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Abstract

This online supplementary material complements the main text by providing and establish-
ing additional asymptotic results, namely Lemmas B.1-B.7, containing key marginal limit results,
and Lemmas C.1-C.10, containing auxiliary technical results and stochastic bounds. Second, it
establishes Propositions 1-2, Lemmas 2-3, Theorem A.1 as well as the asymptotic properties of
the two-scale realized kernel estimator in the present setting, as stated in Section 3.4, by adapt-
ing the methods of Ikeda (2015). Third, it complements the proofs of Theorems 3 and 4 by: (1)
Elaborating on the collection of terms for the Taylor expansion, leading to the representation in
equation (B.15); and (2) it shows that higher-order Taylor expansion terms are of lower stochastic
order than the first and second-order terms. Finally, it details how the endogenous MMS noise
component relates to the locally stationary processes in Dahlhaus & Polonik (2009) and Dahlhaus
(2009), and it explains how to adapt and use three asymptotic results in the two papers.
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1 Introduction

This online supplementary material complements the main text, Varneskov (2016), by establishing

various asymptotic results and technical lemmas, and it provides additional details about the class

of locally stationary processes, which is used to model the endogenous market microstructure (MMS)

noise component. While each section may be read independently, most of the notation and definitions

used are introduced in the main text. Hence, the respective sections below are easier to read once they

have been referenced. Note, in particular, that Sections 2 and 3 contain Lemmas B.1-B.7, providing

key marginal limit results for the proofs of Theorems 1-4, and Lemmas C.1-C.10, providing additional

technical results and stochastic bounds, respectively. Finally, note that there is no overlap between the

labelling of equations and lemmas below and the assumptions, asymptotic results as well as equations

in the main text, which, as a result, are referenced without explicitly citing Varneskov (2016).

2 Key Lemmas for the Proofs of Theorems 1-4

In the following, let K, k, and ε denote generic constants where K, k ∈ (0,∞) and ε ∈ (0, 1), unless

specified otherwise, and they may take different values in different places. Before proceeding, a lemma

due to the results in Jacod (2009, 6.23) is stated below, and this will be used throughout, sometimes

without explicit reference. Definition B.1 introduces notation for multiple summation and change

of variables, some of which resembles the corresponding notation in Ikeda (2015). Definition B.2

fixes additional notation for local and average autocovariances and long run variances, similar to that

provided in Definitions 1 and 2. All convergence results are for n→∞.

Lemma B.1 (Jacod (2009), 6.23). Under Assumptions 1 and 3, then for i ≥ 2,

(a) E[(∆ti)
−1/2|∆p∗ti − σti−1∆Wti |s|Hti−1 ] ≤ Ksn

−min(1,s/2).

(b) E[(∆ti)
−1/2|

∫ ti
ti−1

Υtdt−Υti−1∆ti|s|Hti−1 ] ≤ Ksn
−min(1,s/2).

(c) E[|σt+h − σt|s|Ht] ≤ Ksh
min(1,s/2) and E[|Υt+h −Υt|s|Ht] ≤ Ksh

min(1,s/2).

Definition B.1. Let (h, g) ∈ Z2, and recall four definitions from Section B in the main text:

S(2,h) = {1 + S+
h , . . . , n− 1 + S−h }, S(1,h) = S(2,h) \ {1}, Zk = {−k, . . . ,−1, 0, 1, . . . , k},

for k ∈ N as well as ZKk+1 = ZK \ Zk for K − k ∈ N. Then, the following notation is used for various

change of variables:

• For s = i− h ∈ S(2,h) − h = {1− S−h , . . . , n− 1− S+
h } ≡ S

(2,−h).

• For s = j − i in
∑

i∈S(2,h)

∑
j∈S(2,g) =

∑
s∈S(2,g)−S(2,h)

∑
i∈S(2,g)∩(S(2,h)+s); where

• S(2,g) − S(2,h) = {−(n− 1 + S−h ), . . . ,−1, 0, 1, . . . , n− 1 + S−g } ≡ Zn−1,h,g; and

1



• S(2,h) + s = {1 + S+
h,s, . . . , n− 1 + S−h,s} ≡ S

(2,h)
s ; with

• S+
h,s = max(h, 0) + max(s, 0) and S−h,s = min(h, 0) + min(s, 0).

• Last, denote S
(2,g,h)
s = S(2,g) ∩ S(2,h)

s .

Definition B.2. Let Ω̃(ee) and Ω̃(ep) replace Ω(ee) and Ω(ep), respectively, in Definitions 1 and 2 for all

combinations of local and average h-th autocovariance (covariance) and long run variance (covariance)

terms when θt(g) is replaced by θ(t, g).

The next lemma establishes marginal H1-stable central limit theory for the main contribution of

the MMS noise to the asymptotic distribution for the flat-top realized kernels, that is, for A(U).

Lemma B.2. Under the conditions of Theorem 1 and let ν ∈ (1/3, 2/3), then

(H3n−1)1/2
(
A(U)−Op

(
α(cH)nH−2

)) ds(H1)→ MN

(
0, 4λ(22)

∫ 1

0
Ω2
tdt

)
.

Proof. First, recall that A(U) = A1(U) + A2(U). Moreover, due to the two-component structure of

the MMS noise, U = e+ u, A(U) also decomposes as

A(U) = A(e) +A(u) +A(e, u) +A(u, e), (B.17)

similarly to (B.1). Now, write E[A(U)|H1] = E[A2(e) + A2(u)|H1] using a(|h|/H) = 0 for |h| < cH

in conjunction with independence of e and u to eliminate the cross-products in (B.17). Next, the

technical results in Lemmas C.6 (d) and C.7 (a) may be invoked to show convergence of the average

h-th autocovariances in A(e) and A(u), i.e., the limits

1

n

∑
i∈S(2,h)

etieti−h
P−→ Ω(ee)(h) and

1

n

∑
i∈S(2,h)

utiuti−h
P−→ Ω̄(uu)(h)

∫ 1

0
ζ2
t ,

respectively. The use of these results in conjunction with suph∈Zn−1
cH
|a(|h|/H)| ≤ K by the regularity

conditions for K∗, supt∈[0,1] ζt ∈ (0,∞) by Assumption 2, and the triangle inequality gives

E[A2(e) +A2(u)|H1] ≤ nH−2K
∑

h∈Zn−1
cH

(
|Ω(ee)(h)|+ |Ω̄(uu)(h)|

)
(1 + op(1))

≤ Op
(
α(cH)nH−2

)
(B.18)

where the last inequality for the h-th autocovariances of e and ū follows by Lemma C.4.

Next, to establish the asymptotic variance and H1-stable central limit theorem for A(U), marginal

H1-stable central limit theorems are initially provided for each of the terms in (B.17) and subsequently
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combined. First, consider A(e, u) +A(u, e) = 2A(e, u) + op(1), which may be rewritten as

A(e, u) =
n

H2

∑
h∈Zn−1

a

(
|h|
H

)
1

n

∑
i∈S(2,h)

etiζti−h ūti−h =
n

H2

∑
h∈Zn−1

a

(
|h|
H

)
1

n

∑
i∈S(2,h)

ẽti ūti−h ,

where ẽti = etiζti−h = etiζti(1 + Op(|h|/n)) using Lipschitz continuity of ζti in Assumption 2. Then,

as ẽti is H1-measurable, and since Lemma C.7 (b) shows that n−1
∑

i∈S(2,h) ẽti ẽti−h
P−→
∫ 1

0 Ω
(ee)
t (h)ζ2

t dt

for all h ∈ Zn−1, ūti−h obeys Assumption 2, and a(|h|/H), when |h| ≥ cH, satisfies the regularity

conditions of K, the general H1-stable central limit theorem in Lemma C.5 may be invoked to show

(H3n−1)1/2A(e, u)
ds(H1)→ MN

(
0, 2λ(22)Ω̄(uu)

∫ 1

0
Ω

(ee)
t ζ2

t dt

)
,

such that the result for A(e, u) +A(u, e) = 2A(e, u) + op(1) is immediate by Lemma C.1 (a).

Second, to establish the corresponding marginal H1-stable central limit theorem for A(e), define

first β(x) = a(x)/λ(2)(0), i =
√
−1, δ ∈ [−π, π], and the periodogram and autocovariance functions,

In(δ, e) =
1

2πn

∣∣∣ ∑
j∈S(2,0)

etj exp(−iδj)
∣∣∣2, Cn(h, e) =

1

n

∑
j∈S(2,h)

etjetj−h =

∫ π

−π
In(δ, e) exp(iδh) dδ,

where | · |2 denotes the complex conjugate product. These are, then, used to rewrite A(e) as

A(e) = sn

∫ π

−π
In(δ, e)Kn(δ) dδ, Kn(δ) =

1

2π

∑
h∈Zn−1

β(|h|/H) exp(iδh),

where sn = 2πλ(2)(0)nH−2 and Kn(δ) is the spectral window of β(x). Apart from sn, this spectrum

representation of A(e) is equivalent to that in Dahlhaus (2009, (10)-(11)).1 Hence, as the conditions

on e in Assumption 3 satisfy Dahlhaus (2009, Assumption 2.1), and Lemmas C.2 (b) and (c) provide

sufficient regularity conditions on the weight functions β(x) and Kn(δ) for Dahlhaus (2009, Theorems

2.4 and 3.2), it follows by the latter that V[A(e)]
P−→ 4nH−3λ(22)

∫ 1
0 [Ω

(ee)
t ]2dt, and

(H3n−1)1/2
(
A(e)−O

(
αe(cH)nH−2

)) d→ N

(
0, 4λ(22)

∫ 1

0
[Ω

(ee)
t ]2dt

)
.

Since θt(h) is H1-measurable ∀h ∈ Z, Lemma C.1 (b) implies that this result is H1-stable.

Third, the marginal H1-stable central limit theorem for A(u) follows by (B.18), Lemma C.7 (d),

which shows that V[A(u)|H1]
P−→ 4nH−3λ(22)

∫ 1
0 [Ω

(uu)
t ]2dt, and, if additionally restricting the band-

1The notation in this paper differs from the notation used by Dahlhaus (2009). Hence, Section 7 in this online supple-
mentary material clarifies exactly how the present notation and Assumption 3 should be mapped to the framework of
the latter, in addition to providing a discussion of locally stationary processes.
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width rate such that ν ∈ (1/3, 2/3), Lemma C.7 (e), which establishes

(H3n−1)1/2 (A(u)− E[A(u)|H1])
ds(H1)→ MN

(
0, 4λ(22)

∫ 1

0
[Ω

(uu)
t ]2dt

)
.

Finally, before collecting marginal results to establish a joint limit for A(U), note that the H1-

conditional cross-covariance terms, Cov[A(e), A(u)|H1] = 0, Cov[A(e), 2A(e, u)|H1] = 0, and

Cov[A(u), 2A(e, u)|H1]

=
2n2

H4

∑
h∈Zn−1

∑
g∈Zn−1

a

(
|h|
H

)
a

(
|g|
H

)
1

n2

∑
i∈S(2,h)

∑
j∈S(2,g)

etjζtiζti−hζtj−g κ̄3(i, i− h, j − g)

≤ 2n

H4
k sup
h∈Zn−1

a

(
|h|
H

)2 ∑
h∈Zn−1

∑
g∈Zn−1

∑
i∈S(2,h)

sup
j∈S(2,g)

|κ̄3(i, i− h, j − g)| × 1

n

∑
j∈S(2,g)

|etj |

≤ Op(1)× 2n

H4
kK

∑
h∈Zn−1

∑
g∈Zn−1

∑
i∈S(2,h)

|κ̄3(i, i− h,−g)| = Op
(
nH−4

)
= op

(
nH−3

)
,

since ζt is bounded ∀t ∈ [0, 1],

sup
h∈Zn−1

a(|h|/H)2 ≤ k, sup
j∈S(2,g)

|κ̄3(i, i− h, j − g)| ≤ |κ̄3(i, i− h,−g)|K,

as well as κ̄3(·) being absolutely summable by Assumption 2 and n−1
∑

j∈S(2,g) |etj | = Op(1). Hence,

the final convergence result follows by combining the marginal H1-stable laws for A(e), A(u) and

A(e, u) with (B.18), Lemma C.1 (a) and the stable Cramér-Wold theorem in Lemma C.1 (e).

