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Abstract

This supplement contains definitions, assumptions, and detailed proofs of the lemmas and
theorems in the main paper. Section 1 gives definitions. Section 2 lists assumptions and main

theorems. Section A provides proofs.

1 Definitions

First, we define a Holder class. A real-valued function f on X C R% is said to satisfy a Holder
condition with exponent v € (0, 1) if there is a constant ¢ such that |f(x) — f(y)| < ¢|lx — y||”

for all z,y € X. Let a = (a1,...,aq,)" and [a] = a1 + - + aq,, we then define the differential

x )

Operator Ca by
ol f(x
va F( ) f( )

Let m be a nonnegative integer and set p = m + 7. A real-valued function f is said to be
p-smooth if it is m times continuously differentiable and V¢ f satisfies a Holder condition with
exponent « for all a with [a] = m.

Denote by AP(X) the class of all p-smooth real-valued functions on X. AP(X) is called

a Holder class. Also, denote by C™(X) the space of all m-times continuously differentiable
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real-valued functions on X'. Define a Holder ball with radius ¢ and smoothness p = m + « as

A(X)=< feC™(X): sup sup |[V*f(x)] <¢, sup  sup Ve (@) = V)l <cp.
l[a]<m zEX [a]=m z,y€X ,x#y ||5U - yH’Y

The Holder class functions can be approximated well by various linear sieves such as power
series, Fourier series, and splines. For details, see Chen (2007).
Let A = © x H be the parameter space and let || - ||s be a metric on A. The following

definitions are borrowed from Ai and Chen (2003) (hereafter AC, 2003).

Definition 1.1 A real-valued measurable function f(Z,«) is Hélder continuous in o € A if
there exists a constant k € (0,1] and a measurable function c(Z) with E[c(Z)?|X] bounded, such

that | f(Z,0n) — f(Z,a2)| < e(Z)||ar — || for all Z € Z and a;, s € A.

Definition 1.2 A real-valued measurable function f(Z,«) satisfies an envelope condition over
a € A if there exists a measurable function c¢(Z) with E[c(Z)*] < oo such that |f(Z,a)| < ¢(Z)

forall Z € Z and a € A.

Next, we define a pseudo-metric || - ||, which is originally introduced by AC (2003). We
assume that A is connected in the sense that for any aq, as € A, there exists a continuous path
{a(r) : 7 € [0,1]} in A such that a(0) = a; and a(l) = az. Suppose that A is convex at
ap in the sense that for any o € A, (1 — 7)oy + 7w € A for small 7 > 0. Moreover, suppose
that for almost all Z, p(Z, (1 — 7)ag + Ta) is continuously differentiable at 7 = 0. Under these

assumptions, we define the pathwise derivative at the direction [ — ] at g by

dp(Zaao)[a_a }: d,O(Z,(l—T)Ozo—l-TOé) as. 7
da 0 dr . T
Also, for a1, as € A, we denote
dp(Z, « dp(Z, o dp(Z, «
%[m —ay] = %[Og — ] — %[QQ — al,
dm(X, « dp(Z, o
200y — o] = 7 | 00 o - ag)x]
For aq, a2 € A, we define the pseudo-metric || - ||, as
dm(X, « ! dm(X, «
lar — aallw = | E {(dao)[al - az]} S(X, a0)7t {(dao)[al - az]}}-




2 Assumptions and main results

2.1 Consistency

We impose the following assumptions to prove consistency. Most of them are adopted from AC

(2003) and Donald, Imbens, and Newey (2003) (hereafter DIN, 2003).

Assumption 3.1 (i) The data {(Y;, X;)71} are i.d.d.; (ii) X is compact; (iii) the density of

X is bounded above and away from zero.

Assumption 3.2 (i) For each k, there is a constant ((k,) and matriz B such that p*»(X) =
Bp*n(X) for all X € X, supxex [|[P*(X)| < ((kn), E[p* (X)p* (X)'] has smallest eigenvalue
bounded away from zero, and 'k, < ((kn); (i) for any f(-) with E[f(X)?] < oo, there exists

kn x 1 vector my, such that E[{f(X) — p*»(X)'mx, }?] = o(1).
Assumption 3.3 «ag € A is the only o € A satisfying Elp(Z,a)|X] =0 a.s. X.
Assumption 3.4 X(X, «a) is finite positive definite uniformly over X € X and o € A.

Assumption 3.5 (i) There is a metric || - ||s such that A = © X H is compact under || - ||s;
(ii) there is a constant py such that for any a € A, there exists Il,a € A, = © X H,, such that

I, — all = O(ky,") with kit Vkn — 0.

Assumption 3.6 (i) E[sup,c . ||p(Z,)||*|X] < oo; (ii) p(Z, «) is Hélder continuous in o € A

with respect to the metric given in Assumption 3.5.
Assumption 3.7 (i) d,k, > dg + ki, and k,/n = o(1).

Assumption 3.8 (i) s(v) is twice continuously differentiable with Lipschitz second derivative
in a neighborhood of 0; (ii) there exists m > 2 such that E[sup,e4 ||p(Z,0)||™] < oo and

(k)2 kn /=2 = 0; (idi) n'/™C(kn)VEnkp ™ — 0.

Theorem 3.1 Suppose that Assumptions 3.1-8.8 hold. Then, the SGEL estimator satisfies

[én — aolls = Op(1)~



2.2 Rate of convergence

Let N(0,A,, | - ||s) be the covering number of radius § balls of A,, under | - ||s. To obtain the

convergence rate of the SGEL estimator, we impose additional assumptions.

Assumption 3.2 (iii) For any f(-) € AP(X) with p > d,/2, there exists p*»(-)'7y, € AP(X)

such that supx e | f(X) = p* (X)'mp, | = Ok ™) and k™" = o(n~1/4).

