − ℓ∗(θ)| = |∑n

i=1(ε̃
∗(m)
i − ε̃∗i )g

′
θ(ε̄i; θ)|. Hence, |ℓ∗(m)(θ) − ℓ∗(θ)|

is bounded from above by

K0

n∑

i=1

|Z∗(m)
i /Ψ̃

∗(m)
i (φ̂∗(m)) − Z∗

i /Ψ̃
∗
i (φ̂∗)|

= K0

n∑

i=1

ε∗i |Ψ ∗(m)
i (φ̂)/Ψ̃

∗(m)
i (φ̂∗(m)) − Ψ ∗

i (φ̂)/Ψ̃
∗(m)
i (φ̂∗(m))

+ Ψ ∗
i (φ̂)/Ψ̃

∗(m)
i (φ̂∗(m)) − Ψ ∗

i (φ̂)/Ψ̃ ∗
i (φ̂∗)|

≤ K0

n∑

i=1

ε∗i [K1|Ψ ∗(m)
i (φ̂) − Ψ ∗

i (φ̂)| + K2Ψ
∗
i (φ̂)|Ψ̃ ∗

i (φ̂∗) − Ψ̃
∗(m)
i (φ̂∗(m))|,

where K0, K1 and K2 are fixed constants. In view of Assumption (E3), the terms

supφ∈Φ |Ψ ∗(m)
i (φ̂)−Ψ ∗

i (φ̂)| and supφ∈Φ |Ψ̃ ∗
i (φ̂∗)−Ψ̃

∗(m)
i (φ̂∗(m))| converge to zero (e.a.s) as
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i → ∞. Therefore, by Lemma 2.1 of Straumann and Mikosch (2006), for every η < 1,

nη supθ∈Θ{n−1ℓ∗(m)(θ) − n−1ℓ∗(θ)} a.s.→ 0 as n → ∞. Thus, one obtains by proceeding

as in the proof of part (b) that θ̂∗(m) − θ̂∗ = op∗n(n−η) for every 0.5 < η < 1. �

Proof of Lemma 9. Let v∗i = {Ψ ∗
i (φ̂)}−1{Ψ ∗

i (φ̂∗)− Ψ ∗
i (φ̂)}. Because n1/2(φ̂∗ − φ̂) =

Op∗n(1), by Condition (C2), max1≤i≤n{v∗i − (φ̂∗ − φ̂)⊤λ∗
i (φ̂)} = op∗n(n−1/2). Because

max1≤i≤n n
−1/2‖λ∗

i (φ̂)‖ = op∗n(1), one obtains that max1≤i≤n |v∗i | = op∗n(1). Let us

write F̂ ∗
n(x) = n−1

∑n
i=1 I(ε∗i ≤ x+xv∗i ). Then, it follows from Lemma 5 with γni = 1

and ρni = v∗i that supx≥0 |U∗
n(x)−n−1/2

∑n
i=1{Fθn(x+xv∗i )−Fθn(x)}| = op∗n(1). Now,

apply Lemma 6 to complete the proof. �

Proof of Lemma 11. Let v
∗(m)
ni = n1/2[Ψ

∗(m)
i (φ̂∗(m)) − Ψ

∗(m)
i (φ̂)]/Ψ

∗(m)
i (φ̂). Then, it

follows from a one-term Taylor expansion that v
∗(m)
ni = n1/2(φ̂∗(m)−φ̂)⊤λ

∗(m)
i (φ̂)+r

∗(m)
ni ,

for some random array {r∗(m)
ni } satisfying n−1

∑n
i=1 r

∗(m)
ni = Op∗n(n−1/2).

From the proof of Lemma 8, for some η > 1/2, nη−1
∑n

i=1 ‖λ
∗(m)
i (φ̂) − λ∗

i (φ̂)‖ →
0 (a.s.). By assumption, max1≤i≤n n

−1/2‖λ∗
i (φ̂)‖ = op∗n(1), and from Lemma 8,

n1/2(φ̂∗(m) − φ̂) = Op∗n(1). Hence, max1≤i≤n |n−1/2v
∗(m)
ni | = op∗n(1). Further, with

γni = 1 and ρni = n−1/2v
∗(m)
ni , it follows from Lemma 5 that uniformly in y ≥ 0,

n1/2F̂ ∗(m)
n (y) = n−1/2

n∑

i=1

I(ε̂
∗(m)
i ≤ y) = n−1/2

n∑

i=1

I{ε∗i ≤ y + yn−1/2v
∗(m)
ni }

= n1/2F ∗(m)
n (y) + n−1/2

n∑

i=1

{Fθ̂(y + yn−1/2v
∗(m)
ni ) − Fθ̂(y)} + op∗n(1)

= n1/2F ∗(m)
n (y) + n−1

n∑

i=1

v
∗(m)
ni yfθ̂(y) + op∗n(1).