Remark 1. The upper bound ν < 2/3 is only needed when establishing the H1-stable central limit

theorem for A(U), specifically when invoking Lemma C.7 (e), not for computing its H1-conditional

moments. This explains why the bound is not imposed in Theorem 1(1).

The following lemma establishes marginal H1-stable central limit theory for the main contribution

of cross-products between the efficient log-returns and the MMS noise to the asymptotic distribution

for the flat-top realized kernels, that is, for B(r∗, U).

Lemma B.3. Under the conditions of Theorem 1,

H1/2
(
B(r∗, U)−Op

(
H−1n1/2αe(cH)

))
ds(H1)→ MN

(
0, 8λ(11)

∫ 1

0

((
Ω

(ep)
t

)2
+ Ωtσ

2
t

)
dt

)
.

Proof. Before proceeding, recall that B(r∗, U) = B1(r∗, U) + B2(r∗, U). Moreover, it is convenient

to decompose B(r∗, U) = B(r∗, e) + B(r∗, u) and provide marginal results for B(r∗, e) and B(r∗, u)
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separately. Now, consider first B(r∗, u), whose h-th realized autocovariance may be rewritten as∑
i∈S(1,h)

r∗i uti−h = (1 +Op(|h|/n))
∑

i∈S(1,h)

r̃∗i ūti−h , where r̃∗i = r∗i ζti ,

using Lipschitz continuity of ζti in Assumption 2. By applying this representation in conjunction with

the technical results in Lemmas C.2 (d) and C.7 (c), which establish

1

H

∑
h∈Zn−1

b

(
|h|
H

)2

→ 2λ(11) and
∑

h∈Zn−1

∑
i∈S(1,h)

r̃∗i r̃
∗
i−h

P−→
∫ 1

0
σ2
t ζ

2
t dt,

respectively, the general H1-stable central limit theorem in Lemma C.5 may be invoked to show

H1/2B(r∗, u)
ds(H1)→ MN

(
0, 8λ(11)

∫ 1

0
Ω

(uu)
t σ2

t dt

)
.

Second, consider B(r∗, e). Using b(|h|/H) = 0 for |h| < cH,

E[B(r∗, e)|H1] = E[B2(r∗, e)|H1] =
2

Hn1/2

∑
h∈Zn−1

cH

b

(
|h|
H

) ∑
i∈S(1,h)

θ(ti−h, h)Υti−1σti−1(1 + op(1))

≤ 2

Hn1/2
sup
t∈[0,1]

|Υtσt| sup
h∈Zn−1

cH

∣∣∣∣b( |h|H
)∣∣∣∣ ∑

h∈Zn−1
cH

∑
i∈S(1,h)

|θ(ti−h, h)|(1 + op(1))

= Op

(
H−1n1/2αe(cH)

)
since supt∈[0,1] |Υtσt| ≤ k, suph∈Zn−1

cH
|b (|h|/H)| ≤ K, and

∑
i∈S(1,h) |θ(ti−h, h)| ≤ O(nαe(h)). Next,

V[B(r∗, e)|H1] =
4

H2

∑
h∈Zn−1

∑
g∈Zn−1

b

(
|h|
H

)
b

(
|g|
H

) ∑
i∈S(1,h)

∑
j∈S(1,g)

Cov
[
r∗i eti−h , r

∗
j etj−g |H1

]
(B.19)

where, since (r∗i , eti−h , r
∗
j , etj−g)

′ is a 4-variate Gaussian vector, the cross-covariance term in (B.19)

simplifies by invoking Brillinger (1981, Theorem 2.3.2),

Cov
[
r∗i eti−h , r

∗
j etj−g |H1

]
= Cov

[
r∗i , r

∗
j |H1

]
Cov

[
eti−h , etj−g |H1

]
+Cov

[
r∗i , etj−g |H1

]
Cov

[
eti−h , r

∗
j |H1

]
,

and let (B.19) = (B.19.1) + (B.19.2) denote the resulting decomposition of V[B(r∗, e)|H1]. The

marginal result for (B.19.1) mirrors the variance of B(r∗, u) and is provided by Lemma C.6 (e),

H(B.19.1)
P−→ 8λ(11)

∫ 1

0
σ2
tΩ

(ee)
t dt.

For (B.19.2), since Cov
[
r∗i , etj−g |H1

]
= n−1/2Ω̃

(ep)
tj−g

(i− j + g)(1 + op(1)), use Lemma C.6 (f) and two
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change of variables s = i− h and x = j − g to write

(B.19.2) = Op
(
(Hn)−1

)
+

4

H2

∑
h∈Zn−1

∑
g∈Zn−1

b

(
|h|
H

)
b

(
|g|
H

)
C(ep)
n (h, g),

where, using another change of variables x− s = k, C
(ep)
n (h, g) may be written and rewritten as

C(ep)
n (h, g) =

1

n

∑
s∈S(1,−h)

∑
x∈S(1,−g)

Ω
(ep)
tx (h+ s− x)Ω

(ep)
ts (g + x− s)

=
1

n

∑
k∈Zn−1,−h,−g

∑
s∈S(1,−g,−h)

k

Ω
(ep)
ts+k

(h− k)Ω
(ep)
ts (g + k)

= Op(n
−1) +

∑
k∈Zn−1,−h,−g

∫ 1

0
Ω

(ep)
t (h− k)Ω

(ep)
t (g + k)dt, (B.20)

whose final representation follows by splitting the sum C
(ep)
n (h, g) = C

(ep)
n (h, g, 1) + C

(ep)
n (h, g, 2),

C(ep)
n (h, g, 1) =

∑
k∈Zn−1,−h,−g

1

n

∑
s∈S(1,−g,−h)

k

Ω
(ep)
ts (h− k)Ω

(ep)
ts (g + k)

=
∑

k∈Zn−1,−h,−g

∫ 1

0
Ω

(ep)
t (h− k)Ω

(ep)
t (g + k)dt(1 + op(1))

C(ep)
n (h, g, 2) =

1

n

∑
k∈Zn−1,−h,−g

∑
s∈S(1,−g,−h)

k

Ω
(ep)
ts (g + k)

S+
k∑

k1=S−k

(
Ω

(ep)
ts+k

(h− k)− Ω
(ep)
ts+k−k1

(h− k)

+ Ω
(ep)
ts+k−k1

(h− k)− Ω
(ep)
ts (h− k)

)
≤ K

n

∑
k∈Zn−1,−h,−g

|k|αe(h− k)αe(g + k) = O(n−1)

using that, for C
(ep)
n (h, g, 2), Assumption 3 implies

sup
s∈S(1,−g,−h)

k

|Ω(ep)
ts (g + k)| ≤ Kαe(g + k),

∑
s∈S(1,−g,−h)

k

∣∣∣Ω(ep)
ts+k

(h− k)− Ω
(ep)
ts+k±1

(h− k)
∣∣∣ ≤ Kαe(h− k)

for k ≶ 0, |k| times, and
∑

k∈Zn−1,−h,−g
|k|αe(h−k)αe(g+k) <∞. By inserting (B.20) in (B.19.2) and

using a fourth change of variable g − h = z along with a Taylor approximation of b(|h+ z|/H), write

H(B.19.2) = Op(n
−1) + (1 +O(H−1))

4

H

∑
z∈Z2(n−1)

∑
h∈Zn−1,z,z

b

(
|h|
H

)2 ∑
k∈Zn−1,−h,−(h+z)∫ 1

0
Ω

(ep)
t (h− k)Ω

(ep)
t (h+ z + k)dt

P−→ 8λ(11)

∫ 1

0

(
Ω

(ep)
t

)2
dt

6



where the final convergence in probability follows by changing the order of summation with respect to

z, h, and k and taking the limit. By combining results,

HV[B(r∗, e)|H1]
P−→ 8λ(11)

∫ 1

0

((
Ω

(ep)
t

)2
+ Ω

(ee)
t σ2

t

)
dt.

Next, the individual moment results for B(r∗, e) and B(r∗, u) may be used, in conjunction with the

observation that Cov[B(r∗, e), B(r∗, u)|H1] = 0, to show

E[B(r∗, U)|H1] ≤ Op
(
H−1n1/2αe(cH)

)
, HV[B(r∗, U)|H1]

P−→ 8λ(11)

∫ 1

0

((
Ω

(ep)
t

)2
+ Ωtσ

2
t

)
dt.

Lastly, to establish the H1-stable central limit theorem, denote B(z) = B(z, z) for some generic z,

possibly a vector, and note that B(r∗, U) corresponds to an off-diagonal element of

B

(
r∗n1/2

Un−1/2

)
=

(
B(r∗n1/2) B(r∗n1/2, Un−1/2)

B(Un−1/2, r∗n1/2) B(Un−1/2)

)
(B.21)

since B(r∗n1/2, Un−1/2) = B(r∗, U). Then, as the mixed normal distribution is additive, the stable

Cramér-Wold results in Lemmas C.1 (d) and (e) show that it suffices to prove H1-stable central

limit theorems for both B(r∗n1/2) and B(Un−1/2), and use these in conjunction with boundedness

and convergence in probability of the H1-conditional first and second moment of B(r∗, U) to get the

stable limit for the latter. Hence, and as for K(r∗) in Section B.1 of the main text, it follows by

Barndorff-Nielsen, Hansen, Lunde & Shephard (2008, Theorem 1), Lemma C.2 (d), and b(|h|/H) = 0

for |h| < cH that

H1/2B(r∗n1/2)
ds(H1)→ MN

(
0, 8λ(11)

∫ 1

0
σ4
t dt

)
.

For B(Un−1/2), it follows using exactly the same arguments as for Lemma B.2 that

H1/2
(
B(Un−1/2)−Op

(
H−1α(cH)

)) ds(H1)→ MN

(
0, 8λ(11)

∫ 1

0
Ω2
tdt

)
,

thus providing the final H1-stable central limit theorem for B(r∗, U), concluding the proof.

Remark 2. This modified Cramér-Wold argument with carefully selected scales is needed for the stable

central limit theorem since the endogenous noise, eti, is not adapted to Hti. The latter implies that a

martingale difference-type argument for B(r∗, U) cannot be applied in this setting.

The next lemma provides a bound for the realized lag structure of finite activity jumps.

Lemma B.4. Under the conditions of Theorem 2, RKL(J) = Op
(
H1/2/n

)
+Op((mH

1/2)/n2).

Proof. First, recall the bound in (B.10), E[∆Nt] ≤ K∆ti(1 + O(n−1)). Next, as for the proof of
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Theorem 1 in the main text, write

RKL(J) =
∑

h∈Zn−1
1

k

(
|h|
H

) ∑
i∈S(1,h)

∆Jti∆Jti−h︸ ︷︷ ︸
=K1(J)

+ 2

n−1∑
h=1

k(h/H)
(
∆Jt1∆Jt1+h + ∆Jtn∆Jtn−h

)
︸ ︷︷ ︸

=Z4(J)

Then, Lemma C.8 (b) derives the uniform end-effects bound: Z4(J) = Op((mH
1/2)/n2). Next, for the

main component of the realized lag structure, K1(J),

E [|K1(J)|] ≤
∑

h∈Zn−1
1

|k (|h|/H) |
∑

i∈S(1,h)

E[|∆Jti |]E[|∆Jti−h |]

≤
∑

h∈Zn−1
1

|k (|h|/H) | 1

n2

∑
i∈S(1,h)

K2E[|dti |]E[|dti−h |](1 +O(n−1))

≤ 1

n

∑
h∈Zn−1

1

|k (|h|/H) | 1
n

∑
i∈S(1,h)

K2k(1 +O(n−1)) ≤ K

n

∑
h∈Zn−1

1

|k (|h|/H) |,

where the first inequality follows by the triangle inequality along with independent increments, ∆Jti
and ∆Jti−h , the second by Lipschitz continuity and boundedness of ηt, and the third inequality by

E[|dt|] <∞ ∀t ∈ [0, 1]. The final Op(H
1/2/n) bound, thus, follows by using Lemma C.2 (a) for k(·).