Assumption 3.5 (iii) There is a constant g > 0 such that for any o € A, there is ll,a € A,

satisfying |Tya — allw = O(k*?) and k3 = o(n=1/4).

Assumption 3.6 (iii) Each element of p(Z,«) satisfies an envelope condition over o € Ap;

(iv) each element of m(-, ) is in AR(X) with p > d,/2 for all a € A,.
Assumption 3.7 (i) ki, In(n)C(k,)?n=1/2 = o(1).
Assumption 3.8 (iv) n=V/4/m¢(k,) = o(1); (v) n=Y2ky*C(ky) = o(n=1/4).

Assumption 3.9 (i) ||2(X, )2 — (X, 0)Y?|| < c|lay — ot for all a1, as € Ay, and
X € X with some constant ¢ < oo; (ii) each element of ¥(-,a)~Y/? is in AR(X) with p > d, /2

forall a € A,.
Assumption 3.10 In N(e'/* A, | - ||s) < const. x ki, In(ky, /€).

Assumption 3.11 (i) A is convezr in ag and p(Z,«) is pathwise differentiable at ag; (i) for

some c1,ca > 0,
a1l Elm(X, ) S(X, a0) "'m(X, 0)] < [la = aol}, < c2E[m(X, a)' S(X, a0) " m(X, o]
for all a € A, with ||a — apl|s = o(1).

Theorem 3.2 Suppose that Assumptions 3.1-3.11 hold. Then, the SGEL estimator satisfies

16 — aollw = 0p(n=1/*).



3.3 Asymptotic normality

Let Nop = {a € A, : [la—aglls = o(1), o — agllw = o(n~ 4} and Mo = {a € A: |a— aglls =
o(1), ||l — gl = o(n~/*)}. Following additional assumptions are required for the asymptotic

normality.
Assumption 4.1 (i) E[D,(X)'2(X, a0) " Dy (X)] is positive definite; (i) 0y € int(©).
Assumption 4.2 There is a vy = (v}, —I,w*xv}) € A,—ag such that ||[v}—v* ||, = O(n~/4).

Assumption 4.3 For all o € Ny, the pathwise first derivative (dp(Z,a(t))/da)[v] exists a.s.

Z € Z. Also, (i) each element of (dp(Z,a(t))/da)[v}] satisfies an envelope condition and is

n

Hélder continuous in o € Nop; (ii) each element of (dm(-,a)/da)[v}] is in AB(X), p > dy/2 for

all o € Ny.

Assumption 4.4 Uniformly over a € Nyy,,

X X
—I/Qdm( ’O‘)[U;«L]_E(X’ao)—lﬂdm( 7010)

da da [vr)

E HZ(X, a)

2
] = o(n™1/2).
Assumption 4.5 Uniformly over o € Ny and & € Nop,

E {dm(XO‘O)} (X, a0)~! {dm(X’a)[a _ o] - mXo20) o ao]}] — o(n-112),

do « do

Assumption 4.6 For all a € Ny, the pathwise second derivative d*p(Z, o + Tv%)/dm?|,=0

exists a.s. Z € Z, and is bounded by a measurable function c(Z) with E[c(Z)?] < .

Assumption 4.7 s(v) is three times continuously differentiable with Lipschitz third derivative

in a neighborhood of 0.
Assumption 4.8 n~ /4t ((k,) = o(n~1/8).

Theorem 4.1 Under Assumptions 3.1-3.11 and 4.1-4.8, the SGEL estimator satisfies \/ﬁ(én —

0o) %5 N(0, VL), where V = E[Dy (X)'S(X, ag) "t Dy (X)].



A Proofs

Throughout this section, C' denotes a generic positive constant which may be different in different
uses. The qualifier “with probability approaching one” will be abbreviated as w.p.a.1l. Apin(A)
and Apax(A) denote the minimum and maximum eigenvalues of a matrix A. Also, let p; =

PP (X5).

A.1 Consistency

The outline of the proof is the same as that of Theorem 5.5 in DIN (2003). There are two
main differences: (1) our parameter of interest is infinite dimensional; and (2) the minimization

problem is solved over the sieve space A,, rather than the original parameter space A.

Lemma A.1 Suppose that o € A, satisfies ||a — agl|s = o(1). Let

Q) = -3 gil)gi(a), Ofa) = = 3" B(Xe, ) @ pis],

Q(a) = E [gi(a)gi(a)']).

i=1

Suppose that Assumptions 3.1 (i), 3.2 (i), 8.4, and 3.6 (i) are satisfied. Then we have

Oa) = Q)| = 0p (k) VRa/n), [[2(0) = @)]| = Op(Cn)v/ B /).

Also, we obtain 1/C < Apin (@) < Amax(Q(a)) < C. Moreover, if ((kn)\/kn/n — 0, then

1/C < Anin(U) < Amax (@) < C w.p.a.1.

Proof. The result is obtained from Lemma A.6 of DIN (2003). In their lemma, Q, Q, and Q
are evaluated at the true parameter value Sy, while Q(oz)7 Q(a), and Q(a) depend on general «,
which can be different from ag. Because of this, we impose Assumptions 3.4 and 3.6 (i), which
are stronger than the assumptions in DIN (2003). Then the proof is almost the same as that of

DIN (2003). n

Lemma A.2 Suppose that Assumptions 3.1 (i) and 3.8 (ii) hold. Then for 6, = o(n=""¢(k,)™")

and Ay, = {\ M| < 6,}, we have

max sup sup |Ng;(a) = 0.
I<isnae A XeA,

Also, w.p.a.1 we have A,, C A(a) for all a € A.



Proof. See Lemma A.10 of DIN (2003). ]

Hereafter, let 6, = o(n=1/™((k,) 1) and ano = M. Also, let §(a) =n~1 31| gi(@) and

S(a,A) =t 0L s(Wgi(a)).

