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Proof of Lemma 3.1. Let gx(2) := g(2)1{|g(2)| < k}. g is bounded, and a straightforward
extension of the argument used to verify (9.1) in Duffy (2016) gives that
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for every £k € N. Now let & — oo; the left side converges to Ef(Y)g(Z) by dominated

convergence. For the right side, using that Y; and (Y2, Z) are independent, we have
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using the fact that [f(A)| < || ]| O

Proof of Lemma 3.2. We shall give only the proof of (3.6) here; the proof of (3.5) follows by

similar arguments, and is somewhat simpler. Recall from (3.3) the decomposition
k—1
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fir
Let K = {|k/2] +1,...,k — 1}\{m}. Since the second term on the right is independent of
M+k—m;
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using Elei® — 1| < |z, (3.4) and the Cauchy-Schwarz inequality. Hence
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Thus the left side of (3.6) may be bounded above by a constant times
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The result now follows by Lemma F.2 in the Supplement to Duffy (2016). O

Proof of Lemma 3.3. (i) follows by arguments analogous to those used to prove Lemma 9.3(i)
in Duffy (2016). For (ii), we recall from (3.2) the decomposition
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Thence by Fourier inversion (Lemma 3.1) and Lemma 3.2(i),
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using the fact that | f(\)] < ||f|li. The result now follows by Lemma 3.2(i). O

Proof of Lemma 3.4. For (i), note that {d;?} is regularly varying with index —2H, whence
by Karamata’s theorem and Proposition 1.5.9a in Bingham, Goldie, and Teugels (1987),
{370 d; %} is either slowly varying (when H < 1/2), or regularly varying with index 1 — 2H.

In comparison, {e}/ 2} is regularly varying with index

1
S —H)>1-2H

for all H € (},1); thus (i) holds. (ii) follows from the fact that {k‘_l/Qd,:?’/z} is regularly

varying with index



respectively. Thus the result follows from Assumption 1(ii). O
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