This equality continues to hold with ∗(m) replaced by ∗. Further, because F
∗(m)
n = F ∗

n ,

by triangle inequality,

sup
y≥0

n1/2|F̂ ∗(m)
n (y) − F̂ ∗

n(y)| ≤ sup
y≥0

∣∣∣n−1

n∑

i=1

(v
∗(m)
ni − v∗ni)yfθ̂(y)

∣∣∣ + op∗n(1). (B.4)

By direct substitution, we obtain that

v
∗(m)
ni − v∗ni = n1/2(φ̂∗(m) − φ̂)⊤λ

∗(m)
i (φ̂) − n1/2(φ̂∗ − φ̂)⊤λ∗

i (φ̂) + [r
∗(m)
ni − r∗ni]

= {n1/2(φ̂∗(m) − φ̂∗)⊤λ
∗(m)
i (φ̂) + n1/2(φ̂∗ − φ̂)⊤[λ

∗(m)
i (φ̂) − λ∗

i (φ̂)]} + [r
∗(m)
ni − r∗ni].
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Because n1/2(φ̂∗(m) − φ̂∗) = op∗n(1), n−1
∑n

i=1 ‖λ
∗(m)
i (φ̂) − λ∗

i (φ̂)‖ = op∗n(n−η), and

n−1
∑n

i=1[r
∗(m)
ni − r∗ni] = Op∗n(n−1/2), this yields that n−1

∑n
i=1{v

∗(m)
ni − v∗ni} = op∗n(1).

Since supθ∈B,y≥0(1+y)fθ(y) < ∞ for some open neighbourhood B of θ0, the first part

follows from (B.4). Because θ̂∗(m) − θ̂∗ = op∗n(n−η), the second part follows from a

one-term Taylor expansion. �

Proof of Lemma 14. Let f(n), fθ0 and f̃ denote the densities corresponding to F(n),

Fθ0 and F̃ , respectively. Let ℓn :=
∑n

i=1 log{f(n)(εi)/fθ0(εi)}. It follows from Theo-

rem 7.2 in van der Vaart (1998) that

ℓn = δn−1/2
∑n

i=1{[f̃(εi) − fθ0(εi)]f
−1
θ0

(εi)} − 2−1δ2σ2 + op(1),

where σ2 =
∫
x≥0

{f̃(x) − fθ0(x)}2f−1
θ0

(x)dx. Hence, by the central limit theorem,

ℓn
d→ N(−2−1δ2σ2, δ2σ2) under H0. Therefore, by Le Cam’s first lemma (see van der

Vaart and Wellner, 1996, Theorem 3.10.2) Han is contiguous with respect to H0.

Let Gn(t) = n−1/2
∑n

i=1 gi(t), where gi(t) is defined in equation (9) of the main

text as gi(t) = ai(t) − bi(t) + ci(t) with functions ai(·), bi(·), and ci(·) as defined in

Section 4. Then, Gn(·) is the same as G∗
n(·) in the proof of Lemma 10, except that it

is now defined for the original sample instead of the bootstrapped sample.

It may be verified that each of n−1/2
∑

ai(t), n
−1/2

∑
bi(t), and n−1/2

∑
ci(t) is

asymptotically equicontinuous, under H0, by applying Markov’s inequality and using

Assumption (E2) and Conditions (C3) and (C5). Because gi(·) forms a martingale

difference sequence, by a martingale CLT, the finite dimensional distributions of Gn(t)

converge to those of the centered Gaussian process G(·) in Theorem 1 [under H0].

