SUPPLEMENTARY MATERIAL for
"HIGHER ORDER MOMENTS OF

MARKOV SWITCHING VARMA MODELS”

Maddalena Cavicchioli

1. A review on Francq and Zakoian (2001)’s results

The following theorem, proved in Francq and Zakoian (2001), FZ01, gives
conditions for the existence of second order stationary Markov switching MS

VARMA processes.

Result 1.1 (FZ01, Theorem 2, p.346) Suppose that p(P(®%?)) < 1, where

p(-) denotes the spectral radius. Then, for all t € Z, the series

—+00
Zt = Wt + g D, P g Py Wi

k=1
converges in L? and the MS(M) VARMA (p, q) process (y;), defined as the
block of the first K components of (z;), is the unique nonanticipative second
order stationary solution of (1). Suppose that (2) admits a nonanticipative

second order stationary solution. Then we have

+o0o
D IT{P(2%%)}FS vee Q| < +o0
k=0
where T = (L2---L2) € RYXM) gnd || . || denotes the matriz norm

A = 32, laij| for any matriz A = (ai;). Finally, if c(s;) = 0 in (1),
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a necessary and sufficient condition for the existence of a nonanticipative
second order stationary solution to (1) is given by the finiteness of the above

series.

Once first and second order stationarity are ensured, FZ01, Section 4, com-
pute the mean and the variance-covariance matrix of the process y = (y¢)
in (1). Let U be the (Mn)-dimensional vector, whose ith block is the n-

dimensional vector 7; E(z; | sy = i) for i = 1,..., M, that is,

U= (mE(z|si=1) - myB(z]s=M)) e RM™

’

Let ¢ = (m ¢(1) marc(M)) € RM™. Then we have

U=P(®)U + ¢

(see FZ01, p.348). Costa et al. (2005), Proposition 3.6, p.35, proved that
if p(P(®%?)) < 1, then p(P(®)) < 1. It can be easily checked that the
converse is not true in general. See Remark 3.7, p.35, of Costa et al. (2005).
We extend in Section 3, Theorem 3.3, such a result for the general case of a

matrix P(®%").

Result 1.2 (FZ01, Section 4.1) If p(P(®)) < 1, then the expectations of
(z¢) in (2) and (y¢) in (1), driven by a MS(M) VARMA(p, q) model, are

given by
E(z) = (e ®1,)U E(y)=(e ®f)U

where

U= Iy, - P(®) 'c.



’

Here we set e = (1 - 1) e RM and f = (Ix 0 --- 0) €
RKXn‘

Let V be defined as U but with z; replaced by z; ® z; = vec(z; z;), that is,
V=(mE®@z®z|ss=1) - nyE(zQ2z|s=M)) € RM7*

Let D be defined by replacing ®(i) ® ®(i) by c(i) ® ®(i) + ®(i) ® c(i) in
the definition of P(®®?). Then we have (see FZ01, p.349)

V=P(@*)V + DU + C + S vec(Q).

Result 1.3 (FZ01, Section 4.1) If p(P(®%?%)) < 1, then the second order
moments of (z¢) in (2) and (y:) in (1), driven by a MS(M) VARMA(p, q)

model, are given by
E(zi®z) = (€ ®1,2)V E(yi®y) =(e of @f)V

where

V =Ty — P(®%2))71 (DU + C + S vec(Q)].



DGP Moment | T'=100 T =250 7T =500 7T =1000 7T =2000 T = 5000
1st 0.1083 0.0661 0.0487 0.0329 0.0246 0.0152
Bivariate 2nd 0.1798 0.1610 0.1563 0.1501 0.1483 0.0864
MS(2) VAR(1) 3rd 0.2342 0.1597 0.1260 0.0897 0.0696 0.0462
4th 0.6014 0.4909 0.4439 0.3867 0.3587 0.1413
1st 0.1747 0.1051 0.0772 0.0532 0.0389 0.0244
Bivariate 2nd 0.4602 0.4105 0.3947 0.3784 0.3735 0.1686
MS(2) VARMA(1,1) 3rd 0.8605 0.5860 0.4706 0.3311 0.2571 0.0571
4th 3.4824 2.9544 2.6749 2.3861 2.2109 0.9826
1st 0.0958 0.0599 0.0403 0.0299 0.0209 0.0138
Univariate 2nd 0.1406 0.1061 0.0892 0.0774 0.0737 0.0210
MS(2) ARMA(2,1) 3rd 0.3026 0.2148 0.1598 0.1316 0.0898 0.0350
4th 1.2468 1.0083 0.8375 0.7237 0.6007 0.2741

Table 1: RMSE of the discrepancies between analytical and empirical first, second,
third and fourth moments (vertically ordered) over 1,000 replications. The DGPs

and their parameters are described above.

