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Abstract

This document contains proofs and further technical results for the article “Testing for changes
in Kendall’s tau”. It consists of one section, labeled Appendix D. The results are labeled D.1,
D.2, .... Results from the main document are referred to as in the main document. The labels
contain references to the respective section, e.g., Corollary 3.1 can be found in Section 3, Lemma
A.2 in Appendix A of the main document.

D. PROOFS OF LEMMAS
We first prove Lemmas A.1 and A.2 from Appendix A.

Proof of Lemma A.1. Part (i) is straightforward.
Part (ii): There are positive constants C, Cy such that
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el 2 (xf ),
CoE X0~ fk(Z g, Zy)l; - (1)

IN

The first inequality is due to the boundedness of X . The second inequality can be shown by
applying Jensen’s inequality for the conditional expectation E(-|.Z* ) to the convex function
| - |1. Further, for any e > 0 we have

E\Xo—fu(Z_k,...,Z1)]; < C3P(|Xo— fu(Z_p,.... 2Zy)|; >e)+e < C3P(e)ag + ¢

Combining this with (1) we arrive at az p < C203®(g)ay + Cae. By first choosing e sufficiently
small and then k sufficiently large we can make the left-hand side arbitrarily small, and hence
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(X n)nez is Ly,-NED, p > 1, on (Z,)nez. In particular, if condition (13) holds, we get a;k <

CoC3®(s)ag + Cas, = O(sy). Part (iii): Let fo(Z_,...,2Zx) = E(Xo|ZF*,). By means of
the Holder and the Markov inequalities we have for every € > 0:

p
P(|Xo—fi(Z_p,...,Zx)|, >¢) < ¢ e PE|Xo— E(Xo|FE)) )

Choosing ®(¢) = ¢ 1P and a;, = agjk we have a — 0 as k — oo, and (X,)nez is hence

P-NED on (Z,)nez. O

Proof of Lemima A.2. By the definition of g1, we have that, for any x,x’ € R?,

|91(z) — g1(2")| = [Eg(z, Xo) — Eg(a’, Xo)| < / |9(x,y) — g(a’,y)| dF (y)

and consequently, for independent copies X,Y of X,

2
E< sup Igl(m)—gl(XH)

le—X|<e

2 2
< E( sup /Ig(w,y) —g(X,y)dF(y)> <FE </ sup  |g(z,y) —g(X,y)!dF(y)>

|o—X|<e le—X|<e
2 2
SE( sup ‘g(va)_g(va)o SE( sSup |g(.’l},y)—g(X,Y)‘> < Le.
je—X|<e @ X|<e,ly—Y|<e

Recall that the conditional expectation minimizes the Lo-distance, so

E {91(X0) - E(gl(Xo)lflfk)}2 < E{g1(Xo) — q1(Xox)}>,

where X, = fu(Z_k,...,Z)). Now we will make use of the P-near epoch dependence and
the Holder inequality and obtain

E(91(X0) — g1(X o))’
= E(91(X0) — 91(X0x)* L{ixo—Xoxl>sit + B (91(X0) = 91(X0.6)) 1{1x0— X0/ <51)
_6
< (21197 (X0)]| 225 + 2|97 (X0,)|| 225 ) (P(1 X0 = Kol > 51))753

2496

£r9 6
+ E (91(X0) — 91(Xo0k))> L{xg—x0 o<si} < C(5,° )27 + Ls; < Cs
and finally

1/

or(X0) = B (Xol#20), < (B (01(X0) — gn(Xon)?) " < €51

which completes the proof. ]

The following lemmas D.1 to D.6 are required for the proof of Theorem 2.5 (Invariance principle
for the sequential U-process).

Lemma D.1. Let (Z,)nez be a stationary and absolutely reqular stochastic process with mixing
coefficients (Bx)kenw- Then there exist processes (Z'))nez and (Z!)nez, independent of each



other and both with the same distribution as (Z)nez such that P{(Z})n>k = (Zn)n>k} = 1— Bk
and P{(Z})n<o = (Zn)n<o} = 1 = P

This can be proved in a similar way to Lemma 2.5 of Borovkova, Burton, and Dehling (2001).