Consequently, Gn(t) converges weakly to G(·), supt |W̃n{F−1
θ0

(t)} − Gn(t)| = op(1),

and E[Gn(t)ℓn] = m(t, θ0) + o(1) under H0, t ∈ [0, 1], where

m(t, θ) = δ

∫
{I(ε ≤ F−1

θ (t)) − t} dF̃ (ε)

+δ
[ ∫

{(∂/∂θ)ġθ(y)}−1 dFθ(y)

∫
ġθ(ε) dF̃ (ε)

]⊤
Ḟθ(F

−1
θ (t))

= δ[F̃ (F−1
θ (t)) − t] + δ

[ ∫
{g̈θ(y)}−1 dFθ(y)

∫
ġθ(ε) dF̃ (ε)

]⊤
Ḟθ(F

−1
θ (t)).

Thus, m(·, θ0) is the same as ma(·) in (A.15). By applying a general version of Le

Cam’s third lemma for sequences of probability measures in metric spaces (see van der
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Vaart and Wellner, 1996, Theorem 3.10.7), we obtain that W̃n ◦ F−1
θ0

(·) converges

weakly to Wa(·) in D[0, 1], under Han, where Wa(·) = ma(·) + G(·). By assumption,
∫
ġθ0(ε) dF̃ (ε) = 0 only if F̃ = Fθ0 . Further, F̃ 6= Fθ0 and

[t− F̃ (F−1
θ0

(t))] 6=
[ ∫

{g̈θ0(y)}−1 dFθ0(y)

∫
ġθ0(ε) dF̃ (ε)

]⊤
Ḟθ0(F

−1
θ0

(t)), t ∈ [0, 1].

Hence, ma 6≡ 0 for δ > 0.

Under Han, θ̂ → θ0 in probability, and θ0 is the true value satisfying F 0 = Fθ0

under H0. Therefore, one may proceed as in the proof of Lemma 10 and show that

Ŵ ∗
n ◦ F−1

θ̂
(·) converges weakly to G(·), under Han [in probability]. Hence, the proof

follows from Lemmas 11 and 13. �

Proof of Proposition 2. Let

ℓn = −
n∑

i=1

[
log{Ψi(φ0) + ri/

√
n} − log{Ψi(φ0)} − Zi/{Ψi(φ0) + ri/

√
n} + Zi/Ψi(φ0)

]
.

By arguing as in the proof of Lemma 14 we obtain the following: (a) Hbn is contigu-

ous with respect to H0, (b) Gn(·) converges weakly to G(·) and supt |W̃n{F−1
θ0

(t)} −
Gn(t)| = op(1) under H0, where Gn = n−1/2

∑n
i=1 gi, and (c) E[Gn(t)ℓn] = mb(t)+o(1).

Therefore, part (i) follows from Le Cam’s third lemma (see van der Vaart and

Wellner, 1996, Theorem 3.10.7) and the continuous mapping theorem.

To prove part (ii), note that under Hbn, φ̂ = arg minφ∈Φ
∑n

i=1 ℓi(φ), where

ℓi(φ) = log Ψ̃i(φ) +

[
Ψi(φ0) + n−1/2ri

]

Ψ̃i(φ)
εi = log Ψ̃i(φ) +

[Ψi(φ0)εi]

Ψ̃i(φ)
+

n−1/2riεi

Ψ̃i(φ)
.

Let φ̂(1c) = arg minφ∈Φ
∑n

i=1 κi(φ), where κi(φ) = log Ψ̃i(φ)+ [Ψi(φ0)εi]/Ψ̃i(φ). In view

of Assumption (E1), φ̂(1c) p→ φ0 as n → ∞. Further, we have that

n∑

i=1

(∂/∂φ){ℓi(φ) − κi(φ)} = −
n∑

i=1

n−1/2riεi

[
λ̃i(φ)/Ψ̃i(φ)

]
.

Therefore, under Hbn, for any 1/4 < η < 1/2,

nη supφ∈Φ ‖(∂/∂φ) {n−1
∑n

i=1 ℓi(φ) − n−1
∑n

i=1 κi(φ)}‖ a.s.→ 0 as n → ∞.

Consequently, φ̂ − φ̂(1c) p→ 0 as n → ∞, and hence, φ̂
p→ φ0. Further, θ̂ ≡ θ0 = 1

for each n because the error distribution is standard exponential and the parameter
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space Θ = {1}. Therefore, by arguments similar to those of the proof of Lemma 10,

Ŵ ∗
n◦F−1

θ̂
(·) converges weakly to G(·) under Hbn [in probability]. Because Tj = hj(W̃n◦

F−1
θ0

) + op(1) and T
∗(m)
j = hj(W̃

∗(m)
n ◦F−1

θ̂
) + op∗(1) [in probability] (j = 1, . . . , 5), the

proof follows from Lemmas 11 and 13, and the continuous mapping theorem. �

Proof of Proposition 3. Let

ℓn := −∑n
i=1

[
log{Ψi(φ0) + ri/

√
n} − log{Ψi(φ0)} + log{f(n)(εi)/fθ0(εi)}

]
.