2. Monte Carlo results

To check the correctness of the formulae proposed in Section 3, we run some
Monte Carlo experiments. Particularly, we aim at checking if the proposed
analytical moments approach their empirical counterparts. To do so, we
simulate time series from three different data generating processes: a bivari-
ate (K =2) MS(2) VAR(1), a bivariate (K = 2) MS(2) VARMA(1,1), and
a univariate (K = 1) MS(2) ARMA(2,1). The coefficients of the simulated
bivariate MS(2) VAR(1) are as follows (consider the model in Equation (1)

with no constant term and Gaussian i.i.d. errors): p;; = 0.1, paa = 0.8,
0 04 0.6 04 1 06

ai(l) = ,a1(2) = ,o(l) = and 0(2) =
0.3 1.2 0 0.3 06 1



0.4 0.2
0.2 04

. In the case of the bivariate MS(2) VARMA(1,1), we add the

' 0.9 0.1 0 02
moving average part, where by (1) = and b1(2) =
0.2 0 0.3 0.8

Finally, for the univariate MS(2) ARMA(2,1), we set the following param-
eters: ai(l) = 1.2, a1(2) = 0, az(l) = 0.1, a2(2) = 0.3, b1(1) = 0.5,
b1(2) = 0.5, o(1) = 1 and o(2) = 0.5. The experiments simulate artifi-
cial time series of length 7'+ 50 with 7' = {100, 250, 500, 1000, 2000, 5000} ;
the first 50 initial data points are discarded to minimize the effect of initial
conditions. One thousand Monte Carlo replications are carried out for each
trial. In Table 1 we report the RMSE over the simulations evaluated as the
squared-norm of the difference between the empirical and the true moment
vectors (vertically ordered from the first to the fourth moment). The nu-
merical exercises show that our measures of the third and fourth moments,
as well as first and second moments in FZ01, are very close to their empirical

counterparts.

3. Proof of Theorem 3.2

First we prove Equation (4). Starting from (2), similar computations as in

the proof of Theorem 3.1 show that

T B(2®Y | sy = i) = m; (@%4(0)) B2, | s; = i) + m [c(i) © ®F3(d)

+®(i) ® c(i) @ D¥2(i) + (i) @ c(i) @ ®(i) + B®3(i) @ c(i)] E(25, | s¢ = i)
+ m; [@92(1) ® ¢®2(i) + (@ (i) ® c(4))®? + ®(i) ® (i) ® B(4)

+c(i) ® ®2(i) @ (i) + (c(i) ® ®(i))%? + (i) ® D¥2(i)

+(®9%(i) ® B%%(1)) E(I7* @ uf?) + (®(i) @ 2(i))** B((I, ® u,)®?)



+(2(1) © %) @ @(i) E(Ly @ u? @ I,) + (B(d) © 2%°(i) © B(7)) B(w @ I}? © w)
+(2(0) © 2(1)% B((w @ L)®?) + (3%2(i) © 9%(i)) E(uf? @ 1)) E(2,, | s = i)
+ 7 [®(i) @ (i) + (i) © B(i) ® (i) + c¥*(i) @ (i) © e(i)
+c®3(i) @ B(i) + (®(1) ® c(i) ® T¥%(i)) E(I, @ u?)
+(®(1) © B(i) ® c(i) © B(i)) BE(L, ® u?) + (2(1) @ B°%(0) @ ¢(9)) B(L, @ uf’®)
+ (c(i) ® ®(i) © B°(1)) B(L, ® uf?) + (c(i) @ B(i) © (i) ® B(i))
x BE(uy @I, @w) + (c(i) @ 292(1) @ ®(1)) E(uf? @ I,) + (2(1) @ ®(i) @ (i) @ 2(i))
X B(uoL,@uw)+ (1) @®(0)@X(1) ®@c(i) B oL, @w) + (X(i) @ c(i)
B(i)@3(0) E(w @I, @w) + (Z(i) @ c(i) @ (i) @ ®(1)) E(u? @ L,) + (Z®2(i)
@ ®(i) @ c(i) EuP? @IL,) + (%) @ c(i) @ ®(i)) BE(u$? @ 1,)] E(z—1 | ¢ = i)
+ i i) + i [e2(0) @ B(0) + (c(i) @ B(0)*? + (i) @ B (i) @ (i)
+2(i) © (i) ® B(i) + (B(i) ® ¢())® + () ® ()] B(u?) + m B(0) E(uf?).
By Lemma 3.1, Equation (24) of Magnus and Neudecker (1986), and rela-