The following lemma provides marginal U1-stable central limit theory for cross-products between

the efficient log-returns and the finite activity jumps.

Lemma B.5. Under the conditions of Theorem 2,√
n/H (K(J, r∗) +K(r∗, J))

ds(U1)→ MN
(

0, 4(λ(00) + c)
∑

0≤t≤1

d2
tσ

2
t

)
.

Proof. First, recall the definition Ũt,s = Jt ∨Hs from the main text. Next, rewrite

K(J, r∗) +K(r∗, J) = 2
∑

i∈S(1,0)

∆Jti
∑

h∈S(1,0)

k

(
h− i
H

)
r∗h.

Then, for each i ∈ S(1,0) such that ∆Nti = 1, a Ũti,1-stable central limit theorem may be established

and subsequently summed over all i ∈ S(1,0) since the increments of the counting process ∆Nti and

∆Ntj are independent ∀i 6= j. That is, for some ∆Nti = 1, use the Lemma B.1 (a) approximation

r∗h = σth−1
∆Wth(1 + op(n

−1/2)), for which
∑

h∈S(1,0) k
(
h−i
H

)
E[dtiσth−1

∆Wth |Ũti,th−1
] = 0. Next, as

n

H

(
2dti

∑
h∈S(1,0)

k

(
h− i
H

)
σth−1

∆Wth

)2 P−→ 4d2
ti

n

H

∑
h∈S(1,0)

k

(
h− i
H

)2

σ2
th−1

∆W 2
th
,

8



using independence of the Brownian increments ∆Wth and ∆Wtg , for h 6= g, in conjunction with

Lemma C.2 (a) to show H−1
∑

h∈S(1,0) k((h− i)/H)2 → λ(00) + c for fixed i. Then,

4n

H

∑
h∈S(1,0)

k

(
h− i
H

)2

E
[
d2
tiσ

2
th−1

∆W 2
th
|Ũti,th−1

]
P−→ 4d2

ti(λ
(00) + c)σ2

ti

establishes the asymptotic variance for each jump, ∆Nti = 1, where, in particular, the final convergence

result follows by addition and subtraction as

4d2
ti

H

∑
h∈S(1,0)

k

(
h− i
H

)2

σ2
th−1

=
4d2

ti

H

∑
h∈S(1,0)

k

(
h− i
H

)2 (
σ2
ti + σ2

th−1
− σ2

ti

)

such that σ2
tiH
−1
∑

h∈S(1,0) k
(
h−i
H

)2 → σ2
ti(λ

(00) + c), using, again, Lemma C.2 (a) for k(·)2, and

1

H

∑
h∈S(1,0)

k

(
h− i
H

)2

(σ2
th−1
− σ2

ti) ≤
2Λ2

H

∑
h∈S(1,0)

k

(
h− i
H

)2

|σth−1
− σti |

≤ 2Λ2K1

H

∑
h∈S(1,0)

k

(
h− i
H

)2( |h− 1− i|
n

)1/2

(1 + op(1))
P−→ 0

using Assumption 1 for the first inequality, Lemma B.1 (c) for the second, and Lemma C.2 (a) for the

final convergence in probability. Having established the first two Ũti,1-conditional moments for each

jump, ∆Nti = 1, its accompanying Ũti,1-stable central limit theory follows by invoking a central limit

theorem for martingale difference arrays and using it in conjunction with Lemma C.1 (a).2 The final

result follows by sequentially summing over the N1 independent jumps.

The next lemma establishes marginal U1-stable central limit theory for cross-products between the

MMS noise and the finite activity jumps.

Lemma B.6. Under the conditions of Theorem 2,

H1/2B(J, U)
ds(U1)→ MN

(
0, 4λ(11)

∑
0≤t≤1

d2
tΩt

)
.

Proof. Similar to the strategy behind Lemmas B.2 and B.5 above, rewrite

B(J, U) = 2
∑

i∈S(1,0)

∆Jti
1

H

∑
h∈S(1,0)

b

(
|h− i|
H

)
Uth .

Then, for each i ∈ S(1,0) such that ∆Nti = 1, a Ũti,1-stable central limit theorem may be established

2A similar martingale difference array argument is applied for Barndorff-Nielsen, Hansen, Lunde & Shephard (2011,
Proposition A.5). In their Proposition A.5, however, the argument is used to establish stable central limit theory for a
term that is equivalent to K(r∗) in Section B.1 of the main text, albeit without a flat-top kernel function.
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and subsequently summed over all i ∈ S(1,0). Before deducing the joint Ũti,1-stable law, however, the

marginal Jti-conditional law is established for e and the corresponding marginal Ũti,1-stable law is

provided for u. First, for some ∆Nti = 1, write E[2dtiH
−1
∑

h∈S(1,0) b (|h− i|/H)Uth |Jti ] = 0,

E
[(

2dtiH
−1

∑
h∈S(1,0)

b

(
|h− i|
H

)
Uth

)2
|Jti
]

= 4d2
tiE
[(
H−1

∑
h∈S(1,0)

b

(
|h− i|
H

)
(eth + uth)

)2]
,

and define Ei = E[(H−1
∑

h∈S(1,0) b (|h− i|/H) eth)2]. Then,

HEi =
1

H

∑
h∈S(1,0)

∑
g∈S(1,0)

b

(
|h− i|
H

)
b

(
|g − i|
H

)
Cov[eth , etg ]

=
1

H
(1 +O(H−1))

∑
z∈Zn−1

Ω
(ee)
ti

(z)
∑

h∈S(1,0)∩S(1,0)
z

b

(
|h− i|
H

)2

+
1

H
(1 +O(H−1))

∑
z∈Zn−1

∑
h∈S(1,0)∩S(1,0)

z

b

(
|h− i|
H

)2 (
Ω

(ee)
th

(z)− Ω
(ee)
ti

(z)
)
,

whose representation follows by first using a change of variable g = h+z, switching the summation with

respect to h and z, then a Taylor approximation of b(|h+z−i|/H), Lemma C.6 (a) for Cov[eth , etg ], and,

finally, by adding and subtracting sums involving Ω
(ee)
ti

(z). For the second term in the decomposition

of HEi, Lemma C.6 (g) shows that |Ω(ee)
th

(z) − Ω
(ee)
ti

(z)| ≤ |h − i|αe(z)K/n. Hence, it readily follows

that HEi → Ω
(ee)
ti

λ(11), since

1

H

∑
z∈Zn−1

αe(z)
∑

h∈S(1,0)∩S(1,0)
z

b

(
|h− i|
H

)2 |h− i|
n

≤ K

H

∑
h∈S(1,0)∩S(1,0)

b

(
|h− i|
H

)2 |h− i|
n

→ 0,

using Lemma C.2 (d) for b(·)2. This implies

HE

(2dtiH
−1

∑
h∈S(1,0)

b

(
|h− i|
H

)
eth

)2
|Jti

 −→ 4λ(11)d2
tiΩ

(ee)
ti

.

These derivations show that the eth variables in H−1
∑

h∈S(1,0) b(|h − i|/H)eth are locally stationary

(close to ti) with long-run variance Ω
(ee)
ti

, up to an o(H−1) error. Hence, a marginal Jti-conditional

law follows directly by applying standard central limit theory for linear processes with Gaussian errors.

Moreover, since e is Ũti,1-measurable, this limit result is Ũti,1-stable by Lemma C.1 (b).

Next, for u, E[2dtiH
−1
∑

h∈S(1,0) b (|h− i|/H)uth |Ũti,1] = 0 and

HE

(2dtiH
−1

∑
h∈S(1,0)

b

(
|h− i|
H

)
uth

)2
|Ũti,1

 P−→ 4λ(11)d2
tiζ

2
tiΩ̄

(uu) = 4λ(11)d2
tiΩ

(uu)
ti
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using arguments similar to those for HEi above in conjunction with Lemma C.2 (d) for b(·)2 and

Lemma C.7 (a) to show convergence of the Ũti,1-conditional autocovariances for uti . Moreover, since

the σ-fields, Js ⊥⊥ Ht, ∀s, t, convergence of the asymptotic variance for u and the regularity conditions

on b(·) by Definitions 4-5 suffice to invoke the stable central limit theorem for orthogonal variables in

Lemma C.5 (b), providing the corresponding marginal Ũti,1-stable central limit theory for u.

Finally, since the Ũti,1-conditional covariance between e and u is zero, the joint U1-stable central limit

theorem is established by summing up the respective marginal limit theorems over the N1 independent

jumps, together with Lemma C.1 (c) and the stable Cramér-Wold theorem in Lemma C.1 (e).

The next lemma provides a useful representation result for the blocks of flat-top realized kernel

estimates, RKT
i (p), i = 1, . . . , nL. This is used to establish Theorems 3 and 4.

Lemma B.7. Under the conditions of Theorem 2, then for y = p, RKT
i (p) has representation

RKT
i (p) =

∫ τi
τi−1

σ2
t dt + ∆M̃τi(1 + op(1)), i = 1, . . . , nL where M̃t is an Ut-measurable sequence of

continuous local martingales on t ∈ [0, 1], which satisfies n1/2[M̃, M̃ ]
P−→ V(λ, a) and n1/4[M̃,W ]

P−→ 0.

The properties of M̃t also hold under the statistical risk neutral distribution, Q.3

Proof. Theorem 1 and Lemma 3 provide the representation of RKT
i (p) where for fixed τi, i = 1, . . . , nL,

(iL)−1/4M̃τi

ds(U1)→ MN(0, plimn→∞ τi
∫ τi

0 V(λ, a, t)dt). Interchangeability of limits and quadratic vari-

ation follows by Mykland & Zhang (2012, Proposition 4). Finally, existence of equivalent results under

the risk neutral distribution, Q, follows by Girsanov’s Theorem due to the absence of drift in M̃t.

3 Technical Results and Definitions

This section contains ten lemmas to complement the proofs in the previous section as well as those in

Section B of the appendix in the main text. Since these generally rely on prior definitions or pertain to

specific terms, they are easier to read after having been referred to. However, to ease their readability,

each lemma is briefly introduced before stated. Before proceeding, two definitions are given. These

are referred to in Lemmas C.1 and C.2.

Definition C.1. (Stable Convergence, A General Class of Kernels)

(a) Jacod & Shiryaev (2003, pp. 512-513): Suppose X is a σ-field on (O,F ,P) such that X ⊆ F , then

Yn converges X -stably in law to Y , Yn
ds(X )→ Y , if and only if the pair (Yn,W ) converges in law

to (Y,W ) for any X -measurable random variable W .

(b) KA1 of Andrews (1991, p. 812) is defined as the set of functions k : R→ [−1, 1], which satisfy (a)

k(0) = 1, (b) k(x) = k(−x), (c) k(00) <∞, and (d) k(·) is continuous at 0 and at all but a finite

number of points.

3The risk neutral distribution is defined in, e.g., Mykland & Zhang (2009, Section 2.2).
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The first lemma provides five results for stable convergence. The first three of these are due

to Barndorff-Nielsen et al. (2008), Podolskij & Vetter (2010), and Ikeda (2015). These three are

supplemented with a stable Cramér-Wold theorem and a variant of the latter.

Lemma C.1. (Stable Convergence Results) Let L{·|X} denote the X -conditional law. Then,

(a) If Yn
ds(X )→ Y and {Wn} is a sequence of positive random variables on (O,F ,P) tending in prob-

ability to a positive X -measurable random variable W , that is Wn
P−→ W , then WnYn

ds(X )→ WY

and Yn +Wn
ds(X )→ Y +W .

(b) For some X -measurable variable W , the following three assertions are equivalent: (i) Yn
ds(X )→ Y ,

(ii) (Yn,W )
d−→ (Y,W ), and (iii) (Yn,W )

ds(X )→ (Y,W ).