Lemma A.3 Suppose that Assumptions 3.1 (i), 3.2 (i), 3.4, 3.5 (i), 3.6 (i), (ii), and 3.8

hold.  Then, supycj . S0, ) = 0,(02), A = arg MAX )\ (& (4,0) O (On0, A) exists w.p.a.1, and

1Al = 0,(6n).

no)

Proof. We modify Lemma A.11 of DIN (2003) to take into account the difference in con-

vergence rate between their and our estimators. By Lemma A.9 of DIN (2003), we have

lg(ao)|l = Op(\/kn/n). Also, by Assumptions 3.5 (ii) and 3.6 (ii),

R R w1 — i
1m0} = (a0l < llano — ol > _ e(Z)lpill = Op(ky, " v/hn).

i=1

Thus by the triangular inequality, we have ||§(ano)|| = Op(\/kn/n + ki, VEn).
It follows from Assumptions 3.8 (ii) and (iii) that we can choose \/ky/n+ k"' vk, = 0(0n).
Also, we choose A,, as in Lemma A.2. Then \ = arg maxyey,, S(ano, A) exists w.p.a.1. Moreover,

by Lemmas A.1 and A.2 and Assumptions 3.4 and 3.8, a Taylor expansion yields
0 = S(an0,0) < S(cno, A) < [Alllla(eno) | = CIIAI? (A.1)

and hence ||A|| = 0,(3,,). The remaining part of the proof follows DIN (2003). ]

Lemma A.4 Suppose that Assumptions 3.1 (i), 3.2 (i), 3.4, 3.5 (ii), 3.6, and 3.8 (i)-(iii) hold.

Then ||§(07n)|| = Op(57b)~

Proof. We modify Lemmas A.13 and A.14 of DIN (2003). In their proof, they use the fact that
SUDy ¢4 () S(3,\) < SUDP\ A (8o) S(Bo,\), which is obtained by the definition of 3. In contrast,
we may not have SUDy A (40) S’(&n, A) < SUD )\ € A (ag) S(ag, ) because the minimization problem
is solved over the sieve space. This requires a modification of the proof.

Choose k1! VEp++/kn/n = 0(6,) and let A,, = {\ : ||| < 6,}. Let A = —6,G(&n)/||G(én) |-
Then N §(&y) = —6,]|9(&n)|| and X € A,,. By Lemma A.12 of DIN (2003) and definition of d,,

a Taylor expansion yields

Snllg(dn)|| — C6% < 8(dn, A) < sup S(@n, A) < sup S, A). (A.2)
AeA(Gn) AeA(ano)

7



Then, it follows from Lemma A.3 that sup,cj,...) S(ano,A) = 0,(62). Thus, we obtain

Qn

In[|g(6m) || = CO7 < 0p(07), and hence [|(én)]| = Op(dn)- u

n —

Proof of Theorem 3.1 Let W = (n7!3 ", I®pip§)_1. We define

=
B
I
&=
=
2
N
2
=
I
=
N
2
=

By Assumption 3.3, we have
R(a) = E[E[p(Z, )| X]'E[p(Z,a)|X]] > 0 = R(ao)

for all @ # ap. Also, Corollary 4.2 of Newey (1991) implies that R(«) is continuous and
sup,e4 |R(@) — R(a)] & 0. Thus, by Lemma A.1 of DIN (2003), it suffices to show that
R(Gy,) % 0. Similarly to Lemma A.1, we can obtain Ay, (W~!) > C w.p.a.l. Thus it follows
from Lemma A.4 that

9(Gn) W §(dn) < Cllg(an)|I* = 0,(62)

and the desired result follows. [ |

A.2 Rate of convergence

Let Q; = I®p) and Q = (Q},...,Q))". Also, let p(a) = (p(Z1,),...,p(Z,,a)") . Denote a

sieve estimator of m(X;, o) = E[p(Z;, a)| X;] by
’I’h(X“ a) = Qi(QIQ)_lQIP(Q)a
Also, let Agp, ={a € A, : |la— aplls = 0(1)} and n, = o(n™ ") with 7 < 1/4.

Lemma A.5 Suppose that Assumptions 3.1-3.4, 3.6-3.7, and 3.10-3.11 hold. Then we have (i)
lg(a)|l = 0p(1) uniformly over o € Agy; (it) ||G(a)]] = op(nn) uniformly over o € Ag,, with

llov = ol = (1)

Proof. By using the similar argument as in the proof of Lemma A.1, we can show that

Amin (W) > C w.p.a.1l. Hence
O3l < §(0) W3(0) = —p(0) QQ'Q)Qpla) = + 3 (X )]
i=1

8



Also, we have
RS 2 2l v 2
- ; Im( X3, @) < fla — aoll* ;E[C(Zi)le] :

Then Corollary A.1 (i) of AC (2003) implies ||§(c)|| = 0p(1) uniformly over a € Ag,. Moreover,
Assumption 3.11 implies that E[|[m(X, «)||?] and ||a —ag||?, are equivalent. Then Corollary A.2

(i) of AC (2003) implies ||g(@)|| = 0p(ny) uniformly over o € Ay, with ||a — agllw = 0(n,). W

Lemma A.6 Suppose that Assumptions 3.1-3.4, 3.6-3.7, 8.8 (ii), (), and 3.10-3.11 hold. Let

tla)=—(n' X, gz‘(OZO)gi(OZO)/)71 g(a). Then for any no, = o(n=/%),

max sup |nont(c)’gi(er)] 0.
1<i<n ae Ay,

Proof. By Assumption 3.8 (ii) and Lemma A.1, we have Apin(n™' Y0, gi(a0)gi(ao)) > C
w.p-a.l. Thus, it follows from Lemma A.5 that

[t = g(or)’ (i Zgi(ao)gi(ao)’> g(e) < Cllg(e)]|* = 0p(1)

uniformly over o € Ag,,. Also, we have max; <<, sup,c 4 ||p(Zi, @)|| = Op(n'/™) by Assumption

3.8 (ii) and the Markov inequality. Therefore, by Assumption 3.8 (iv), we obtain

max sup |nont(@)'gi(@)] < non sup [[t(e)] max sup [p(Z;, @)|[C (k)
1<i<n aedg, a€Aon ISisnac Ao,

= o(n *)op(n'/™)((kn) = 0p(1),
and hence the desired result follows. [ |

Let us define Xn(ano) as S’(ano, An(Qno)) = SUD)\ ¢ (o) S'(ozno7 A).