tions listed in the proof of Theorem 3.1, we have

E(I®2 & ugm K, K2 [vec(QQ) ® L,2]

E((I,® ut)®2 K, K2 [vec(QQ) ® L,2]
Euw®I??@u K2k k [vec(Q) ® L2]

E((u; ® I,)%?

) =
) =

E@,2uf?®L,) =K, k2 [vec(Q) @ L5 Ky,
1) =
) = Ky 2 [vec(Q) @ L,2] K,
)

E( ® I®2

( )®In2

Using Lemma 3.1 and substituting these relations and those listed in the

proof of Theorem 3.1 in the formula obtained above, we have



mE zt |8t = z Z pﬂ{@ } Ty (Zt_41 | St—1 :j)

+Zpﬂ{c ) ® ®(0) + ®(i) ® (i) @ BU2(i) + B¥%(i) ® c(i) ® B(0)

+-¢®3@)@“i@]ﬂjfngi’&—lzzj)
M
+ > (i {®P2(i) ® ¢®2(i) + (®(i) @ c(i))®? + B(i) ® (i) ® B(i)
j=1
+ (i) ® (i) ® (i) + (c(i) ® ®(i))%* + (i) ® (i)}
+ pji {(@%2(i) ® T (i) + (8 (i) ® B(i))®*) K2 2
+ (2(i) @ ®%%(i) © (i) K2 i + B9 (i) @ ®9(i)} (vec(2) @ I,,2)
+ i {(®(1) © ¥%(i) @ ®(i) + (X(i) © 8(1))**) K,y ux2}
(

(vec Q)@I,2) Ky, 7 E(ztf1 | -1 =17)
+Z pji {®(i) @ c®3(i) + c(i) ® ®(i) ® (i) + c*(i) ® ®(i) ® c(i)

+ c®3(z) ®(i)} + pji {(®() ® c(i) © (1) + (1) @ B(i) @ e(i) ® B(3)

(i) ® (i) ® c(i) + c(i) @ ®(i) @ (i) K,, g2

+(c() @X(i) @ ®(1) @XB(1) + 2(i) @ P(1) @ c(i) ® B(1) + X(1) @ P(i) ® X(7) @ c(4)
+3(i) @ c(i) @ (1) @ B(i)) Knk, ik + (i) @ B9%(i) @ ®(i) + 2(i) ® c(i) @ B(i) @ B(3)
+ 29%(1) @ ®(i) ® (i) + B¥(i) @ c(i) @ (i)} (vec(Q @ L,)] 7j E(z4—1 | $1-1 = J)

+ i {e®(0)} + mi {2 (i) @ B(0) + (c(i) © (1)) P + (i) ® B¥%(i) © (i)

+3(i) © (i) @ B(i) + (B(i) ® ¢(i))*? + (i) © (i)} vec(€2)

+ {E®4(z’)} {vec(2 ® Q) + vec(2) @ vec(2) + vec[(2 ® Q) K ]}



Reasoning as in the proof of Theorem 3.1, the last relation can be written
as
M M M M ~
H, = Z P(<I>®4)ij Hj + Z Xij Wj + Z Yi]’ Vj + Z Zij Uj + C;
j=1 j=1 j=1 j=1

+ R, vec(Q) + S; {vec(2 ® Q) + vec(2) @ vec(2) + vec[(2 ® Q) Kk k]}
where

Yij = (Y1)ij + (Y2)ij (vec(Q) @ L2) + (Y3)ij (vee(2) ® I2) Ko p

Zij = (Z1)ij + (Z2)ij (vec(Q) @ I,,).