Lemma D.2. Let (X,)nez be P-NED of an absolutely reqular sequence (Zp)nez and g be a
kernel, such that Assumptions 2.4 and 2.3 hold. Then there is a constant C > 0, such that for
i,k,l € N, ¢ >0:

)

L
l92( X, Xivnra) — 92( Xty Xigurar)|l, < C(Ve+ a7 @245 (€) + B7F

L
+35

),

where Xz',l = fl(Zi—l; ey Zi—i-l)-

Proof of Lemma D.2. First note that we can rewrite any X; such that

Xi = foo ((Zi-l—n)nGZ) .

By Lemma D.1 there exist independent copies (Z’ Ynez and (Z!)nez of (Z,)nez satisfying

P{( )n>z+l+k = (Zn)n>itisk} = 1 — B and P{(Z )n<1+l (Zy)n<iti} =1 — Br. We define
foo(( ntinez) and X = foo((Z) ;) nez). Analogously, Xé,l = fi(Z;_;,...,Z},;) and
= fi(Z;_;,..., Z] ;). Now we can conclude that

192(X s, Xirrar) — 92(Xit, Xigraort)lly < ||92(Xiy Xivnra) — 92( X7, X,
+ (|2 X7 X o) — 92(X70 X o) ||y + 192X 0 Xigans) — 92( Xty Xiwrard) ||

We will treat the three summands on the right-hand side separately. For the first summand,
we use the Holder inequality to obtain

|92(Xi, Xivhyar) — 92(X7, Xipro)|f,
= |{g2(X s, Xispsar) — g2 (X7 Xz+k+2l)}1{(z Vs itk (Zn)nsisiie or (zg)n§i+l¢(zn)n§i+l}u2
< || (92(X i, Xirrar) — 92( X7, Xy ||2+6

% (PUZ ) nsisich 7 (Zn)nsisick O (Z)ncist # (Zn)ncip1}) 55 < 202/ (2+0)950/(240)

with Assumption 2.3 and Lemma D.1. With the same arguments, the third summand is also
bounded by C’Bg/ 249 For the second summand, we make use of the variation condition and
the P-NED property

[|g2(X7 Xz+k+2l) 92(X7 1, Xy,

= H{92 i ;+k+21) - 92(X;,lv X;+k+21 l)}l{yx”_x” X hro—X i ko, l‘<e}H2

+ H{(g2 (X7, X ko) — 92(X1l7Xz+k+2”)}1{’X" XY |>eor | X0 X1+k+2”\>e}”2
< VLe+2MY 2P (| X o — flZ s Zhsyst)| > e)m < C(ﬁmﬁ”@m(e)).

The proof is complete. O

Lemma D.3. Under Assumptions 2.2, 2.8 and 2.4, we have for ny < ne < n:

H > (X0 X5) - g2( X0, X))
1<i<y
n1<j<nz

< C(ng — nl)n1/4.
2



Proof of Lemma D.3. We set | = |n'/*] and e = 175, If k < 0, we set 8 = 1. With Lemma D.2
and some straightforward calculus, we obtain

n L L
> (92X, Xj) = 92(Xig, Xj0)|| < Clng—m1) Y (Ve+a 7755 (e )+ﬂ”6)
1<i<j k=1

n1<j<nz 2

)

n 8 _6
< C(ng2 —nq) Z (Ln1/4j_3 +a" @%(Lnl/ﬂ—ﬁ) + ;jiétnl/ﬂ) < C(ng —ny)nt/*.
k=1

O]

As we approximate the random variables X; by X,; = fi(Z;_,...,Z;y;), we introduce the
Hoeffding decomposition of the kernel g with respect to these approximating random variables.
Let (Zn)nez be an independent copy of the sequence (Z,)necz and Xi,l = fl(Zi,l, A ZiH).
We define

U =Eg(Xo1,Xo01), g11(x)=FEg(x,X01)—U, gu(xy)=9g(x,y)—g1(x)—g1.(y)—U.

Lemma D.4. Under Assumptions 2.2, 2.8 and 2.4, we have for ny < no < n:

< C(ng — nl)n1/4.