(c) Let {Yn} and {Wn} be sequences of random vectors. Suppose Yn
ds(X )→ Y and L{Wn|X}

P−→
L{W |X}. Then (Yn,Wn)

ds(X )→ (Y,W ).

(d) Let Yn be a p-dimensional sequence of random vectors satisfying (α′Yn, α
′Wα)

d−→ (α′Y, α′Wα)

for every α satisfying α′α = 1 and some X -measurable p × p positive definite matrix W , then

(α′Yn, α
′Wα)

ds(X )→ (α′Y, α′Wα) and (Yn,W )
ds(X )→ (Y,W ).

(e) Let Yn be p-dimensional random vectors satisfying Yn
ds(X )→ Y and Wn be a sequence of p × p

random matrices satisfying Wn
P−→ W for some X -measurable positive definite matrix W , then

(α′Yn, α
′Wnα)

ds(X )→ (α′Y, α′Wα) for every α satisfying α′α = 1 and WnYn
ds(X )→ WY .

Proof. (a) Ikeda (2015, Lemma 1). (b) Podolskij & Vetter (2010, Proposition 2.2). (c) Barndorff-

Nielsen et al. (2008, Proposition 5). (d) follows by (b) in conjunction with the Cramér-Wold theorem,

cf. Davidson (2002, Theorem 25.6). (e) follows by combining (a) and (d).

The second lemma collects convergence and regularity results for the kernel function, its first and

second derivative, and different transformations thereof.

Lemma C.2. (Kernel functions) Let k(x) ∈ K∗, then for large H,

(a) Define the n×n matrix A = diag(1, 2, . . . , 2), the n×1 vector w =
(
1, . . . , 1, λ

(
h−c
H

)
, . . . , λ

(
n−1−c
H

))′
for h/H ≥ c, then w′Aw = 2Hλ(00) + 2cH +O(1).

(b) β (x) = 0 for |x| < c and β (|x|) ∈ KA1 for |x| ≥ c. For |x| ≥ c, β(|x|) is differentiable at all but a

finite number of points, and
∫∞

0 [β(j)(|x|)]2 <∞ for j = 1 almost everywhere.

(c) supδ

{∑g
j=1 |K(δj)−K(δj−1)| : −π ≤ δ0 < · · · < δg ≤ π; g ∈ N

}
<∞.

(d) Define the n× 1 vector wz =
(
0, . . . , 0, z

(
h−c
H

)
, . . . , z

(
n−1−c
H

))′
for h/H ≥ c and z = {a, b}, then

w′bAwb = 2Hλ(11) +O(1) and w′aAwa = 2Hλ(22) +O(1).
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Proof. (a) follows from summing over cH elements in A and then using Barndorff-Nielsen et al. (2008,

Theorem 2). (b) For |x| < c, the results follow immediately. For |x| ≥ c, it follows that β (|x|) :

R → [−1, 1] because |λ(2)(|x| − c)| achieves its maximum at |x| = c, and β(c) = 1 by construction.

Continuity, symmetry and square integrability follow from the properties of λ(x). Differentiability of

β(|x|) and square summability of β(1)(|x|) follow from Definitions 4 (a) and (d). (c) is provided by

the properties of β(x) in (b). (d) is similar to (a).

The third lemma establishes asymptotic bounds on end-effects for the proof of Theorem 1.

Lemma C.3. (Jittered variables) Under the conditions of Theorem 1, four uniform bounds hold:

(a) r∗1 + r∗n = Op((m/n)1/2).

(b) Z1(r∗) = Op(mn
−1) +Op((Hm)1/2n−1).

(c) Z2(U) = Op(m
−1).

(d) Z3(r∗, U) = Op(H
1/2(nm)−1/2) +Op(m(Hn)−1/2) +Op(n

−1/2).

Proof. First, recall the definition of the jittered end-point returns,

r∗1 = p∗t′m −
1

m

m∑
i=1

pt′i−1
and r∗n =

1

m

m∑
i=1

p∗t′N−m+i
− p∗t′N−m .

The results below are derived for either r∗1 or r∗n since the corresponding result for the other term

follows by symmetry. (a) is provided by Ikeda (2015, Lemma 9). (b) The third component of

Z1(r∗) = (r∗1)2 + (r∗n)2 + 2
n−1∑
h=1

k

(
h

n

)(
r∗h+1r

∗
1 + r∗nr

∗
n−h
)

is Op((Hm)1/2n−1) by calculating the mean and variance, given h > 0, of a sum of conditionally

independent Gaussian variables, and using (a) in conjunction with Lemma C.2 (a) for k(·). Hence,

the stated asymptotic order readily follows by (a) for the first two terms, since the boundary terms

for h = n− 1 are of order Op(H
−1/2) smaller than these. (c) is established by using Barndorff-Nielsen

et al. (2011, Proposition A.2), since Assumptions 2 and 3 provide sufficient summability conditions on

the MMS noise components u and e, respectively, to ensure
∑

h∈Z |Ω(h)| <∞.4

For (d), since Z3(r∗, U) decomposes as

Z3(r∗, U) = 2
n−2∑
h=1

k

(
h

H

)(
Utnr

∗
n−h − Ut0r∗h+1

)
+

2

H

n−1∑
h=1

b

(
h

H

)(
r∗nUtn−h − r

∗
1Uth

)
+ k(0)(Utnr

∗
n − Ut0r∗1) + k((n− 1)/H)(Utnr

∗
1 − Ut0r∗n),

4In their notation, see also Section B.1 for definitions, this follows since
∑
h∈Z |Ω(h)| < ∞, together with the remaining

conditions in Assumptions 2 and 3, suffices to show mZh = Op(1) for all h ∈ Z, see also Lemmas C.6 (d) and C.7 (a).
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it suffices to characterize probabilistic orders of Utnr
∗
n−h and r∗nUtn−h in the first two terms, as the

last two terms are Op(n
−1/2) by the Cauchy-Schwarz inequality, (a) and (c). Next, for the first term

in Z3(r∗, U), make the decomposition Utnr
∗
n−h = etnr

∗
n−h + utnr

∗
n−h. Then, for the exogenous noise

contribution, it follows that E[utnr
∗
n−h|H1] = 0 and

V
[
utnr

∗
n−h|H1

]
=

(r∗n−h)2

m2

m∑
i,j=1

ζtN−m+iζtN−m+j Ω̄
(uu)(i− j) = Op((mn)−1),

since ζt is bounded ∀t ∈ [0, 1]. Hence, |utnr∗n−h| = Op((mn)−1/2). Next, for the contribution of the

endogenous noise component,

etnr
∗
n−h =

1

mn1/2

m∑
j=1

θ(t′N−m+j ,−(h+ j))Υtn−h−1
σtn−h−1

(1 + op(1))

≤ sup
t∈[0,1]

|Υtσt|
1

mn1/2
(1 + op(1))

m∑
j=1

αe(h+ j) = Op((mn
1/2)−1),

since supt∈[0,1] |Υtσt| ≤ K and
∑m

j=1 αe(h + j) = O(1), ∀h ∈ Z. By combining these results with

Lemma C.2 (a) for k(·), the first term in Z3(r∗, U) is uniformly Op((H/(mn))1/2).

Next, for the second term in Z3(r∗, U), decompose r∗nUtn−h = r∗netn−h + r∗nutn−h . Then, for the

exogenous noise contribution, it follows that E[r∗nutn−h |H1] = 0 and

V[r∗nutn−h |H1] = Ω̄(uu)(0)ζ2
tn−h

(r∗n)2 = Op(m/n),

using (a). Hence, |r∗nutn−h | = Op((m/n)1/2). Moreover, noting that r∗n = m−1
∑m

i=1

∑i
j=1 ∆p∗t′N−m+j

,

the contribution of the endogenous noise component is determined by writing

r∗netn−h =
1

mn1/2

m∑
i=1

i∑
j=1

θ(tn−h, h+ j)Υt′N−m+j−1
σt′N−m+j−1

(1 + op(1))

≤ 1

mn1/2
sup
t∈[0,1]

|Υtσt|(1 + op(1))

m∑
i=1

i∑
j=1

αe(h+ j) ≤ Op(mn−1/2),

since
∑m

i=1

∑i
j=1 αe(h + j) ≤ O(m2), ∀h ∈ Z. Hence, by combining results, the stochastic order of

second term in Z3(r∗, U) is uniformly Op(m(Hn)−1/2), thus providing the final result.

Remark 3. Lemma C.3 shows that slightly stronger conditions on m are required to avoid end-effects

influencing the asymptotic distribution than those in Barndorff-Nielsen et al. (2008, 2011a) and Ikeda

(2015). This is due to cross-products involving the endogenous noise component.

The fourth lemma provides maximal inequalities to bound partial sums of polynomially decaying

autocovariances for the MMS noise.
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Lemma C.4. (Maximal inequalities) Under Assumptions 2 and 3, denote Ω(zz) = {Ω(ee), Ω̄(uu)} as

well as αz(n) = {αe(n), αu(n)} for z = {e, ū}, then, for some n, p ∈ N+, it follows that

∞∑
j=n

|Ω(zz)(j)|p ≤
∞∑
j=n

αz(j)
p ≤ Kαz(n)p.

Proof. First, write f(n) = αz(n)−p, h(n) = n(rz+ε)p, F (n) =
∑∞

j=n f(j)−1 and H(n) =
∑∞

j=n h(j)−1.

Then, by applying the mixing inequality for the exogenous noise component, z = ū, e.g. Davidson

(2002, Corollary 14.3), and Dahlhaus & Polonik (2009, Proposition 5.4 (48)) for the endogenous noise,

z = e, it follows that |Ω̄(uu)(n)|p ≤ αu(n)p and |Ω(ee)(n)|p ≤ αe(n)p, respectively.5 This establishes

the first inequality. For the second, use the first inequality to write

∞∑
j=n

|Ω(zz)(j)|p ≤ F (n) =

∞∑
j=n

j−(rz+ε)p
(
αz(j)

pj(rz+ε)p
)
≤ sup

j≥n

(
h(j)

f(j)

)
H(n) ≤ Kh(n)

f(n)
H(n).

Then, since h(n + 1)H(n + 1) ≤ kh(n)H(n) by h(n + 1)/h(n) ≤ k and H(n + 1)/H(n) ≤ 1, this

descending sequence may be bounded as h(n)H(n) ≤ kH(1). Finally, since H(1) is a p-series with

exponent p(rz + ε) > 1, kH(1) ≤ K, providing the second inequality.

The fifth lemma derives a general stable central limit theorem for weighted cross-products between

orthogonal variables that may individually exhibit temporal dependence, however, with one of the

variables being the exogenous α-mixing part of the MMS noise, ū.

Lemma C.5. (Cross-product CLT) Under the conditions of Theorem 1, suppose that {xt}t∈[0,1] is

an X1-measurable, bounded random variable where Xt ⊂ Ft is a σ-algebra on
(
O,F , (Ft)t∈[0,1],P

)
satisfying Xt ⊥⊥ Gs ∀(t, s) ∈ [0, 1]2. Furthermore, let (b1, b2) = {(1, 0), (0, 1)} such that

∑
h∈Zn−1

1

nb2

∑
i∈S(1,h)

xtixti−h
P−→
∑
h∈Z

∫ 1

0
ct(h)dt = Ω(xx) (C.1)

where ct(h) is X1-measurable ∀h ∈ Z, P-uniformly bounded ∀(h, t) ∈ Z × [0, 1] and Ω(xx) ∈ (0,∞)

P-almost surely. Lastly, define the cross-product realized kernel estimator

RK(f, x, ū) =
1

Hb1

∑
h∈Zn−1

f

(
h

H

)
1

nb2

∑
i∈S(1,h)

xti ūti−h ,

where f(x) is a weight function, which is differentiable at all but a finite number of points and, more-

over, f (jj) =
∫∞
−∞[f (j)(x)]2dx <∞ for j = 0 and j = 1 almost everywhere. Then,

(a) E[RK(f, x, ū)|X1] = 0 and nb2H2b1−1V[RK(f, x, ū)|X1]
P−→ f (00)Ω̄(uu)Ω(xx).