One obtains by arguing as in the proof of Lemma 14 that Hcn is contiguous with

respect to H0. From the proof of Proposition 2 we have that Gn(·) converges weakly

to G(·) and that supt |W̃n{F−1
θ0

(t)} − Gn(t)| = op(1) under H0. We also have that

limn→∞ E[Gn(t)ℓn] = mc(t) +ma(t) + o(1). Therefore, part (i) follows as in the proof

of Proposition 2.

To prove part (ii), note that under Hcn, φ̂ = arg minφ∈Φ
∑n

i=1 ℓi(φ), where

ℓi(φ) = log Ψ̃i(φ) +

[
Ψi(φ0) + n−1/2ri

]

Ψ̃i(φ)
εi = log Ψ̃i(φ) +

[Ψi(φ0)εi]

Ψ̃i(φ)
+

n−1/2riεi

Ψ̃i(φ)
.

Now, let φ̂(2c) = arg minφ∈Φ
∑n

i=1 κi(φ), where κi(φ) = log Ψ̃i(φ) + [Ψi(φ0)εi]/Ψ̃i(φ). In

view of Assumption (E1), φ̂(2c) p→ φ0 as n → ∞. Further, we have that

n∑

i=1

(∂/∂φ){ℓi(φ) − κi(φ)} = −
n∑

i=1

n−1/2riεi

[
λ̃i(φ)/Ψ̃i(φ)

]
.

In view of these, under Hcn, for any 1/4 < η < 1/2,

nη sup
φ∈Φ

∥∥∥∥∥(∂/∂φ)

{
n−1

n∑

i=1

ℓi(φ) − n−1

n∑

i=1

κi(φ)

}∥∥∥∥∥
a.s.→ 0 as n → ∞.

Further, φ̂−φ̂(2c) p→ 0 as n → ∞, and hence, φ̂
p→ φ0 as n → ∞. Note that under Hcn,

θ̂ → θ0 as n → ∞, where θ0 is the true value satisfying F 0 = Fθ0 under H0. As in the

proof of Lemma 14, Ŵ ∗
n ◦F−1

θ̂
(·) converges weakly to G(·) under Hcn [in probability],

and hence the rest of the arguments follow as in the proof of Proposition 2. �
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APPENDIX C: Simulation study on the importance

of the tests in density forecasting

One important area of application of the tests proposed in the paper is forecasting the

conditional distribution and/or density of Zi+1. The role of these tests in forecasting

is that they can be used for testing the goodness-of-fit of the specified parametric

model. To evaluate the potential contribution of these tests, this simulation study

estimates different measures of ‘loss’ in using an incorrect parametric family when

the tests have adequate power to reject the incorrect family.

Design of the simulation study:

Let {Gβ : β ∈ B} and {Fθ : θ ∈ Θ} denote two distinct families of cumulative

distribution functions (cdfs). Let Ψi(φ) = φ1+φ2Zi−1+φ3Ψi−1(φ), φ = (φ1, φ2, φ3)
⊤ ∈

Φ, denote the parametric specification for Ψi. The design of the simulation is based on

the following scenario: The true DGP is Ψi = Ψi(φ0) for some φ0 ∈ Φ and F 0 ∈ {Gβ :

β ∈ B}. The parametric model being considered for use in forecasting, and hence

defines the null hypothesis is H0 : Ψi ∈ {Ψi(φ) : φ ∈ Φ} and F 0 ∈ {Fθ : θ ∈ Θ}. We

are interested in estimating some measures of ‘loss’ in using the incorrect parametric

family {Fθ : θ ∈ Θ} for forecasting and the extent to which the goodness-of-fit tests

could be expected to help in reducing such losses.