Lemma A.7 Suppose that Assumptions 3.1-3.7, 3.8 (i)-(iv), and 3.10-3.11 hold. Then we have

[An(omo) | = 0p(n=1/%).

Proof. The proof is similar to that of Lemma A.3. By Assumption 3.5 (iii) and Lemma A.5,
we have [|§(ano)|| = 0p(n~/%). Let A = arg maxyea, S(cno, A). Then by Lemma A.2, we have

maxi<ij<n SUPxea . | gi(ano)| = 0p(1) and that X exists w.p.a.1. A Taylor expansion yields

0 = S(ano,0) < S(ano, A) < [AI1g(eno)ll = ClIA>.



Thus we have [|A|| = o,(n~/4). Also, by Assumption 3.8 (iv), ||A|| < 6, w.p.a.1. Hence we have

A = A\ (anp) and the result follows. [ ]

Define ¢(X,a) = 2(X,a)"?m(X,a). Let Q(X;,a) = X(X;,a)/? @ p} and Q(a) =

(Q(X1,a),...,Q(Xn,a)). We define the following sieve estimator for ¢ (X, «):
(X, @) = QX1 a)(Q(a) Q) ™1 Y Q(X, ) (X, ) 2p(Z5, ).
j=1

Lemma A.8 Suppose that Assumptions 3.1-3.2, 3.4, 3.6-3.7, 3.8 (ii), and 3.9-3.10 hold. Then

we have n=t 31 [1h(Xy, @) — (X, @)||? = 0,(n"V2) uniformly over a € Ag,.

Proof. We modify Lemma A.1 of AC (2003) with &1, = 02, = o(n~'/%). We replace p* (X)
in their lemma with Q(X, ). The main difference is that Q(X,a) depends on a while p* (X)
does not, which produces some extra terms that do not appear in the proof of AC (2003).

Let N(e, Aon, | - ||s) be the minimal number of e-radius covering balls of Ag, under the
metric | - ||s. Also, let &(k,,) = supy ey [[0pF (X)/0X||. Define €;(a) = X(X;, a) "V 2[p(Z;, o) —
Elp(Z;, )| X;]] and €(a) = (e1(a)’, ..., en(@)’) .

First we show that [|Q(X,a)(Q(c)'Q())"*Q(a)’e()|| = 0,(n~1/4) uniformly over (X, a) €

X X Agn. Let W, = X x Ag,. For any pair (X1, a!) € W, and (X2,a2) € W,,

lR(X", 0 (Q(a") Q)T Qe e(al) — Q(X?,0)(Q(0?) Q(a?) ' Q(a?) e(a?)
< (@' a") - QX" 0") (Qa') Q') T Qo) e(ah)) |
+H[(QIX", %) = Q(X?,0%)) (Q(a') Q) ' Q(a") e(a))
H|REX2, ) (Q(0?)Q(0*) T Q(e*)Q(a?) — Q(a') Q(a")]
x (Q(a")Q(a")7'Q(a") e(ah))]]
+[Q(X*,a*)(Q(a*)Q(a®) ! [Q(a!) (e(a!) — e(a®))]|
+[|Q(X%,0*)(Q(a*)Q(0?)) ! [(Q(a') — Q(a®)) e(a®)] |-

By Assumption 3.9 (i),

2

Jext o)~ ) < [[Bxta) - nxt o) (ko

IN

IN

Clla’ = a?[Z¢ (kn)*.

10



Also by Assumption 3.4,

lext.e?) —x* ) < swp [mx) [ Xt - X2 Pech)?
acAgn,XEX
< CIX! = X2|Pg(ka)?

It follows from Assumption 3.6 (iii) and law of large numbers that n=1 H»s(ozl)’e(041)||2 = 0p(1).
Also, by Assumption 3.8 (ii) and Lemma A.1, Ayin (Q(@)'Q(a)/n) > C w.p.a.l for a € Ag,.

Therefore, we have

2

(@) Q)™ Q(ah) e(al)||
= tr(e(a")'Q(@)(Q(a) Q") /n)~H Q") Q") ' Q') e(al) /n)
< Ctr(e(a')'e(at)/n) = 0,(1).

Then we have

P(X sup H( Q(X « ))(IQ(alz)/Q(al))—lQ(al)’6(041))H >CC(kn)> <,
€X,al,a2€Apn Ila —« ”?
P( sup QX" 0%) = Q(X?,a%))

X1, X2eX,at,a?2€Aon

«(Qa'YQ(a)) DI/l = el > Ceth) ) <
for any small n > 0 and sufficiently large n. Also,

FREYQ0Y) - QYR £ 3 [[B(ah) - (X a?)| il

n

IN

IN

Cllat = a?||%ky,.
Hence, for sufficiently large n

Q(X,a?)(Q(a?)'Q(a)) ' [Q(e*) Q(e?) — Q') Q(a')]

P sup
XeX,at,a2eAgn

x(Qa")'Q(a") Qo

—?|5 > C¢(kn) n) <.