This proves Equation (4). Since p(P(®%%)) < 1, the matrix I;,s — P(®%%)
is invertible. So we can express H in closed form as in the statement of
Theorem 3.2. Then we have E(z8%) = Zf\il T Bz si = i) = (6 ®

I,,4) H. The fourth moments of (y;) are now easily deduced in matrix form.

4. Proof of Theorem 3.3

Set r > 2. To simplify computations, we assume that the process (z;) is
centered, that is, ¢; = 0. The result does not depend on the distribution
of the residuals, hence they are assumed to be non-Gaussian i.i.d. with
nontrivial finite moments at any dimension. In other words, we can choose
residuals so that A (r) varies over the elements of a basis of RM™". For every
k >0, let A(r, k) be the (Mn")-dimensional vector whose ith block is the
n"-dimensional vector m; F(z;_j ® z?(rfl) |sg = 1) for i = 1,...,M. For

k =0, we have A(r, k) = A(r). First we prove that

A(r, k) = L, @ P(®CC~D)| A(r,k —1).



If r = 2 and ¢; = 0, this formula is equivalent to W (k) = P*W(k — 1)
from FZ01, p.349, where A(2,k) = vecW(k) and P(®) = P*, that is,
vec W (k) = [I, ® P*] vecW (k — 1). Using Result 1.1, we have

Bz @25V |5 = i) = 1 Bz, @ (8(1) 201 + (i) u)®T Y | 5, = 4)

M
= T; Z |:In X ‘I’®(T_1) (Z)] E(Zt—k X Zi?_(;‘_l) | St = i, St—1 = ]) p]z 7Tj
7=1
M 1
=3 1@ (5 250 V6] Bk 2225 501 =)
7=1

as z;_ and uy are uncorrelated for £ > 1. This proves the above expression

for A(r, k). By iteration, it gives
AGr k) = [Ty (P@°0 D)1 A(r)
for every k > 0. Now we prove that

lim A(r,k) = 0.

k—+o0
From Result 1.1, we set
—+00
z = Z Zt g Zio=PrPr g Ppp 1wy
¢=0

where z; 9 = 3;u;. Since z;¢ are uncorrelated and centered when ¢; = 0,



we have

+oo +oo
i, E(Zi— ® z?(r_l) |s¢ =11) = Z o Z Tiy E(Zt—k0y @ 210, @ - @z g, | 8¢ = 11)
£1=0 L-=0

Z+°° (r—1)
®(r—1 .
= WilE(thk,él [} Zt,k—i—fl ’315 = 21)
¢1=0

where k + /01 =¥y = --- = {, := (. But we have

®(r—1) . ®(
iy Bz ko1 @ Zt,é |51 =i1) = iy E(Zp—k0—k @2y

k .
=T pﬁjl D (i1) E[(®r—p—1 - Br_pp1Ti—os_g)

r—1) . - (k)
| st = i1, 84—k = 11) Pyyi, Tia

@ (Bro1 - Brpp1 Bi—py—) Y |5, = i)

M
=3 i ) @ (i) B(®iopo1 - Brop1 Zepupy)

i9=1

1 . .
R (Bpo1 - By 1Dy )® TV sy = i1, -1 = 12)Digiy i

M
= Z pz(-fi)l ‘1’®T(i1) E(® g1 P 1 Z—puy_y)

i9=1

®(r—1 _ — i)
® (B Prp1 D)"Y 841 = in, Sp_p_1 = i2) Pj), Diiy Tiy Ty

M
= Z ngi)l p§§22 DU (i1) DU (ig) E[(Br—p—2 - Prvy1Di—0y—¢)

12=1

D (Pro- B pp1 5w 0)® Y 521 = i2) Piiy i
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M M
k) (k . .
= Z Z pl(li)l pz(zz‘)z D (i1) %" (in) E[(®r—k—2 - ®r_rt151—r0s—¢)

i9=1 iz3=1

@ (®rg- B o135 oy 0)® T Y]sy g = i3) Pigiy Pigin Tis

M M i i
= Z ‘e Z p’gli)l .. .pz(ll)iel @@T(Zl) . ®®T(i€1> E[(Et,gutfg)

®(r—1 o
@ (g, B 1oy 0)® TV s, g, = ig, 1) Pigiy Disin - “Dig, y1ie, Tie, 41

where the last expectation is a finite term. Here p(@ = Pr(s; = jlsi—x = 1)

4]
is the (i, j)th element of P¥. The (i1,4;,1) block of the partitioned matrix

{P(®%")} is exactly
M M
Z e Z Digiy Pigin " 'pthrl’ih(P@T(il) e ¢®T(Zh)
ia=1  ipp1=1
Now p(P(®%®")) < 1 if and only if limy, , .o {P(®%")}"* = 0. See, for exam-

ple, Horn and Johnson (1985), Theorem 5.6.12, p.298. Thus we obtain

lim {P(®%")

h—+o00

h _
}i1ih+1 =0.