We use three different measures to estimate the ‘loss’. Let G denote the true

cdf Gβ0
(x/Ψi+1(φ0)) of Zi+1, Ĝ(x) denote its forecast Gβ̂(x/Ψ̃i+1(φ̂)), F̂ (x) denote the

forecast Fθ̂(x/Ψ̃i+1(φ̂)) when the model in H0 is used. Let A1 = (1/2)
∫
|ĝ(x)−g(x)|dx

and A2 = (1/2)
∫
|f̂(x)−g(x)|dx. By using the term ‘misallocation’ in a broad sense,

we may interpret A2 as the proportion of the total probability of 1 that is misallocated

by f̂ when the true target is g. We use LP := E(A2)/E(A1) as the first measure of

the loss resulting from using the incorrect parametric model specified by H0.

We also estimated the following two measures of loss: (a) LO := E(B2)/E(B1),
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and (b) LT := E(C2)/E(C1), where

B1 := max
aL≤x≤aU

|ĝ(x) − g(x)|
g(x)

, B2 := max
aL≤x≤aU

|f̂(x) − g(x)|
g(x)

,

C1 := max
bL≤x≤bU

|Ĝ(x) −G(x)|
{1 −G(x)} , C2 := max

bL≤x≤bU

|F̂ (x) −G(x)|
{1 −G(x)} ,

aL = G−1(0.025), aU = G−1(0.975), bL = G−1(0.9), bU = G−1(0.99).

The first quantity LO measures the extent to which the ordinate of the forecast pdf

f̂(x) deviates from the true pdf g, relative to the deviation |ĝ(x)−g(x)|, which is due

to purely random error. Similarly, the second quantity, LT , measures the extent to

which the forecast of the upper tail quantiles of F̂ (x) deviates from the true quantiles

of G, relative to the deviation |Ĝ(x) −G(x)| in the upper tail of the distribution G.

Results:

Estimates of LP , LO, and LT are given in Table 3. As an example, consider

the first entry of 3.1 for LP in that table. It says that on an average, the probability

misallocated by the forecast density because the use of the incorrect parametric family

is 3.1 times (= 310%) of what would be incurred had the true parametric family been

used. Therefore, the loss in terms of LP is large. Since the goodness-of-fit tests, for

example, the A2 test, have nearly 100% power, the tests almost certainly point us to

the fact that the use of the null model would result in loss.

Table 3 also shows that LP increases with the power of A2. Consequently, if the

power of the test is low, then the null and the true models are likely to be close, and

hence, the loss in terms of LP is also likely to be low. The estimated values of LO

and LT are also of the same order of magnitude as those of LP . Therefore, the use of

these tests can be expected to reduce such losses in density/quantile forecasting.

APPENDIX D: Additional results for the empirical

example in Section 6

Figure 2 contains empirical cumulative distribution functions of the probability inte-

gral transforms of density forecasts based on the six multiplicative error models for

the UTX realized volatility series considered in the empirical example in Section 6.



14

Figure 3 provides the summary plots for the UTX realized volatility series. The

first panel gives a plot of UTX realized volatility expressed on a percent annualized

scale. An Autocorrelogram is in the second panel. The last panel displays a residual

correlogram for the MEM(1,1) model.
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Figure 2: Empirical cumulative distribution functions of the probability integral
transforms of density forecasts of the UTX realized volatility series for the MEM(1,1):
Ψi(φ) = φ1 + φ2Zi−1 + φ3Ψi−1(φ), φ = (φ1, φ2, φ3)

⊤, when Fθ is Weibull [−−], and
mixture of Burr and Generalized Gamma [...].
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Figure 3: Summary figures for the UTX realized volatility series and the correspond-
ing residuals estimated by the MEM(1,1) model.
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Table 3: Estimated losses of using an incorrect parametric MEM for forecasting.

Gβ Fθ LP LO LT Power of A2

Gen. Gamma Gamma 3.1 2.1 2.9 0.99
Weibull 2.6 2.0 2.3 0.96
Exp 3.4 2.4 3.2 0.99
Burr 1.8 1.2 1.2 0.17

Burr Gamma 2.7 2.5 3.1 0.99
Weibull 3.0 3.0 2.9 0.99
Exp 3.0 3.0 2.8 0.98
Gen. Gamma 1.5 1.6 1.6 0.43

Note: The results are based on 1000 Monte Carlo replications and the sample size
was n = 1000. The true DGP is MEM(1,1) for the mean function and Gβ for the
error distribution. The model under consideration for forecasting, and hence, H0 is
MEM(1,1) for the mean function and Fθ for the error distribution.