5Details on how to adapt the notation in Dahlhaus & Polonik (2009, Proposition 5.4) to the present setting are provided
in Section 7 of this online supplementary material, along with details on locally stationary processes.
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(b) nb2/2H(2b1−1)/2RK(f, x, ū)
ds(X1)→ MN

(
0, f (00)Ω̄(uu)Ω(xx)

)
.

Proof. (a) E[RK(f, x, ū)|X1] = 0 is trivial. Next, write

V[RK(f, x, ū)|X1] =
1

H2b1

1

nb2

∑
h∈Zn−1

∑
g∈Zn−1

f

(
h

H

)
f
( g
H

)
Cn(h, g)

where Cn(h, g) may be written, using a change of variables j − i = l, as

Cn(h, g) =
1

nb2

∑
i∈S(1,h)

∑
l∈S(1,g)−i

xtixti+lΩ̄
(uu)(l + g − h) =

∑
l∈Zn−1,h,g

Ω̄(uu)(l + g − h)
1

nb2

∑
i∈S(1,g,h)

l

xtixti+l

By another change of variables g − h = z,

nb2H2b1−1V[RK(f, x, ū)|X1] =
1

H

∑
h∈Zn−1

∑
z∈Zn−1−h

f

(
h

H

)
f

(
h+ z

H

) ∑
l∈Zn−1,h,h+z

Ω̄(uu)(l + z)

× 1

nb2

∑
i∈S(1,h+z,h)

u

xtixti+l

=
(
1 +O(H−1)

) ∑
z∈Z2(n−1)

1

H

∑
h∈Zn−1,z,z

f

(
h

H

)2 ∑
l∈Zn−1,h,h+z

Ω̄(uu)(l + z)

× 1

nb2

∑
i∈S(1,h+z,h)

l

xtixti+l
P−→ f (00)Ω̄(uu)Ω(xx),

where the second equality follows by Taylor’s theorem since f(x) is differentiable at all but a finite

number of points and f (11) < ∞ almost everywhere. The final convergence to the probability limit

follows by switching the order of summation with respect to h and (l, i) and using (C.1). (b) First,

rewrite RK(f, x, ū) as

RK(f, x, ū) =
∑

i∈S(1,0)

ūtiw̄n,i, w̄n,i =
1

Hb1

1

nb2

∑
h∈S(1,0)

f

(
h− i
H

)
xth

and define the sequences (K̄n, L̄n) ∈ R+ × R+ where K̄n = O(nk̄) and L̄n = O(nl̄) for 0 < k̄ < l̄ < 1.

The stable central limit theorem, then, follows by the central limit theorem for weighted α-mixing

processes from Yang (2007, Theorem 3.1), X1-conditionally, in conjunction with the moment results

in (a) and Lemmas C.1 (a)-(b), since the following four conditions are shown below to hold:

(1) w̄n = maxi∈S(1,0) |w̄n,i| ≤ Op(
∑

i∈S(1,0) w̄2
n,i) = Op(V[RK(f, x, ū)|X1]),

(2) nL̄−1
n αu(K̄n) = o(1),

(3) nK̄nL̄
−1
n w̄2

nV[RK(f, x, ū)|X1]−1 = op(1), and
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(4) L̄n
∑

i∈S(1,0) w̄2
n,i = op(1).

First, for (1), the last equality of orders is immediate from the derivations in (a). The first inequality

follows by observing that maxi∈S(1,0) |w̄n,i| = Op(H
(1−2b1)/2n−(1+b2)/2) ≤ Op(H1−2b1n−b2) since O(1) ≤

O(H(1−2b1)/2n(1−b2)/2) for both combinations of (b1, b2) using (C.1) as well as Lemmas C.2 (a) and

(d) for the kernel function to construct the bounds. Since ru ∈ N+, (2) is satisfied by having 0 <

(1 − l̄)/(1 + ru + ε) < k̄ < l̄ < 1. For (3), nK̄nL̄
−1
n w̄2

nV[RK(f, x, ū)|X1]−1 = nK̄nL̄
−1
n Op(n

−1)
P−→ 0

trivially by condition (1). Last, (4) follows by noting that the conditions for L̄nOp(H
(1−2b1)n−b2)

P−→ 0

are l̄ − ν < 0 for (b1, b2) = (1, 0) and l̄ − (1− ν) < 0 for (b1, b2) = (0, 1). Setting ν = 1/2 as required

for the central limit theorem in Theorem 1, such conditions are easily satisfied.

Remark 4. Lemma C.5 generalizes Ikeda (2015, Lemma 4) by applying more generally to series of

weighted products of orthogonal variables, which individually may exhibit temporal dependence. Note

that condition (3) is slightly different from Yang (2007, (3.4)) and that Yang (2007, Assumption 2 (i))

is omitted. However, careful inspection of the proof on pp. 1022-1023 shows that condition (3) suffices

for line 7, and that condition (4) is sufficient for Yang (2007, (3.14)), as r̃ = r+ 2, in their notation,

may replace r in the last five lines of their proof since ∃v > 4 : supi=0,...,N E[|ūti |v] <∞.

The sixth lemma provides several convergence results for moments of the endogenous noise compo-

nent, e, as well as for its covariation with increments of the efficient price process, r∗. Some of these

results rely on Dahlhaus & Polonik (2009, Proposition 5.4). As previously mentioned, details about

the latter are deferred to Section 7 below.

Lemma C.6. (Moment Results for e) Under the conditions of Theorem 1,

(a)
∑

i∈S(1,h,−s)
0

∣∣∣Cov[eti−h , eti+s ]− Ω
(ee)
ti

(h+ s)
∣∣∣ ≤ K (1 + min(|h|, n)αe(h+ s)).

(b) n−1
∑

i∈S(1,h,−s)
0

Cov[eti−h , eti+s ] −→
∫ 1

0 Ω
(ee)
t (h+ s)dt.

(c)
∑

i∈S(1,h,−s)
0

∣∣∣Cov[eti−h , eti+s |H1]− Ω
(ee)
ti

(h+ s)
∣∣∣ ≤ K (1 + min(|h|, n)αe(h+ s)) (1 + op(1)).

(d) n−1
∑

i∈S(1,h,−s)
0

Cov[eti−h , eti+s |H1]
P−→
∫ 1

0 Ω
(ee)
t (h+ s)dt.

(e) H(B.19.1)
P−→ 8λ(11)

∫ 1
0 σ

2
tΩ

(ee)
t dt.

(f)
∑

i∈S(1,h)

∑
j∈S(1,g)

∣∣∣Ω̃(ep)
tj−g

(i− j + g)Ω̃
(ep)
ti−h

(j − i+ h)− Ω
(ep)
tj−g

(i− j + g)Ω
(ep)
ti−h

(j − i+ h)
∣∣∣ ≤ Op(1).

(g)
∣∣∣Ω(ee)

th
(z)− Ω

(ee)
ti

(z)
∣∣∣ ≤ |h− i|αe(z)K/n.

Proof. First, (a) follows directly by Dahlhaus & Polonik (2009, Proposition 5.4 (49)). (b) follows by

applying (a) and Riemann integration. (c) follows similarly to the proof of Dahlhaus & Polonik (2009,

Proposition 5.4) after using the Markov inequality to ensure convergence in probability of squares and
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cross-products of standard Brownian motions. (d) follows by applying (c). For (e), using the same

change of variables as in the proof of Lemma C.5 (a), the last part of H(B.19.1) may be rewritten as∑
i∈S(1,h)

∑
j∈S(1,g)

Cov
[
r∗i , r

∗
j |H1

]
Cov

[
eti−h , etj−g |H1

]
=

∑
l∈Zn−1,h,h+z

∑
i∈S(1,h+z,h)

l

r∗i r
∗
i+l Cov

[
eti−h , eti+l−(h+z)

|H1

]
= (C.19.1) + (C.19.2),

where, using the bound in (c), it follows that

(C.19.1) =
∑

i∈S(1,h+z,h)
0

(r∗i )
2 Cov

[
eti−h , eti−(h+z)

|H1

]
=

∑
i∈S(1,h+z,h)

0

(r∗i )
2Ω

(ee)
ti

(−z)(1 + op(1)),

(C.19.2) =
∑

l∈Zn−1,h,h+z\{0}

∑
i∈S(1,h+z,h)

l

r∗i r
∗
i+l Cov

[
eti−h , eti+l−(h+z)

|H1

]
≤

∑
l∈Zn−1,h,h+z\{0}

sup
i∈S(1,h+z,h)

l

∣∣∣Ω(ee)
ti

(l − z)(1 + op(1))
∣∣∣ ∑
i∈S(1,h+z,h)

l

|riri+l| = Op(n
−1/2),

since, uniformly,
∑

i∈S(1,h+z,h)
l

riri+l = Op(n
−1/2) for l 6= 0, and

∑
l∈Zn−1,h,h+z\{0}

sup
i∈S(1,h+z,h)

l

∣∣∣Ω(ee)
ti

(l − z)
∣∣∣ ≤ ∑

l∈Zn−1,h,h+z\{0}

Kα(l − z) <∞.

Hence, using a Taylor approximation for b(|h+ z|/H), (C.19.1) and (C.19.2) are used to write

H(B.19.1) = 4(1 +O(H−1))
∑

z∈Z2(n−1)

1

H

∑
h∈Zn−1,z,z

b

(
|h|
H

)2 (
Op(n

−1/2) +
∑

i∈S(1,h+z,h)
0

(r∗i )
2Ω

(ee)
ti

(−z)
)

P−→ 8λ(11)

∫ 1

0
σ2
tΩ

(ee)
t dt,

where the final convergence to the probability limit follows by switching the order of summation with

respect to h and i. For (f), denote

(C.19.3) =
∑

i∈S(1,h)

∑
j∈S(1,g)

∣∣∣Ω̃(ep)
tj−g

(i− j + g)Ω̃
(ep)
ti−h

(j − i+ h)− Ω
(ep)
tj−g

(i− j + g)Ω
(ep)
ti−h

(j − i+ h)
∣∣∣ ,

then

(C.19.3) ≤
∑

i∈S(1,h)

∑
j∈S(1,g)

∣∣∣Ω̃(ep)
ti−h

(j − i+ h)
∣∣∣ ∣∣∣Ω̃(ep)

tj−g
(i− j + g)− Ω

(ep)
tj−g

(i− j + g)
∣∣∣

+
∑

i∈S(1,h)

∑
j∈S(1,g)

∣∣∣Ω(ep)
tj−g

(i− j + g)
∣∣∣ ∣∣∣Ω̃(ep)

ti−h
(j − i+ h)− Ω

(ep)
ti−h

(j − i+ h)
∣∣∣
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≤ K

n

∑
i∈S(1,h)

∑
j∈S(1,g)

(∣∣∣Ω̃(ep)
ti−h

(j − i+ h)
∣∣∣+
∣∣∣Ω(ep)

tj−g
(i− j + g)

∣∣∣) (1 + op(1)) ≤ Op(1),

using first the triangle inequality, and then supg
∑n

i=1 |θ(ti, g)− θti(g)| ≤ K and∣∣∣Ω̃(ep)
tj−g

(i− j + g)− Ω
(ep)
tj−g

(i− j + g)
∣∣∣ ≤ sup

t∈[0,1]
|Υtσt|

∣∣θ(tj−g, i− j + g)− θtj−g(i− j + g)
∣∣

to establish the second inequality. Finally, for (g), the triangle inequality is used repeatedly to make

the decomposition |Ω(ee)
th

(z)− Ω
(ee)
ti

(z)| ≤ |h− i|K|Ω(ee)
th

(z)− Ω
(ee)
th−1

(z)|. Then,

∣∣∣Ω(ee)
th

(z)− Ω
(ee)
th−1

(z)
∣∣∣ ≤ ∞∑

j=−∞

(
|θth(z + j)||θth(j)− θth−1

(j)|+ |θth−1
(j)||θth−1

(z + j)− θth(z + j)|
)

≤ k

n

∞∑
j=−∞

(αe(z + j)αe(j) + αe(j)αe(z + j)) ≤ K

n
αe(z)

where the first inequality follows by adding and subtracting θth(z + j)θth−1
(j) along with the triangle

inequality, and the second by Assumptions 3(3) and 3(5). This provides the final result.