(k)

Using the above formula (with h = ¢;) and Piji, = Tij for k, 01 — +o00, we

get

(r=1)

lim 7, E(ze_j, @ 2y |st =1i1) =0

k—+o0

for every i1 = 1,..., M. This proves that A(r, k) vanishes as k goes to
infinity, hence

i [In ® {P(@°C)}MA(r) = 0.
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From the above assumption on A(r), this implies

lim I, ® {P(®®~)* =0

k—4o00
that is, limy_, ;oo {P(®2~)}* = 0. Thus we have p(P(®2 1)) < 1.

5. Proof of Corollary 3.1

By (5) we obtain the following linear system with unknown matrices A(1),

.y A(r):

(Infnr — P(®¥)A(r) = B1A(r—1) —--- =B, ,—1 A(1) = B,

Tyt —P(@CC"NA(r—1) = —B,_1, 2o A(1) =B,_1,1

(Inm —P(®))A(l) =By 1.

The incomplete block matrix A associated to the system is (Md) x (M),
where 6 = (n" ! — n)/(n —1):

IMnT - P((I)®T) _Br,l to _Br,rfl
0 Ly — P(®S0—1) “B,_ 1,2
A —
0 0 oo I — P(®)

To determine explicitly the matrix expressions of every sth order moments

of (y¢), the above system must satisfy the Cramer condition, that is,

det(A) = H det(Iprns — P(®@%%)) £ 0
s=1

12



hence det(Ips,s — P(®%%)) # 0 for s = 1,...,r. Thus Iy — P(®%%)
must be invertible, for s = 1,...,r. But this is ensured by the hypothesis
p(P(®®")) < 1 and Theorem 3.3.

6. Proof of Corollary 3.2

In this case p;; = Pr(s; = j|si—1 = i) does not depend on i, that is, p;; = 7;.

By the independence of the matrices @?T, we obtain
IE@EN)I = [{E(@F)} B < [{E(@PY I E(wT)]] < 400

where || - || is the L?-norm. Reasoning as in the proof of Theorem 2 from
FZ01, we can conclude that the sufficient condition in Theorem 3.4 can be
replaced by p(E(®")) < 1. See also Corollary 1 of Francq and Zakoian
(2005) for the case of MS GARCH models. But we have

M M
E(®F") = E[E(®{"|s,)] = E[)_ m B(®{"|s; = i)] = ) m &% (i).
i=1 i=1

This completes the proof.

7. Example 3.1

Set p. = p(P(®%")). Then p, < 1is a sufficient condition for finite moments
up to order r. This example shows that, in certain cases, it is not necessary.
Let us consider Example 4 from FZ01, p.352, i.e., the univariate MS(2)
AR(2) model defined by y; = n if s, = 1 and y; = ayi—o + ¢ if s, = 2.

Here ny ~ I1D(0,1) and a is a nonzero real constant. As shown in FZ01,
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the process can be written as

—+00

k
Y = + E a” M2k Lsy=2,... 5, _opi2=2
k=1

where [ 4 is the indicator function of A. This implies that the necessary and
sufficient condition for higher-order stationarity is simply |a| < 1. Then we

have

Set p11 = 0.1 and pyy = 0.2. If a = 1.08, then p; ~ 0.906, py ~ 0.942,
p3 ~ 0.979, and pg ~ 1.017. If a = 1.2, then p; ~ 0.95, po ~ 1.05, p3 ~ 1.15,
and pg ~ 1.26. If a = 1.039, then p7 ~ 0.9967 and pg ~ 1.0159. This
shows that the converse of Theorem 3.3 is not true in general. One can see
that p, = \a|7"/ 2 \/m, hence the parameter restrictions in terms
of ”parameter region” is defined by \a|7"/2 \/m <1, p12 = 1-p11,
po1 =1—po, 0<pi1 <1, 0<pp <1, |a]>0,andr > 1. This proves
that condition p, < 1 can be unnecessary. If the chain is i.i.d., then the

sufficient condition becomes |a|"/? /73 < 1.