Moreover, Assumption 3.6 (ii) implies that

< Clat - a2zl 202

where Y"1, ¢2(Z;)/n = O,(1) by the weak law of large numbers. Also,

LQ(aty (e(at) - e(0?))

n

L(Q(aY) - Q(a?))e(a?)

n

< Ol — 0?5y Lt ety ete),

11



Therefore, for sufficiently large n, we have

- < ap QG et)@eQ02) ! [l (clo!) — c(a2)]|

> C((kn)2> <n

XeX.alatedn, ot —a?[z
and
2 2/ 2\\—1 1y 2\\/ 2
P s 10XeDQEYQNT @Y ~ Q) o)l | oo o)
XeX,al,a?2eAg, HOé -« ||I:9€

Similarly to the proof of AC (2003), for any small ¢, we divide W, into b,, mutually exclusive
subsets Wy, m = 1,2,...b,, where (X!, al) € W,,,, and (X?,a?) € W,,,, imply HXl — X2H <

en~ /4 )(CE(ky,)) and [|at — o2||% < en™Y*/(C¢(kp)ky). Then w.p.a.1, we have
QX M) Q") Q") ' Q(a!) e(ah) — Q(X?,a*)(Q(?) Q(a®) ' Q(a®) e(a®)]| < 2en™ '™,

For any (X, ), there exists an m such that | X — X™| < en™Y/4/(C&(k,)) and |Ja — ™| <

en’1/4/(0<(kn)kn)' Thus, w.p.a.l,

sup - [|Q(X, a)(Q(e) Q) ' Q(a) e(e)) |

(X,0)EX X Agn,
< 2en”Ht 4 max [[Q(X™,a™)(Q(a™) Q(a™)) T Q(a™) (™) -

Hence we have

cEX X Aon

P<<X swp X, 2)(Qey Q)™ Qe o) >4en—1/4>
< 5yt P (max [ Q(X, ) (Q(0) Q(0) ' Q(a) e(a))|| > 2en~1/1).

By a slight modification of the proof of AC (2003), we can show that the second term of the

right hand side can be arbitrarily small if
—1Inb, — . (A.3)
Since X is compact, we have

(S I (== B!

Therefore, (A.3) holds if

{Imm (k)™ 4 [N (1€ k) 7% Ans - ls) | } €)™ = 0(1),

which is implied by Assumptions 3.7 (ii) and 3.10. Hence we have

sup ){|Q(a7X)(Q(a)’Q(a))—lQ(a)’e(a))H = 0,(n1%). (A.4)

(X,a)€(X, Aon

12



Next, by Assumptions 3.2 (iii), 3.6 (iv), and 3.9 (ii), there exists IIj (a) such that
(X ) = BE(X, )" ?p(Zi, @) | X] = 1, (@)p; + 0p(n~ /")

for all X € X and « € A,,. Thus it follows that

2
n

-3 QX 0) @) Q)™ Y QU ) Bl a) — (Xisa)

= % D (X a) = g, (@)pi]|* + 0p(n~12) = 0, (n™1/?) (A.5)
=1

uniformly over a € Ay,

The result follows from (A.4) and (A.5). |

Lemma A.9 Suppose that Assumptions 3.1-8.3, 3.4, 3.6 (iii)-(iv), 3.9 (ii), and 3.11 hold.
Then n=' 37 | [v(Xi, @) [|> — E [[[¥(X, )|1?] = op(n~1/2) uniformly over a € Ag, with |lo —

Olo”w = 0(1)

Proof. The result can be obtained by replacing m (X, @) with (X, a) in Corollary A.2 (i) of

AC (2003). n

Lemma A.10 Suppose that Assumptions 3.1-3.4, 8.6-3.7, 3.8 (ii), and 3.9-8.11 hold. Then we

have n=1 Y% | (X5, a)||? = 0p(n2) uniformly over o € Agy, with || — ool < -

Proof. Assumptions 3.4 and 3.11 imply that E[||¢)(X, «)||?] is equivalent to | — ap||%. Thus

the result follows from Lemmas A.8 and A.9. [ |

Define (X, a) = X(X, ag)~/?m(X, a) and denote
(X ) = Q(Xi, 00)(Q(a0) Qo)) ™ D QX 00) B(X;, a0) ™2 p(Z5, ).
j=1
Lemma A.11 Suppose that Assumptions 3.1-8.4, 3.6-3.7, 3.8 (ii), and 3.9-3.11 hold. Then
we have (i) n=tY " ho(Xi, ) — o(Xi, )| = 0,(n~Y2) uniformly over o € Aon; (ii)

n-! Z?zl ||1/~JO(XZ-,0¢)||2 = op(n%) uniformly over a € Agy, with ||a — apllw < M-

13



Proof. The results follow immediately from Lemmas A.8 and A.10. [

Hereafter, denote

Ly(a) == sup S(a, V),
AeA(a)

Ln(a) = —g(a) <7ll Zgi(ao)gz‘(ao)/> g(a),
i—1
Ly(a) = —% Z%(Xua)/%//o(Xna)

Lemma A.12 Suppose that Assumptions 3.1-3.4, 8.6-3.7, 3.8 (v), and 8.9-83.11 hold. Then we
have (i) Ly (@) — Ly (a) = 0,(n='/4) uniformly over a € Aon; (i) Ly () — Lp(a) = 0,(n~4n,,)

uniformly over o € Aoy, with ||o — apllw = 0(1y)-

Proof. By Assumption 3.8 (v), we can choose ((k,)\/kn/n = 0,(n~/4). Then by Lemma

A.1, we have
n

1 « 1 _
Hn;gi(ao)gi(aoynZE(XWO)@pin = op(n~14).

i=1

Also, we have Amin(n™' D" | gi(a0)gi(a)) > C and Apin(n™t 30" B(X;, a0) @ pip}) > C

w.p.a.1l. Thus we obtain

n -1 -1
o) (;ngo)gi(ao)') () ~ gla) (;_Zwi,ao)@pm;) i)

n

1 — 1
- 291‘(@0)91‘((10)/ - Zl Y(X;, ap) ® pip;

IN

Cllg(e)]”

= Op(lg(@)|*)op(n=1*).