The seventh lemma not only establishes a convergence result for autocovariances of an α-mixing

process multiplied with a diurnally heteroskedastic component, ζ, it also provides the asymptotic

variance and stable central limit theory for a long-run variance estimator applied to such variables.

Finally, it studies conditional autocovariances for the transformed variables ẽ and r̃∗.

Lemma C.7. (Heteroskedasticity Robust Results for u) Under the conditions of Theorem 1,

(a) n−1
∑

i∈S(2,h) Cov
[
utiuti−h |H1

] P−→ Ω̄(uu)(h)
∫ 1

0 ζ
2
t dt.

(b) n−1
∑

i∈S(1,h,−s)
0

Cov[ẽti−h , ẽti+s |H1]
P−→
∫ 1

0 Ω
(ee)
t (h+ s)ζ2

t dt.

(c)
∑

h∈Zn−1

∑
i∈S(1,h) r̃∗i r̃

∗
i−h

P−→
∫ 1

0 σ
2
t ζ

2
t dt.

(d) V[A(u)|H1] = 4nH−3λ(22)[Ω̄(uu)]2
∫ 1

0 ζ
4
t dt(1 + op(1)) = 4nH−3λ(22)

∫ 1
0 [Ω

(uu)
t ]2dt(1 + op(1)).

(e) (H3n−1)1/2 (A(u)− E[A(u)|H1])
ds(H1)→ MN

(
0, 4λ(22)

∫ 1
0 [Ω

(uu)
t ]2dt

)
, when ν ∈ (1/3, 2/3).

Proof. First, for (a), write

1

n

∑
i∈S(2,h)

Cov
[
utiuti−h |H1

]
= Ω̄(uu)(h)

1

n

∑
i∈S(2,h)

ζtiζti−h = Ω̄(uu)(h)
1

n

∑
i∈S(2,h)

ζ2
ti(1 +Op(|h|/n))

by Lipschitz continuity of ζti in Assumption 2. The result, then, follows by Riemann integration.
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Next, (b) follows, similarly to (a), by writing

1

n

∑
i∈S(1,h,−s)

0

Cov[ẽti−h , ẽti+s |H1] =
1

n

∑
i∈S(1,h,−s)

0

Cov[eti−h , eti+s |H1]ζ2
ti(1 +Op((|h|+ |s|)/n))

and using Riemann integration, independence of ζ and e along with Lemma C.6 (d). (c) follows

by applying the approximation r∗i = σti−1∆Wti(1 + op(n
−1/2)) from Lemma B.1 in conjunction with

independence between the Brownian increments in the sum, independence between r and ζ, and

Riemann integration. (d) Let |h|, |s| ≤ k, then ζtiζti−hζti−gζti−h−s = ζ4
ti(1 + Op((|g| + |k|)/n)), a

change of variables s = i− j, and Riemann integration provide the representation

1

n

∑
i∈S(2,h)

∑
j∈S(2,g)

Cov
[
ūti ūti−h , ūtj ūtj−g |H1

]
ζtiζti−hζtjζtj−g =

∑
s∈Z

(
Ω̄sΩ̄s−h+g + Ω̄s−hΩ̄s+g + κ̄4(0, s, s− h,−g)

) ∫ 1

0
ζ4
t dt(1 + op(1)),

as in Ikeda (2015, Section A.3.4). This conditional fourth moment result together with a spectral

representation,

A(ū) = sn

∫ π

−π
In(δ, ū)Kn(δ) dδ,

using the definitions from the proof of Lemma B.2, imply that Rosenblatt (1984, Theorem 2) may

be invoked to establish the asymptotic variance, since the re-scaled kernel function, β(x), and its

associated spectral window, Kn(δ), satisfy the regularity conditions in Lemmas C.2 (b) and (c), and

since the scalar contribution from the diurnally heteroskedastic component,
∫ 1

0 ζ
4
t dt > 0, may easily

be accommodated in the scale, sn, when conditioning on H1.6

Finally, for (e), and as in the proof of Lemma C.5 (b), write

A(u) =
∑

i∈S(1,0)

ūtiw̄n,i, w̄n,i =
n

H2

1

n

∑
h∈S(1,0)

a

(
|h| − i
H

)
ūthζthζti

and use the same argument as in (a) to show

w̄n,i = (1 +Op(n
−1))

n

H2

1

n

∑
h∈S(1,0)

a

(
|h| − i
H

)
ūthζ

2
th
.

The stable central limit theorem, then, follows by the central limit theorem for weighted α-mixing

processes from Yang (2007, Theorem 3.1), H1-conditionally, in conjunction with (d) and Lemmas C.1

(a)-(b), if the same four conditions, as used to establish Lemma C.5 (b) above, can be shown to hold.

First, for (1), the last equality of asymptotic orders is immediate since ζt is bounded ∀t ∈ [0, 1]. The

6Section 7 of this online supplementary material explains how this representation relates to spectral analysis in the context
of locally stationary processes.
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order of w̄n = maxi∈S(1,0) ≤ Op(H−3/2) follows since

sup
h∈S(1,0)

|ūth | = Op(1), and sup
i∈S(1,0)

( ∑
h∈S(1,0)

a ((|h| − i)/H)
)2

= O(H)

by Lemma C.2 (d). Moreover,
∑

i∈S(1,0) w̄2
n,i = Op(nH

−3) follows as in (d). Hence, the bound

Op(H
−3/2) ≤ Op(nH

−3) is satisfied when H ∝ nν , ν < 2/3. (2) is immediate from the corresponding

proof of Lemma C.5 (b). (3) nK̄nL̄
−1
n w̄2

nV[A(u)|H1]−1 = nK̄nL̄
−1
n Op(n

−1)
P−→ 0 trivially by 0 < k̄ <

l̄ < 1. Finally, for (4), L̄n
∑

i∈S(1,0) w̄2
n,i = L̄nOp(n

1−3ν)
P−→ 0 by setting 0 < k̄ < l̄ < min(1, 3ν−1).

Remark 5. Lemma C.7 (e) generalizes the central limit theory result for spectral density estimates

(at frequency zero) of α-mixing random variables in Rosenblatt (1984, Theorem 2) by allowing the

variables to exhibit diurnal heteroskedasticity through the multiplicative component, ζt.

The eighth lemma establishes additional bounds on end-effects for the proof of Theorem 2.

Lemma C.8. (Jittered Variables for Jump-diffusions) Under the conditions of Theorem 2, four uni-

form bounds hold:

(a) ∆Jt1 + ∆Jtn = Op(m/n).

(b) Z4(J) = Op((mH
1/2)/n2).

(c) Z1(r∗, J) = Op((m/n)3/2) +Op((mH)1/2/n).

(d) Z3(J, U) = Op(n
−1) +Op(m/(H

1/2n)) +Op(H
1/2/(mn)1/2).

Proof. For (a), recall for ∆Jt1 = m−1
∑m

i=1(Jt′m − Jt′i−1
) =

∑m
i=1(1− (i− 1)/m)∆Jt′i−1

. Then,

E [|∆Jt1 |] ≤
m∑
i=1

(1− (i− 1)/m)E[|∆Jt′i−1
|] ≤

m∑
i=1

(1− (i− 1)/m)
K

n
(1 +O(n−1)) ≤ O(m/n).

using the triangle inequality, ∀t ∈ [0, 1] E[Nt] <∞, and ∀s = 1, . . . , Nt E[|ds|] <∞. This implies that

|∆Jt1 | ≤ Op(m/n), and the analogous result for ∆Jtn follows by symmetry. Next, the results in (b),

(c), and (d) follow using arguments that are almost identical to those provided for Lemma C.3 above,

noting that for i ∈ S(1,0), it follows that V[∆Jti ] = V[∆Nti ]V[∆dti ] = O(n−1).

Finally, Lemmas C.9 and C.10 below provide first and second-order approximations, respectively,

to establish consistency results for the (medium) blocked realized kernels.

Lemma C.9. (First-order Approximation) Under the conditions of Theorem 3, then

(a) |
∑nL

i=1

∫ τi
τi−1

(τi − t)dσ2
t | ≤ Op(n−β).

(b) |
∑nL

i=1(σ2
τi − σ

2
τi−1

)∆τ | ≤ Op(n−β).
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(c) For y = p and some fixed j ∈ N+,
∣∣∑nL

i=1+j

(
RKT

i (p)−RKT
i−j(p)

)∣∣ ≤ Op(n−β) + op(n
−1/4).

Proof. First, for (a), define T1 =
∑nL

i=1

∫ τi
τi−1

(τi − t)dσ2
t . Then, as

[T1, T1] =

nL∑
i=1

∫ τi

τi−1

(τi − t)2d[σ2, σ2]t(1 + op(1)) =
∆τ2

3

nL∑
i=1

([σ2, σ2]τi − [σ2, σ2]τi−1)(1 + op(1))

=
∆τ2

3

∫ 1

0
d[σ2, σ2]t(1 + op(1)) = Op(n

−2β),

the result follows by the Burkholder-Davis-Gundy (BDG) inequality.

Next, for (b), let T2 =
∑nL

i=1(σ2
τi − σ

2
τi−1

)∆τ . Then, as for (a),

[T2, T2] = ∆τ2
nL∑
i=1

d[σ2, σ2]τi(1 + op(1)) = Op(n
−2β),

which, using again the BDG inequality, provides the result.

Lastly, for (c), use Lemma B.7 to write (up to an op(1) error),

nL∑
i=1+j

(
RKT

i (p)−RKT
i−j(p)

)
=

nL∑
i=1+j

(∫ τi

τi−1

σ2
t dt−

∫ τi−j

τi−j−1

σ2
t dt+ ∆M̃τi −∆M̃τi−j

)
.

Then, it readily follows by Itô’s lemma in conjunction with (a) and (b) that

∣∣∣ nL∑
i=1+j

(∫ τi

τi−1

σ2
t dt−

∫ τi−j

τi−j−1

σ2
t dt
)∣∣∣ ≤ Op(n−β).

Finally, since n1/4|
∑nL

i=1+j ∆M̃τi −
∑nL

i=1+j ∆M̃τi−j | ≤ op(1) follows by the same arguments used to

establish equation (B.13), this concludes the proof.

Lemma C.10. (Second-order Approximation) Under the conditions of Theorem 3, then for the case

without jumps y = p and j − j1 ∈ [1, . . . , B − 1], it holds that

1

∆τ

nL∑
i=B

σ−2
τi−B

(
RKT

i−j1(p)−RKT
i−j(p)

)2 ≤ Op(n−1/2+β) +Op(n
−β).