H > (920X, Xj0) — 92(Xig, X50))
2

1<i<j
n1<j<nz

Proof of Lemma D.4. Let (Zp)nez be an independent copy of the sequence (Z,,)nez and X, =
fool(Zni1)iez)- Then ga(w, y) = g(x,y)—Eg(@, X ;)—Eg(Xi,y)+Eg(Xi, X ;) and g2 (@, y) =

g(x,y) — BEg(x, X ;) — Eg(Xi1,y) + Eg(Xiy, X ;). for every i,j,1 € N. So we can conclude
that

g2.0(X i1, X j1) — 92(Xig, X )l < Hg(Xi,ij,l) - g(XLlan)HQ
+ [l X0 = 9% X0 |+ 90K X0 - 9% X))

6 L
< CO(ve+aZ 75 (e) + BE),

where the bound in the last line can be proved along the lines of Lemma D.2. The assertion of
Lemma D.4 then follows analogously to Lemma D.3. 0

Lemma D.5. Under Assumptions 2.2, 2.8 and 2.4, we have forny <mng <n

2

El Y guXin X)) | <Cma—n)nl.
1<i<j
n1<j<ng

Proof of Lemma D.5. By Lemma 1 of Yoshihara (1976) we obtain
6/(2+90
’E{QQZ iyls Xy )92, ( X0 Xy ) H < OB~ [+

with m = max{i@) —i(1)s b(a) — i(g)}, where (1) < i) < i(3) < 7(4) are the ordered indices
i1,19,13,14. To simplify the notation, we define (5,,_; = 1 for m — [ < 0. Note that, for given m,



we have less than n choices for 7.1y and less than ny —ny choices for i), which has to be either
ig or ig. If m = i) —i(y), there are m possibilities for i(3), and if m = i) — i), there are m
possibilities for i(3). We conclude that

E( Z 92,0( X1, X ) Z Z 065/(2+6) < C(ng —mni)n Zm65/(2+6

1<i<y 1<ii<gr  1<i<y
n1<j<ns n1<j<na ni<j<ng
n
6/(246
< C(ng —ni)n (Zm—i—lQ Z m—l)67r{£1+ )> < C(ny —ny)ni?.
m=I[+1
The proof is complete. ]

Lemma D.6. Under Assumptions 2.2, 2.8 and 2.4, we have

(1)

max Z gQ(Xqu)HQSCﬁkk and

<9k
nS2% cici<n

(1) 3 1<icj<n 92(Xi, X;) =0 (n% logQ(n)> almost surely.

Proof of Lemma D.6 (i): We will use Lemma D.3 and Lemma D.5 with | = [}, = Lﬁkj and split
the expectation into three parts:

max > 92(Xian>’ < || max > (92(Xz'an)_92(Xi,lan,l))’
ns2t ) dici<n 2 nS2M Cigi<n 2
+ || max | - (gz,z(Xi,zan,l)—92(Xi,l7Xj,z)))
<i<j<n
+ || max | ) gQ,l(Xi,lan,l)‘H = Iy + I}, + M.
n<2k 1<i<i 2
<i<j<n
Now by Lemma D.3
‘ Z (92(Xi, X 5) (Xi,laxj,l))‘
=1 1<i<j 2
5
<Z Z 92( X3, X ;) — g2( X, X)) || < €23,
2

1<i<y

Similarly, we get by Lemma D.4 that I < C27. To deal with ITy,, we define the random
variables Yj; = > 1o 920(Xy, X ;) and rewrite [, as | max,,<on | > i1 YJl|H2 As we have
B2, Yj1)? < C(n2 — n1)n®? by Lemma D.5, we can use Theorem 1 of Méricz (1976) to
obtain E(max,<or > Yj,)? < C2°F/2k2 | which completes the proof of part (1).

Part (ii): It suffices to prove that

) N 3k1.2
max Z 92(Xi, X5) —0(24 /f)
- 1<i<i<n



almost surely. By means of the Chebychev inequality, we have for any ¢ > 0

(o]
ZP
k=1

5k/41.2
max D ga(Xi, X;) > 2%

n

=% 1<i<j<n
2
S| N 20k/2)2 1
<D gl (max D X X)) | <O) Smmm=0) 5 <~
k=1 =% 1<i<j<n k=1 k=1
and the almost sure convergence follows by the Borel-Cantelli lemma. O

Towards the proof of Theorem 2.7, we further state and prove Lemmas D.7 to D.9.