8. Proof of Theorem 4.2

i) Kollo and Srivastava (2004) proved that ﬁgMa] (y) can be expressed via

the third order multivariate moments as follows

B (y) = trace(E((y;) @ vi @ (v1)) Elyi @ (v;) @ 7).

14



Then we have

Ml(y) = vee(E(y; © (v7) ®y7)] vee(E(y; ® (v]) @ y7))
= (Kr,x @ Ix) Ey; @y ©¥))] (Krx ©Ix) Ely; @ y; @ y;)
—E(y}) @ (y) @ )) Krx @Ix) Krx @1x) Ely; @ yi @ yi)

=EBE(y}) @ (y)) @ (y])) Elyi ®y; @y7) = 59y)) sl%y).

From Kollo (2008), p.2333, the following relation

Ma * *\/ * *\/
B (y) = trace(E(y} (v;) @ y; (v})))
holds. Then we get

Me(y) = Etrace(Ix2 (vi (vi) @ yi (v))))
= B([vec(I2)] vee(y; (v7) @ yi (v)))

= [vee(Ig2)] E(y; ©@y; @ y; ®7) = [vee(Ix2)] kK (y).
ii) By Méri et al. (1993) we have s!M5Sl(y) = E(||lyf|[>y}) hence

sMPSl(y) = E((y) v yi) = vec E((y}) yi i)
(vee((y}) yi i) = E(vec(y; (v1) ¥i))

(vee(y; (v1) Tx yi)) = E(((y}) @ (yi (v7))] vecIk)

((y) @ (yi (v7)) veelx = vec{ E((y;) ® (v (v7))) vec Ik}
= ([vee(Ix)) @ Ix) vec E((y}) @ (y; (¥1)))

(
= ([vee(Ix)] @ Ix) E(vec(y;) @ vec(y; (v7))
= ([vec(Ix)] @ Ix) E(y; @ y; @ y;) = ([vec(Ix)] @ Ix)s%(y).

15



Furthermore, we have

vec KIMBSN(y) = vec E(y; (y7) yi(y;)) — (K +2) vec Ik
= E(vec(y; (y7) yi(y1)) — (K + 2) vecIg
=E((y7 (y))) ® (yi (y7))) vecIx — (K +2) vecIx

(IveeIx] ® Lz) E(vee((yi (v7)) @ (v7 (v7)))) — (K +2) vecIx

= ([vecIx) @ Ix2) E(y; @ y; @ y; @y;) — (K +2) vec I

= ([vecIg] ® Ix2) kI (y) — (K + 2) vecI.

iii) From Kollo (2008), p.2332, we obtain

bl (y) = 1« E(y; ® (v)) ®y;) = ED>_ W5 i) yi]
i

hence

bll(y) = El(y}) 1xxx ¥i ¥i] = E(vec(y; (v7) 1xxx ¥i))
= E(((vi) ® (y; (v7))] vee Lgexr) = vee{Ix E(((y7) @ (v (v7) )] 1x2a}

= (Lixx2 @ Ix) vec B((y}) @ (v§ (v7))) = (Lixkz @ Ix) s (y).

Finally, we have

vee B (y) = vec E((y}) 1xxx yi vi (v7)) = E((y]) 1xxk ¥ ¥i ® ¥7)

= B(vec((y;) 1xxk ¥7) v @y;) = E((y) @ (v;) vec(lixx)yi ® y;)

= E((y; @y (v]) ® (v7)) vee(lkxx)) = E((yi @ y;) (v7) @ (7)) vee(lxxx)
= E((y; (7)) @ (v (y1)) vee(lxxx) = vec[lg2 E((y7 (v7)) ® (v7 (v7)) 121

= (Lixxz @ Ix2) vee E((y7 (v7)) @ (v7 (7)) = (L © L2 K ().
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9. Proof of Corollary 4.1

By Kollo (2008), p.2334, we get

K
trace BIK© Z E(y; vi; (yix)?) = Z Yii Ytj) Z vin)?
i,k =1 k=1

= E((57) 1exx y) II¥ilI*) = E((57) 1exie v8) (57) ¥7)