Also, let p;(a) = (X, a0)"2p(Zi, ) and pla) = (pi(a), ..., pn(@)’)’. Then we have

9()f (711 > E(Xisa0) ®pip§> 9(a) = %Z@o(Xma)ll/;o(Xma)'
i=1

i=1

14



Thus it follows that

Z% Xi, @) to(Xi, @) - Zwo Xiy @)'do(Xi, @) | + 0p(n )0y ([|3(a)|?)

=1
< %Z (1/;0()(1‘704) - 1/}0(Xi7a))/1;0(Xi704)
=1
% ; to(Xi, )’ (%(Xi, a) = vo(X;, a)) + 0p(n )0, (I|g(0)[|?)
1 « 2 1/2 1 1/2
< (n > [[Fo(Xi @) = (i) ) (n > wo<xi,a>|2>
=1 i=1
1|l - 2 1/2 1 /2
+ (n > [[Po(xi @) = vo( X0 ) (n 3 ||1/;0(Xz-,a)|2>
=1
+ op(n ‘1/4> p(19()]1?).
Therefore the result follows from Lemmas A.5 and A.11. [ ]
Proof of Theorem 3.2 Let 0 < 79, = o(n~/*). Define Lo, (a) = —n~' 3", s(nont(a) gi(a)).

By Lemma A.6, for a € Ay, we have

Lon(0) = most(a)d(e) - B2i(a) ( 252 nont/gi(a gz<a>gi<a>’> (o)

= onLn(@) +0p(n~"7?). (A.6)

Also, by Lemma A.7, a Taylor expansion yields

n

[A/n(aHO) - _% Z S(A(anO)/gi(anO))
= 5\n(O['nO)/g<anO) - %S\n(anO)/ (7’1L Z 82(S‘/Qi(an0)>gi(an0)gi(an0)/> 5\n(OénO)7
i=1

for some \ between 0 and S\n(ano). Hence we have

Lnfono)| < ()| = 0p(n 7). (A7)

Now we show that |G, — agllw = 0,(n71/®). Let don = 2,/Mon = o(n~'/®). By the definition

of L, (a), Lon(a) > Ly () for all € Ag,,. Therefore, by using similar set inclusion relations as

15



in the proof of Theorem 3.2 of Otsu (2011), we have

P ([|am = aoll, = Cdon)

< P ( sup Ly(a) > ﬁn(ano)>

|6 — o |lw>Con, € Aon

< P Sup f/On(a) > -i/n(ano)
[[&n—co|lw>Cdon,xEAon
< P ( L (o) — nOnLn(anO)‘ > 778”> +P ( sup | Lon () — no”Ln(a)‘ > 77871)

a€Apn

+ P < sup NonLn(c) = NonLn(ctno) — 277371)

”Ol—Oég Hw 2060717046«/40”

= P1+P2+P3, say.

Since n =131 [[90( Xy, ano)||? = 0p(n1/2), it follows from (A.7) that

|

= Op(nil/Q) = Op(n?)n)a

n

Snen)]| + ™2 3 (X )

i=1

An(ano)|| (o)l + €|

IN

[A/n (ano) — NonLn (anO) ‘

which implies P; — 0. Also, it follows from Lemma A.12 and (A.6) that

sup LOn(a) - nOnLn(a) < sup |770nf1n(04) - nOnLn(a)| + Op(nil/Q)
a€Aon a€Aon

= 0p(n1?) = 0,(115,,)-
Therefore, we obtain P, — 0. Finally, using Theorem 1 of Shen and Wong (1994), we have
Py — 0. Therefore we obtain ||d, — ag|lw = 0p(n"1/%).
We can refine the convergence rate by using the logic that is introduced by AC (2003) and

adopted in Otsu (2011). Then we obtain ||y, — agllw = 0,(n~1/80F/2H1/44)) — o (np=1/4) =

A.3 Asymptotic normality

Denote
W[v;ﬁ] = 2(X;, a)ﬂmww
M[vrﬂ = Q(Xi,2)(Q()' Q)" ZQ(Xj,a)'E(Xj a)‘lﬂw )

do do [v)-

j=1

Lemma A.13 Suppose that Assumptions 3.1-3.2, 3.4, 8.7, 3.8 (i), 3.9-3.10, and 4.1-4.4 hold.
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Then
2

1 S d”(/AJ(X“O[) * dw(Xzaa) * _ —1/2
a?}\zn n ; dOé [vn] dOé [ n] - Op(n )7

L m||dv(Xi o) L d(Xio0), 1P 1)
s o 2 Jo vl Ta all| =0p(n™7).

Proof. The first equation can be proved by replacing p(Z;,«) with (dp(Z;, «)/de)[vi] in

Lemma A.8. The proof of the second equality is almost the same as that of Corollary C.1 of

AC (2003). -
Denote
LP(Z“O‘)[ s 0t = Ep(Zi, o+ T07)
dada: =™ dr? =0
szZJ(Xiaa) * *1 _ / -1 - _1/2d2p(Zj7Oé) % %
W[”mvn] = Q(Xi, 0)(Q(a)'Q(a)) ;Q(Xava)E(Xg @) W[Urwvn]'

Lemma A.14 Suppose that Assumptions 3.1-3.2, 3.4, 3.7, 8.8 (ii), 3.9-8.10, and 4.1-4.4 hold.