Lemma D.7. Under Assumptions 2.2, 2.3 and 2.4, we have for any constants (¢;)ieN

n 2 2
Voo | < .
E(X;gl(XZ)cl) < (Cn <i1r11fa,xn]cz|> ,

ceey

Proof of Lemma D.7. By Assumption 2.4 and Lemma A.2, the process (g1(X))nez is Lo-NED
with approximation constants a;2 = O(I™3). We have the following bound for the autocovari-
ance:

|E91(X3)g1(Xiv)]
< ‘E{E(gl(Xi)’yffll)E(gl(XiJrk)|<§Ziiilszl)}‘+‘E{gl(Xi) (gl(Xi-i-k) - E(gl(Xz‘+k)|ﬁfif_+ll))}‘

+|B (B(XilZHE) (01X - Ba(X017H)) )|

. 2 S .
< 10| B (X |ZHED | BT+ 2090 (XD 91 (Kinn) = Blor(X i)l ZiED)|

3

< C(al,2 + /Bl2+6)a

.

where we used the inequality by Davydov (1970) and set | = L%J Recall that Q%J is defined as
the o-algebra generated by Z;,..., Z;. Now it follows from the stationarity of the process that

n 2 n
v (zgﬂxi)@) < 3 1Ea(X)0 (X))l e
=1

ij=1

2 n 2 n
< (s lal) 3 1B (00X < € (max fe) 03 [Eon(Xolan (X)

i=1,...,n
k=0

2
§C<.max ]cl|> n

i=1,....n

ij=1

3

—

5 2
o2+ 57 < On o [

i=1,...n

=0
and the Lemma is proved. O
Lemma D.8. Under the Assumptions 2.2, 2.3 and 2.4 for any constants (cij)i jew
n
E Y 92X, X30)92(X g, Xji)ejjs| <C - max ey 02,

i,J€41,...
j17j27j3’j4:1 7’7.76{ s ,'I’L}



Proof of Lemma D.8. Recall that we abbreviate fi(Z;_;,..., Z;4;) by X ;. We use the triangle
inequality to obtain

n
’E Z gQ(levXj2)92(Xj3’Xj4)cj1j3
J1,J2,33,54=1
n
S‘E o 92X Xy 1)920(X oty X )i
J1,J2,J3,Ja=1
n
+‘E > (92X 1 X ja) = 92(X g1ty X o 1)) (920X g 1, X 1) — 92(X g 1 X ju1)) s
J1,J2,33,54=1
n
+\E S (XK Xnt) — 02(X 50 X)) (02K s X5ut) — 92(X 5y X 52)) e
J1,J2,33,J4=1
n
+’E Do (X0 X ) (92.0(X gy 1 X jua) — 92(X g1, X ju 1)) S
J1,J2,J3,J4=1
n
+’E Do (920X X ja) = 92(X 1 X jo0) 924X g 1 X 1)1 s
J1,92,93,Ja=1
n
+‘E > 92X X)) (92(X iy 1 X i) — 92(X g, X)) €
J1,J2,33,J4=1
n
+‘E Z (gz(thlanml) (X]17X ))QQ,Z(ng,lan4,l)Cj1j3
J1,J2,J3,Ja=1
n
+‘E > (920X X o) = 92Xy X o) (92(X gty X jua) — 92(X s, X31)) €
J1,J2,33,34=1
n
+‘E S (02X Xo0) = 92X X)) (920X gty Xjat) = 92(X jats Xjaa)) s
J1,J2,33,54=1

=L +0,+mo,+1V,+V,+ VI, + VI, + VII,, + IX,,.