= E((y}) v v)) 1rxx yi) = El(Axxx yi) @ (y7) vee(ys (v7))]
= El((y)) 1kxx) ® (v)) yi @ yi] = El((y)) ® (7)) (Akxx @ 1x)y; ® yi]

= El(y}) @ (vi) @ (v)) @ (v7) ] vee(Lixx ©Ix) = (K(y))" vee(Lxx ©Ik)

and

1B (y)][* = [vee Bl (y)] [vee BI“I(y)]

= (L1 @ L2 KNy)] [(L1ss2 © T2 ) K ()]

= Ky) (L @ L) KIy) = trace[(Lperp2 ® L) K (y) K (y)
= [vec(1o g2 © Ix2)] vee(kF (y) k€ (y))

= [vec(1g2, k2 @ Ig2)] k9 (y) @ kK (y)

Where 11><K2 ®IK2 = (IK2 e IKQ) — I c RKZXKAL'
10. Example 4.1

Let us consider the bivariate (K = 2) simulated model y; = ¢(s;) + o (s;) uy,

u; ~ NID(0,1Iy) with M = 3. We set the following parameters:

c)=[1 2] @) =02 05  ¢B)=[-1 0
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10 3 2 0.7 0.3
(3
0 2 2 4 0.2 0.8

The transition probability matrix and the ergodic probability vector are:

0.60 0.02 0.02 0.0476
P =10.20 0.90 0.08 ™= [0.4762
0.20 0.08 0.90 0.4762

Firstly, we compute the four measures of skewness as presented above:

sl€1 = [0.2613 —0.1152 —0.1152 —0.1751 —0.1152 —0.1751 — 0.1751 1.0900]'

[Ma] _ 1 3881

sIMESI —0.0862  0.9747)

blkol = [—0.1443  0.6246]

Then we report the measures of multivariate kurtosis:

k¢l = [10.2201 — 14.5945 — 14.5945 22.5217 — 14.5945 22.5217 22.5217 — 36.9711

—14.5945 22.5217 22.5217 —36.9711 22.5217 —36.9711 — 36.9711 65.4624]/

IMal — 1207259

vec KIMESI — [98.7418  —51.5656 — 51.5656 83.9841]
vec BIK9 = [3.5528 —6.5222 —6.5222 14.0420] .

All those measures correctly detect the leptokurtic and almost symmetric
characteristics of the process. We see that the departure from normality of
this process is substantial as we compare these numerical vectors with those
of a normal population w of dimension K = 2: BgMa} (w) = 8, KIMESl (w) =

0, B9l (w) = vec[4 22 4] and k) (w)=[3001011001101003].
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Note that the various definitions of skewness for w are all null.

11. Example 4.2

Let us consider the bivariate MS(2) VARMA(1,1) model defined in the
online Supplementary Material, Section 2. The measures of skewness for

this switching model clearly indicate a symmetric distribution:
sl =100000000 pMI—0 sMESI_jop o bEI=]0 0.

However, the measures of kurtosis vary as follows:

k[C}:[4.14O2 0.0180 —0.0857 1.2531 —0.1212 0.8223 1.2467 — 0.0526
—0.0175 1.2612 0.8223 —0.0762 1.2549 —0.3059 —0.2823 9.5463]/

Mol — 153312 vec KIMBS| = [1.3951 —0.2879 —0.3679 6.7994]
vec BIFO = [5.2564 1.7957 1.7011 10.6706] .

Now we formally test the departure from normality. By Example 4.1 above,
we have |[k|]2 — || kl€(w)||? = 116 — 24 = 92, where w is normally dis-
tributed. This leads to a rejection of the null of normality. The rejection is
also confirmed by Mardia’s measure as BgMQ} - BgMa} (w) =15.33—-8="7.33
is greater than the critical values of a normal distribution at any given
significance level (see Theorem 4.2). Finally, by Corollary 4.1, we have
|IBUE)||2 — ||BIXel(w)[|2 = 147 — 40 = 107. This again rejects normality.
Although all measures of skewness agree on a symmetric feature of the pro-
cess, the testing procedures on kurtosis’ measures clearly indicate presence

of excess kurtosis with respect to the normal behaviour.
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