Proof. Before proceeding, note that the initial steps of this proof follow the corresponding for Mykland,

Shephard & Sheppard (2012, Theorem 10) closely. The later steps, however, differ, and, in fact,

simplify, since only the stochastic orders of the approximation errors are of interest for Theorem 3,

not the asymptotic central limit theory. First, write

RKT
i−j1(p)−RKT

i−j(p) =

∫ τi−j1

τi−j1−1

σ2
t dt+ ∆M̃τi−j1

−
∫ τi−j

τi−j−1

σ2
t dt−∆M̃τi−j
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=
[
σ2
τi−j1−1

− σ2
τi−j

]
∆τ + Lτi−j1 − L

−
τi−j , (C.2)

where Lτi−j1 and L−τi−j are defined as,

Lτi−j1 =

∫ τi−j1

τi−j1−1

(τi−j1 − t)dσ2
t + ∆M̃τi−j1

and L−τi−j =

∫ τi−j

τi−j−1

(t− τi−j−1)dσ2
t + ∆M̃τi−j ,

respectively. The second equality in (C.2) follows by Itô’s lemma. Note, however, that unlike the

setting of Mykland et al. (2012), the [σ2
τi−j1−1

− σ2
τi−j ]∆τ term does not cancel out. This implies that

the infinitesimal changes in the quadratic variation of Lτi−j1 for t ∈ (τi−j1−1, τi−j1 ] expand as

d[L,L]τi−j1 ,t = d[M̃, M̃ ]τi−j1 ,t + (τi−j1 − t)2d[σ2σ2]t + 2(τi−j1 − t)d[M̃, σ2]τi−j1 ,t,

whose cross-product term is seen to be of lower stochastic order by Lemma B.7. In particular, as the

latter shows that n1/4[M̃, σ2] = op(1), this implies
∣∣(τi−j1−t)d[M̃, σ2]τi−j1 ,t

∣∣ ≤ op(n−1/4−2β). A similar

decomposition applies to d[L−, L−]τi−j ,t.

Now, since there is no overlap between [σ2
τi−j1−1

− σ2
τi−j ] in (C.2) and the stochastic volatility

components of Lτi−j1 and L−τi−j , respectively, it follows that

(
RKT

i−j1(p)−RKT
i−j(p)

)2
= ∆τ2

(
[σ2, σ2]τi−j1−1 − [σ2, σ2]τi−j

)
+

(∫ τi−j1

τi−j1−1

(τi−j1 − t)2d[σ2, σ2]t +

∫ τi−j

τi−j−1

(t− τi−j−1)2d[σ2, σ2]t

)
+
(
d[M̃, M̃ ]τi−j1 + d[M̃, M̃ ]τi−j

)
+Ri,j1,j ,

as in Mykland et al. (2012), where |Ri,j1,j | = op(n
−1/4−2β) collects lower order approximation errors.

Next, for the first term in the decomposition, define k̃ = infi=1,...,nL σ
2
τi−B , then k̃ > 0, and

1

∆τ

nL∑
i=B

σ−2
τi−B∆τ2

(
[σ2, σ2]τi−j1−1 − [σ2, σ2]τi−j

)
≤ ∆τ

k̃

nL∑
i=B

j−j1−1∑
g=0

d[σ2, σ2]τi−j+g

≤ K∆τ

k̃

nL∑
i=B

d[σ2, σ2]τi−j1−1(1 + op(1)) = Op(n
−β),

since
∑nL

i=B d[σ2, σ2]τi−j1−1
P−→
∫ 1

0 d[σ2, σ2]t by Riemann integration, similarly to Lemma C.9 (b).

Now, for the second term,

1

∆τ

nL∑
i=B

σ−2
τi−B

∫ τi−j1

τi−j1−1

(τi−j1 − t)2d[σ2, σ2]t ≤
∆τ

3k̃

nL∑
i=B

d[σ2, σ2]τi−j1 (1 + op(1)) = Op(n
−β),

as above, and analogously for
∫ τi−j
τi−j−1

(t− τi−j−1)2d[σ2, σ2]t. This is similar to Lemma C.9 (a).
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Finally, for the third term,

1

∆τ

nL∑
i=B

σ−2
τi−B

(
d[M̃, M̃ ]τi−j1 + d[M̃, M̃ ]τi−j

)
≤ 1

k̃

n−1/2

∆τ

nL∑
i=B

n1/2
(
d[M̃, M̃ ]τi−j1 + d[M̃, M̃ ]τi−j

)
=

2

k̃

n−1/2

∆τ
V(λ, a)(1 + op(1)) = Op(n

−1/2+β),

using Lemma B.7, thus establishing the approximation bounds.

Remark 6. Lemma C.10 generalizes the result in Mykland et al. (2012, Theorem 10) by providing

stochastic bounds for blocks that are allowed to be separated by j− j1 ∈ [1, . . . , B− 1] time increments,

thus nesting the j − j1 = 1 case. Note, however, that the proof of the former is highly similar to that

of the latter. In addition, Mykland et al. (2012) also provide central limit theory for the B = 2 case,

albeit with end-averaged blocking and with jumps assumed absent.

4 Asymptotic Results for the TSRK

This section establishes the central limit theory result stated for the TSRK in Section 3.4, including

the properties of the characteristic parameters for its implied jack-knife kernel window.

First, rewrite the generalized jack-knife kernel representation of the TSRK as a convex combination

of realized kernels

TSRK(p) = (1− τ2)−1
(
RK(p,H)− τ2RK(p,G)

)
,

whose asymptotic properties may, then, be deduced using Lemma 1, similarly to the corresponding

proof in Ikeda (2015, Section A.3.2). Hence, under the conditions for Lemma 1, the TSRK has a bias

B[TSRK(p)|H1] =
nH−2

1− τ2

(
H−q −G−q

)
λ(2)
q

∑
h∈Z
|h|qΩ(h) + op(1) = Op(nH

−2G−q),

as the remaining bias terms disappear. Next, define Z(H), En(H) and Vn(λ,H) as the asymptotic

distribution, end-point errors and variance, respectively, for RK(p,H) and let analogous definitions be

written with G in place of H for RK(p,G). Then, it readily follows that Op(τ
2En(G)) ≤ Op(En(H))

and, hence, both terms are asymptotically negligible when ξ ∈ (1/4, 1/2), as for Theorem 1(2). More-

over, since the mixed normal distribution is additive, Lemma C.1 (d) gives

ZT ≡ (1− τ2)−1
(
Z(H)− τ2Z(G)

) ds(H1)→ MN
(

0, lim
n→∞

VT ,n(λ)
)
,

whose variance

VT ,n(λ) =
(
Vn(λ,H) + τ4Vn(λ,G)− 2τ2 Cov[RK(p,H), RK(p,G)|H1]

)
/(1− τ2)2
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may be rewritten using addition and subtraction of τ4Vn(λ,H) and 2τ2Vn(λ,H) as

VT ,n(λ) = Vn(λ,H) +
τ4 (Vn(λ,G)− Vn(λ,H)) + 2τ2 (Vn(λ,H)− Cov[RK(p,H), RK(p,G)|H1])

(1− τ2)2

≡ Vn(λ,H) + VR,n(λ).

Next, the first term in VR,n(λ) may readily be expanded as

Vn(λ,G)− Vn(λ,H) = (τ − 1)× 4Hn−1λ(00)

∫ 1

0
σ4
t dt+ (1/τ3 − 1)× 4nH−3λ(22)

∫ 1

0
Ω2
tdt

+ (1/τ − 1)× 8H−1λ(11)

∫ 1

0

(
Ωtσ

2
t + 2

(
Ω

(ep)
t

)2
)
.

Moreover, by defining λ(jj)(τ) ≡
∫∞

0 λ(j)(x)λ(j)(x/τ)dx for j = 0, 1, 2 and rewriting RK(p,G) =

RK(p,H/τ), it immediately follows by the same derivations as for Lemma 1 and Theorem 1 that the

second term of the residual asymptotic variance, VR,n(λ), may be expanded as

Vn(λ,H)− Cov[RK(p,H), RK(p,G)|H1] =
(
λ(00) − λ(00)(τ)

)
× 4Hn−1

∫ 1

0
σ4
t dt

+
(
λ(22) − λ(22)(τ)

)
× 4nH−3

∫ 1

0
Ω2
tdt

+
(
λ(11) − λ(11)(τ)

)
× 8H−1

∫ 1

0

(
Ωtσ

2
t + 2

(
Ω

(ep)
t

)2
)
.

This suggests to make the decomposition VR,n(λ) = VR,n,1(λ) + VR,n,2(λ) + VR,n,3(λ), where

VR,n,1(λ) =
τ4(τ − 1)λ(00) + 2τ2

(
λ(00) − λ(00)(τ)

)
(1− τ2)2

× 4Hn−1

∫ 1

0
σ4
t dt,

VR,n,2(λ) =
τ4(1/τ3 − 1)λ(22) + 2τ2

(
λ(22) − λ(22)(τ)

)
(1− τ2)2

× 4nH−3

∫ 1

0
Ω2
tdt,

VR,n,3(λ) =
τ4(1/τ − 1)λ(11) + 2τ2

(
λ(11) − λ(11)(τ)

)
(1− τ2)2

× 8H−1

∫ 1

0

(
Ωtσ

2
t + 2

(
Ω

(ep)
t

)2
)
.

Hence, VR,n(λ) has the same decomposition as Vn(λ,H), which shows that the asymptotic variance

VT ,n(λ) has the conjectured form V(Φ, a) where Φ(jj)(τ) = λ(jj) + fj(τ) j = 0, 1, 2 with the fj(τ)

functions corresponding the highlighted scales in VR,n,1(λ), VR,n,3(λ) and VR,n,2(λ) for j = 0, 1, 2,

respectively. However, it remains to be shown that fj(τ) ∈ R+ for all j = 0, 1, 2 as well as fj(τ) = O(τ2)

for j = 0, 1 and f2(τ) = O(τ). The asymptotic orders readily follow since λ(jj) and λ(jj)(τ) are

bounded for all j = 0, 1, 2, ensuring that the dominant components in the scales of VR,n,1(λ), VR,n,2(λ)

and VR,n,3(λ) are of orders O(τ2), O(τ) and O(τ2), respectively. It is more elaborate to show that

fj(τ) ∈ R+ for j = 0, 1, 2. First, consider the case j = 0, for which showing f0(τ) ∈ R+ amounts to
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proving that

τ4(τ − 1)λ(00) + 2τ2
(
λ(00) − λ(00)(τ)

)
> 0. (D.3)

Now, by a change of variables y = x/τ along with addition and subtraction, write∫ ∞
0

λ(j)(x)λ(j)(x/τ)dx = τ

∫ ∞
0

λ(j)(y)λ(j)(τy)dy = τλ(jj) − τ
∫ ∞

0
λ(j)(y)

(
λ(j)(y)− λ(j)(τy)

)
dy,

which may be inserted into (D.3) and rewritten as

τ4(τ − 1)λ(00) + τ2
(
λ(00) − λ(00)(τ)

)
= τ2λ(00) + τ2λ(00)(1− τ − τ2 + τ3)

+ τ3

∫ ∞
0

λ(0)(y)
(
λ(0)(y)− λ(0)(τy)

)
dy.

Since τ ∈ (0, 1) for all finite n, the polynomial (1− τ − τ2 + τ3) > 0. For the last term,∫ ∞
0

λ(0)(y)
(
λ(0)(y)− λ(0)(τy)

)
dy = λ(00) −

∫ ∞
0

λ(0)(y)λ(0)(τy)dy (D.4)

≥ λ(00) −
∣∣∫ ∞

0
λ(0)(y)λ(0)(τy)dy

∣∣ ≥ λ(00) −
√
λ(00) × λ(00) = 0

by the Cauchy-Schwarz inequality. This gives (D.3). The arguments to show that fj(τ) ∈ R+ for

j = 1, 2 are similar since it suffices to prove λ(jj) − λ(jj)(τ) ≥ 0. As the latter follows by the same

arguments given in (D.4), this shows that the asymptotic variance for the TSRK, VT ,n(λ), has the

conjectured form V(Φ, a), concluding the proof.

5 Proofs of Asymptotic Results in the Main Text

This section provides proofs of Propositions 1-2, Lemmas 2-3, and Theorem A.1.

5.1 Proof of Proposition 1

(1) follows as B[TSRK(p)|H1] = Op
(
n−1/2q

)
and B[RK∗(p)|H1] ≤ Op

(
n−1/2(1−γ)(1+r)

)
where the

asymptotic order of the latter is strictly smaller when q < (1 − γ)(1 + r) or, equivalently, when

γ < (1 + r − q)/(1 + r). (2) is trivial as limn→∞Φ(jj)(τ) > λ(jj) for j = 0, 1, 2.