Then

i=1

) {W[”H} IX0) = 23 {W[v*]} B(Xi,0) + 0y (n"12)
i=1 —

uniformly over o € Nyy,.

Proof. Observe that

1K [ d(Xi,a) '
— — Z[vr —v* X;, o).
23 { v~ o]} 9 0)
Thus the result follows from Lemmas A.10, A.13, and Assumption 4.2.

Lemma A.15 Suppose that Assumptions 3.1-3.3, 8.6 (w), 8.9 (4), 4.1 (i), and 4.2-4.5 hold.

Then
LS {2 ey 23 { S i

+ (0", — ag) + 0p(n /)

uniformly over o € Ny,.

17



Proof. We modify the proof of Corollary C.3 (ii) in AC (2003). The main difference is that

W[v*] depend on a while g(X,v*) in AC (2003) does not. Define the following set of

functions:

Fe {{dw()c @) [v*]}/ (zﬁ(x, o) — (X, a)) fa€ NOn} :

Assumptions 3.6 (iv), 3.9 (ii), and 4.3 (ii) imply that F is a Donsker class. Also,
dv(Xia), 2
iy (X * n . _ . _
E{{(mwﬁ(w&m wxﬂWI op(1)
uniformly over o € Ny,,. Thus, as in AC (2003), we have

% En: {‘Wi"”)[v*}}/ ($(Xi0) = v(Xs,0))

i=1 dox
= FE {dq/}(é(oj,a)[v*]}/ (&(Xu a) — 1/)(X“a)> + Op(nfl/z)
uniformly over a € Np,. Also,
% i {W[U*] }/ ('(ZJ(XZ‘, ao) — ¢(Xz, 040))
= E {W{v*]}/ (Q/G(Xi,ao) - w(Xi,ao)) +op(n1/2).

Hence we obtain

_ 1”{
ni:l

{dw(jz,a) [v*]}/w(Xi,a) - {W[v*]}lw){iv%)}
+E {d¢($’a) [v*]}/i;(Xi,a) - {W[v*]}lﬁ(&,@o)l
_E{Wif%mywxﬂw{“@xwhﬂ}w&ﬂm+%w*®.

Note that

E

{wﬁf%m}w&aﬂ

- E{QWMM@M@@)l m&aﬂwﬁﬂhﬂ}w&ai.

j=1

Also, by Assumptions 3.2 (iii), 3.6 (iv), and 3.9 (ii),

QX a)(@(0) Qo)™ Y QX ay W) UL )

Jj=1

= Op(n_1/4)

18



uniformly over X € X and a € Ny,,. Hence, by the Cauchy-Schwarz inequality,

{Qm, 0)(Q(0) Q) Y. QX ay W) m} B(Xs, a>]

E

n

—EK [{Q(Xuao)(Q(Oéo)/Q(Oéo))IZQ(X%O&O)/W[U*]} %/J(Xzycvo)]

—p |{200) [v*]} 0(Xi0) - { P50 wo@,ao)]
- E{Q(sz ZQ sy WDy WH} ¢<Xi,a>}
= Op(”il/z)

uniformly over o € Ny,,. Therefore, we obtain

,Z {{dw X, ) *]}Iq;(X“a) _ {W[U*]}/ﬁ(&,ao)}
n ; {{ W )[”*]}IWXwa) - {W[U*]}/w()(mao)} +op(n1/?).

Now we consider the following class of functions:

o= ({25 sz i}

Again G is a Donsker class. Hence, we obtain

ap |13 {‘Wi’a)[v*]}lwi,a) —E

a€Ng, | T i=1 da

{W[vﬂ}/w(&,a)] | = o,(n~1/%).

Therefore by Assumptions 4.1 (ii), 4.4, and 4.5, we obtain

23 {{‘w 20y 0 ) - {W[U*]}/lﬁ(&,ao)}

3

_ {dw(d; )[U*]}/d)(Xi,a)_{W[U*}}/w(Xi,ao) + 0, (n"1/2)
- E { X“ao } (X, a0) " H {m(X;, @) — m(Xi, a0)} | + 0p(n"1/?)
- E {dm X“ao *} E(Xi,ao)l{dm(;g’a)[aao]W[aao}}l

+(v", a0 — o) + op(n 1/2)

= @Wha—a)+ op(n_l/z)
for some & € Ny between a and a.
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Lemma A.16 Suppose that Assumptions 3.1-3.4, 3.7, 3.9 (ii), 3.10, and 4.3 hold. Then

iZ{WW*]} w(X“ao) - Z{M[ *]} Z(Xiaoéo)_lp(zi,ao) + Op(n_l/Q).

da
=1

Proof. Notice that

n

Q(X, 0)(Q(e0)'Q(0)) ™" Y Q(X;, )

j=1

dz/)(XW ao) [’U*] o dw(X’ Oé()) [U*]
da da

= Op(n_1/4)

uniformly over X € X. Then we can prove the result by replacing g(X,v*) and m(X, ap) in

Corollary C.3 (iii) of AC (2003) with W[’U*] and (X, ap), respectively. ]

Lemma A.17 Suppose that Assumptions 3.1-3.2, 3.4, 8.7, 3.8 (i), 3.9-3.10, and 4.1-4.4 hold.

Then
1 - dp(Z“O()
sup ||— ————=[vr] @ pi|| = O0,(1),
aG/\/’On nlz_; da [ } P( )
1 < d?p(Z;, )
— —— vk v il = Op(1).
azljl\l/;;n n; dada [U’n Un] ®p P( )

/ —1
_ (I @)oo ) (LS x0T @ p!