We will establish the bound only for some of the summands in order to keep this proof short.
The bound for I, can be shown in the same way as Lemma D.5. For II,,, Il,,, VII,, and IX,,
we use the Holder inequality and can then proceed similar to the proof of Lemma D.3 and D.4.
For example by Lemmas D.2 and D.4, we have

n

VI, < > 92(X g0 X o) = 92(X g1 0 X o )l 1192(X g 15 X 1) — 92(X g X )y i
J1,J2,33,Ja=1
n
< C .. \[ % L& 2+§ \[ % % 2+5
= ijel?laxn}kwy Z ( +a ( )+ﬁ|j2 ]1|)( +a ( )+B|J4 ]3‘)
’ T J1,52:33,J4a=1

<C max |Cij|n5/2

i,5€{1,....,n}

with [ = |[n"/*] and € = [=%. For the summand 1V,,, the Hélder inequality is used in a slightly



different way

n

n
N, < Y E{ > gz,l(le,z,ij,l)(gz,z(ng,z,Xj4,l)—gz(ng,z,Xj4,l))Cj1j3}‘
J3,Ja=1 J1,J2=1
n n
< Z Z g?,l(le,l’XjQ,l)lejS HQQ,Z(ijg,lanzl,l)_QQ(ng,lanz;,l)HQ
ds.da=1"j1,j2=1 2

- )
<C n®*  ma c +a2+5¢>2+5 + B2 )< C max e n®2
- js%;ﬂ i’jE{l")'(’ el (Ve © B““*JS‘) - i,jE{l,.).(.,n}| il

A similar treatment of the summands V,,, VI, and VII,, completes the proof. O
Lemma D.9. Under Assumptions 2.2, 2.3, 2.4 and 2.6, we have, for n — oo,

Z Z (X )91 (Xiypr)) = 51(X0)g1(Xigyr) 6(17]/bn) | = 0.

Tf—n

Proof of Lemma D.9. We first expand the difference of g; and its estimator §; as

(@)~ 1) = = S0 (X0) == Y galar, X+ D ga(Xi, X,
=1 =1

3,j=1

With the help of this, we split the expectation into six parts and apply the triangle inequality:

|0 S (01(X0)91 (Kisg) = 51(X)31 (X)) w(171/ba)

< B| X S (X — 00(X0) 91 (X))
+E‘Zr_,nn P9 (X i) — 01X i) 91(X)R(17]/bn)
< B S A T 0 (X ) (Kl /60)

+E‘ZT_7TL” i=1 L Z] 192(X17X )gl( z+\r|) (|7a‘/b )

B[ S Y s 92X X )1 (K] /0)
B S S S 01 ()30 (X )s(Irl /o)
FE| S s S S 02(X g, X531 (X )w(Ir /o)

B[ A Y s 92X X ) n (X))
=L+ 0I,+0,+ 1V, +V,+ VI,.

For the first summand I,,, we use the Holder inequality and Lemma D.7 with constants ¢; =
> i1 K(]i —i2|/bn) = O(b,) and obtain

I = B|L Sy 91(X)| - |3 2 00(X0) S0y (1 = 2l /)




1 jlgl <C b—>0

z 191 X )2?2:1 H(‘i_h’/bn) \f\f

as n — oo due to the assumptlons on b,. For II,,, we use Lemma D.8 to obtain

L= E[LY0 1S ga(X 0, X )1 (X )l — 2] /b)

=F [{TILZL gl(Xh)z}l/Q{%ZZ:l (e 220 j= 92X, X)r(li — i1|/b”))2}1/1

< [pA S axan]

1 - - . . . . 1/2
[E{ng > gQ(XjNij)gQ(st?ijL)ZK(’]l_Zl’/bn)”(‘]i’»—ll‘/bn)}}
J1,2,J3,J4=1 i1=1
5/2bn
n 3 — 0,
n

since ¢y, = Yo7, —1 K71 — | /bn) (|3 —i1]/bn) = O(bn) = o(v/n) and E{} 371 g1(X3,)*}* <
E{g1(X0)*}? < oo due to Assumption 2.3. For the third summand II,,, we use again the Hélder
inequality and Lemma D.7 to get

n—E)zr__nn e 0 1 92(X 5y X o)1 (X))

n—|r| n
. 1 1
H 92( X, X j,) ‘ H Z 91( Xivir] Z K(li —d1]/bn)|| < Cmﬁbn — 0.
Ji,j2=1 i1=1 2
The convergence of the remaining parts IV,,, V,, and VI,, can be shown in the same way. 0
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