1 < dp(Ziaa) *
* (n ; doa [vn) ®pl> '

By Lemma A.1, Ain((X 1 2(Xi, @)t @ pipl/n)~1) > C w.p.a.l. Thus we have

2 . 2
1 < dp(Z;, @) C || do(Xy, a)
— —v;, il| < — —————=[vr]|| = 0,(1
n P dOé [Un] ®p = n ; dOZ [vn} P( )
by Lemma A.13 and Assumption 4.3. Similarly
2
1 & d?p(Z;, Q) . C = dezoz
- k) * 9, * * — O 1
n; dada n,val @ pi < n Z; dada ™ ] p(1)
by Assumption 4.6. ]

Proof of Theorem 4.1 Let \,(a) = argmax, i S(a, \). Similarly to the proof of

Lemma A.7, we can show that A,(a) € A,, and max;<;<, |An(a)'gi(a)| % 0 for a € Ny,. Then

An (@) satisfies the following first order condition

n

0= 3" si0nla) gi@)e) (A3

=1
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for all o € Ny,,.

By Assumption 4.7, expanding (A.8) yields

0 = 3 s g(0)gi(o)
=1

~g(a) - <; > gz«<a>gi<a>'> )+ 5 3 50 (Vi) )i )10

for some X and for all & € Np,. Assumption 4.8 implies that max;<;<, | A, (@)’ g; ()] = 0p(n=1/%)

for o € Ny,,. Thus we obtain

3 ssXai(@)) O ' g1(0) i)

< (e ﬁn<a>’gi<a>\)2 [9(a)] = 0p(n~172).

1<i<n

Hence it follows that A\,(a) = —(n~' 0", gi(a)gi(@))'g(a) + 0,(n~'/?). Also, by Lemma
A.1, we obtain

1 n n

- Zgi(a)gi(a)/ - %Z (X, ) @ pip;

=1 i=1

= Op(”71/4)

uniformly over o € Np,,. Moreover, by envelope conditions,

dp(Zla O[)

;\n(a)’ (Tll ZSQ(X’gi(a))T[ufl]p(Zi,a)’ ®pip;> S\n(oz) <C ;\n(a)‘)Q = op(n—l/Q)

uniformly over a € Ny,,.
Let 0 < €, = o(n~'/?) and u* = £+v*. Denote u) = II,u*. By assumption, we can take a
continuous path {a(t) : t € [0,1]} in Ny, such that a(0) = &, and «(1) = d&, + e, ul € No,.

By the definition of the SGEL estimator, a Taylor expansion yields

dLy(a(t))
dt

1 La(a(t)

0 < Ln(a(0)) — L (a(1)) = — 2 dt?

(A.9)

t=0

for some s € [0, 1].
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Let A, = An(Gy). By the envelope theorem and Lemmas A.14-A.16, we obtain

dLn(a(t))
dt
t=0
dp(Z;, auy, .
= 7251 ndi( X 7(617& )[enun]@)pi
dp(Zi, )
= /\n; o [enty,] @ pi

N €n = Y ~ d ZiyoAén * ~ N _
+ A, (n Z Sz(A/Qi(an))%[un]p(Zﬁ Gn) @ pip§> An + 0p(en~1/2)
i=1

= glan) (i Zgimn)gi(an)') (fl PREELE T m) +oplen™)

i=1

-1
R 1< X 1 = dp(Z;, éu) 1
/ ,} : . o ,2 {7’ * ,
(Gn) <n ¥(Xi, ) ®pzpz> <n dev [enun] pi | + Op(enn )

i=1 i=1

I
Q>

P do
€n o dm( X“a . ! B
= nZ{ - ]} B(Xi, a0) ™" p(Zis o)
i=1
+ €n(u*, d — ag) + 0p(enn1?). (A.10)
Next we denote d’\”((i(;(ﬂ) [enul] = W‘ - By (A.8), we obtain
1 - 3 dS\n « *
0 = 13 sl ae)a @) P
n da
1 & < dp(Zs,a) .,
2 sl @@ iey LT o
1 & . , dp(Z;, ) .,
T ; s1(An(a) gl(a))T[vn] @ p;-

Since Amin(—n"" Y27, 59(An(@)'gi(@))gi(@)gi(a)’) > C w.p.a.1, we have

d)\;ia) [vn] C % Z 82(5‘”(a)lgi(a))gi(a)j\n(a)lw[U:L] ®piH
+0| 23 s Gn@alea) PE D .
Here we have
LS (@) gi@)g@in(@) LIV o ),
- 1 n do(Z 2 1/2
= {5\71(0[)/ <TL Z 52(;\71(06)/91( )) { p(d;’ a) [ 2]} p(Zz, Oé)/ ®pzp:> j\n(a)}
< H = 0,(n~Y*)
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Can o]

uniformly over a € Ny,. Thus by Lemma A.17, sup,cny, . = O,(1). Also, by the

envelope condition,

a)’(iisz(&ma)’gi(a)){d”(f;@[vm} {2y, *]}’®pzpl>i (@)

Denote ' gi(s) = An(a(s)) gi(a(s)). Then we have

d2£n¢4t»|

= op(n_1/2).

dit?

::*Z& o) ) 15 o)y LI | ey

~—

+% Z 51 (Vgi(s)) {W[enu;]} W i) @ pi

- : N 20(Z;, as
+% Z S1(>\'9i(8))>\n(a(s))’%[enu;, entih] @ p;

_ {‘M;Z() }( ZSQAgz plzne) { P ®p1p2>ﬁ7l,<a<s>>

Hhala(s)) (n > salas(s)) { LE 2D A0l g pip;> Sula(s)

= o0,(c2). (A.11)
Therefore, it follows from (A.9), (A.10) and (A.11) that
Vg (On — 00) = Vn(dn — ag,v”)
—% g {W[U*]}/ S(Xi, a0) ™ p(Ziy o) + 0p(1)

for all £ # 0. The result follows from a central limit theorem. ]
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