5.2 Proof of Proposition 2

First, (1) follows by considering

B[RK∗(p)|H1] ≤ Op
(
n−1/2(1−(1/2+q)/(3/2+q))(1+r)

)
and B[TSRK(p)|H1] = Op

(
n−q/(2q+1)

)
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The asymptotic order of the former is, then, strictly smaller than that of the latter, which may be

seen by algebraic manipulation of the powers to show q/(1 + r) < (2q+ 1)/(2q+ 3) as q/(1 + r) ≤ 1/2

and (2q + 1)/(2q + 3) ∈ [3/5, 1). Next, to show (2), write the respective variances

n1/2V[RK∗(p)|H1] = V(λ, a) + 4ac

∫ 1

0
σ4
t dt+ op(1)

and

n1/2V[TSRK(p)|H1] = V(λ, a) + f0(τ)4a

∫ 1

0
σ4
t dt+ f2(τ)4a−3

∫ 1

0
Ω2
tdt

+ f1(τ)8a−1

∫ 1

0

(
Ωtσ

2
t + 2

(
Ω

(ep)
t

)2
)
dt+ op(1)

such that the ratio V[RK∗(p)|H1]/V[TSRK(p)|H1] = vn(q, ψ2, ρ) may be defined as

vn(q, ψ2, ρ) =
V(λ, a)(4a

∫ 1
0 σ

4
t dt)

−1 + c+ op(1)

V(λ, a)(4a
∫ 1

0 σ
4
t dt)

−1 + [f0(τ) + f2(τ)a−4ψ41 + f1(τ)2a−2ψ2ρ(2 + 23)]
.

Since fj(τ) ∈ R+ for j = 0, 1, 2, vn(q, ψ2, ρ) decreases in both ψ2 and ρ. Finally, it follows that

plimn→∞ vn(q, ψ2, ρ) = 1 since c = o(1) and τ = o(1) such that fj(τ) = o(1) for all j = 0, 1, 2.

5.3 Proof of Lemma 2

First, convergence in law of Ūti follows using Yang (2007, Theorem 3.1) as

M1/2Ūti
d−→ N(0, ψ1Ω), 0 ≤ i ≤ n−M.

This is immediately seen by writing Ūti = −
∑M

j=1 ∆g
(
j+1
M

)
Uti+j and using the arguments from

the proof of Lemma C.5 (b). In this case, the blocks Ūti become asymptotically serially dependent.

However, ∃$ ∈ (κ/(1 + ru), κ) such that Cov
(
Ūti , Ūtj

)
= op

(
M−1

)
for |i − j| = M + n$. To see

this, write M Cov
(
Ūti , Ūtj

)
≤ KMαu(n$)

P−→ 0 whenever $ > κ(1 + ru)−1 by applying Lemma C.4,

and where κ(1 + ru)−1 < κ trivially. Thus, the additional distance between blocks to make them

asymptotically independent, compared with the i.i.d. noise case, increases with n at a slower rate than

M , i.e., n$/M = o(1). This implies that the big block-small block technique, see Jacod, Podolskij &

Vetter (2010, p. 1494), may be used without asymptotic implications as the size of the asymptotically

dominant big blocks is strictly larger than M , the size of the smaller, asymptotically dominant blocks.

Using this in conjunction with Jacod et al. (2010, Theorem 3.3) gives the desired result.

Remark 7. Hautsch & Podolskij (2013) use a similar argument to establish a corresponding lemma

for modulated realized volatility when the MMS noise exhibits finite dependence.

27



5.4 Proof of Lemma 3

The proof is only provided for RKT (p) since the result for RKT (y) follows using the same arguments.

Let zT = RKT (p) − RK∗(p) = max(0,−RK∗(p)). Then, it suffices to show zT = op(n
−1/4). From

Theorem 1(2), RK∗(p) =
∫ 1

0 σ
2
t dt+ n−1/4Z + op(n

−1/4) where Z ds(U1)→ MN (0,V(λ, a)) and V(λ, a) =

limn→∞ n
1/2Vn(λ). Now, similarly to the argument for Ikeda (2015, Proposition 1), decompose

∣∣zT ∣∣ =
∣∣−RK∗(p)1{RK∗(p)≤0}

∣∣ = |RK∗(p)|1{RK∗(p)≤0}

and define η̄n = kn−ε ∈ (0, k] for ε ∈ (0, 1/8) such that η̄n ≤
∫ 1

0 σ
2
t dt. As |RK∗(p)| = Op(1) and

E
[
|1{RK∗(p)≤0}|

]
= P [RK∗(p) ≤ 0] ≤ P

[
n1/4

∣∣∣RK∗(p)− ∫ 1

0
σ2
t dt
∣∣∣ ≥ n1/4η̄n

]
≤ E

[
n1/2

(
RK∗(p)−

∫ 1

0
σ2
t dt
)2]

n−1/2η̄−2
n = Op(n

−1/2+2ε) = op(n
−1/4)

by Chebyshev’s inequality, implying 1{RK∗(p)≤0} ≤ op(n−1/4), this provides the final result.

5.5 Proof of Theorem A.1

First, similarly to proof for the TSRK in Section 4 above and the corresponding proofs in Ikeda (2015,

Sections A.3.1 and A.3.2), the asymptotic properties of the TSN(p) estimator are deduced using

Lemma 1. Specifically, under the conditions for Lemma 1, use the same notation as in Section 4 to

write the H1-conditional expectation of TSN(p) as

E[TSN(p)|H1] = (1− τ2)−1
(
|λ(2)(0)|nG−2

)−1
(Bn(G)− Bn(H) + op(1))

= Ω +
λ

(2)
q

|λ(2)(0)|
G−q

∑
h∈Z
|h|qΩ(h) + 2n−1/2

∑
h∈Z
|h|Ω(ee)(h),

which reduces to E[TSN(p)|H1] = Ω + Op(G
−q) + Op(n

−1/2) = Ω + Op(G
−q) + op(1) since the last

bias term will never affect the asymptotics. For the end-point terms, En(G) and En(H), the respective

conditions on the jittering rate ξ in Theorem 1 suffices for the TSN(p) estimator to eliminate end-

effects as well since multiplication of the scale s̄n = (1 − τ2)−1
(
|λ(2)(0)|nG−2

)−1
= O(G2/n) where

G = ng with g ∈ [1/(2q + 1), 1/2] ensures that the two terms are smaller than or equal to Op(En(H)).

Next, as the mixed normal distribution is additive, Lemma C.1 (d) gives

ZN ≡ s̄n (Zn(G)−Zn(H))
ds(H1)→ MN

(
0, lim
n→∞

VN ,n(λ)
)
.

where

VN ,n(λ) = Op
(
Gn−1

)
+Op

(
HG4n−3

)
+Op

(
G3n−2

)
,
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and for which the asymptotic orders follow by multiplying Vn(λ,G) and Vn(λ,H) with O(s̄2
n). Finally,

the moment and stable central limit theory results for PRV (p) are established using exactly the same

arguments as in the proof of Jacod, Li, Mykland, Podolskij & Vetter (2009, Theorem 3.1) and Podolskij

& Vetter (2009, Theorem 4) along with the Cauchy-Schwarz inequality to bound the cross-covariance

terms, CN ,n(λ). The justification for extending the results to an α-mixing-dependent exogenous MMS

noise is the same as for Hautsch & Podolskij (2013, Theorem 1) and in the proof of Lemma 2.

6 Results for the Proofs of Theorems 3 and 4

This section supplements the proofs of Theorems 3 and 4 in Section B.3 by providing the first and

second-order Taylor expansions, leading to equation (B.15). Moreover, it establishes that higher-

order Taylor expansion effects are, indeed, of lower stochastic order than the corresponding first and

second-order effects and may, thus, be disregarded.

6.1 Collection of Taylor Expansion Terms

Recall, the function h(xi, xi−1, . . . , xi−B+1) = xi − (xixi−1 . . . xi−B+1)1/B has h(z, z, . . . , z) = 0 along

with first and second derivatives, h
(1)
i (z, z, . . . , z) = 1−B−1, h

(1)
i−s(z, z, . . . , z) = −B−1 for s > 0, and

h
(2)
i−s,i−s(z, z, . . . , z) =

B − 1

B2

1

z
, h

(2)
i−s,i−g(z, z, . . . , z) =

−1

B2

1

z
, s 6= g.

where (s, g) ∈ [0, 1, . . . , B − 1]2. Then, for the first-order effect, denoted E1, from a Taylor expansion

of h(RKT
i (p), RKT

i−1(p), . . . , RKT
i−B+1(p)) around h(σ2

τi−B∆τ, σ2
τi−B∆τ, . . . , σ2

τi−B∆τ),

E1 = (1−B−1)
(
RKT

i (p)− σ2
τi−B∆τ

)
−B−1

B−1∑
j=1

(
RKT

i−j(p)− σ2
τi−B∆τ

)

=
1

B

B−1∑
j=1

(
RKT

i (p)−RKT
i−j(p)

)
.

For the second-order effect, denoted E2, it follows

2B2E2 =
(B − 1)

σ2
τi−B∆τ

(
RKT

i (p)− σ2
τi−B∆τ

)2
+

(B − 1)

σ2
τi−B∆τ

B−1∑
j=1

(
RKT

i−j(p)− σ2
τi−B∆τ

)2

− 2

σ2
τi−B∆τ

B−2∑
j1=0

B−1∑
j=1+j1

(
RKT

i−j1(p)− σ2
τi−B∆τ

)(
RKT

i−j(p)− σ2
τi−B∆τ

)

=
1

σ2
τi−B∆τ

B−1∑
j=1

(
RKT

i (p)−RKT
i−j(p)

)2
+

(B − 2)

σ2
τi−B∆τ

B−1∑
j=1

(
RKT

i−j(p)− σ2
τi−B∆τ

)2

29



− 2

σ2
τi−B∆τ

B−2∑
j1=1

B−1∑
j=1+j1

(
RKT

i−j1(p)− σ2
τi−B∆τ

) (
RKT

i−j(p)− σ2
τi−B∆τ

)
=

1

σ2
τi−B∆τ

B−2∑
j1=0

B−1∑
j=1+j1

(
RKT

i−j1(p)−RKT
i−j(p)

)2
where the last equality follows by repeated use of the same collection of terms as between the first and

second equality. This provides the representation in equation (B.15).

6.2 Higher-order Taylor Expansion Effect

The arguments for bounding higher-order Taylor expansion terms are similar to those provided in the

proof of Mykland et al. (2012, Theorem 10). For the third-order derivatives,

h
(3)
i−s,i−s,i−s(z, z . . . , z) = −B − 1

B2

(
1 +

B − 1

B

)
1

z2
, h

(3)
i−s,i−s,i−g(z, z . . . , z) =

B − 1

B2

1

B

1

z2
, s 6= q,

and h
(3)
i−s,i−g,i−v(z, z . . . , z) = − 1

B3

1

z2
, s 6= g 6= v,

for some v ∈ [0, 1 . . . , B − 1]. Hence, the uniform stochastic order of the third-order Taylor expansion

effect, E3, is proportional to that of the proxy variable Ẽ3 where

Ẽ3 =
1

∆τ2

nL∑
i=B

σ−4
τi−b

∣∣∣RK∗i−j(p)− σ2
τi−B∆τ

∣∣∣3 ≤ 1

∆τ2

1

k̃2

nL∑
i=B

∣∣∣RK∗i−j(p)− σ2
τi−B∆τ

∣∣∣3 , (F.5)

using, again, k̃ = infi=1,...,nL σ
2
τi−B , k̃ > 0. Then, by defining the term

L̃i−j = RK∗i−j(p)− σ2
τi−B∆τ = [σ2

τi−j − σ
2
τi−B ]∆τ + Lτi−j ,

where Lτi−j is defined as in the proof of Lemma C.10, it follows by applying the Burkholder-Davis-

Gundy (BDG) inequality, see, e.g., Protter (2004, p. 195), that

E
[
|L̃i−j |3

]
≤ KE

[
[L̃i−j , L̃i−j ]3/2

]
. (F.6)

Due to the similarity between L̃i−j and the corresponding terms in (C.2), it follows by nearly identical

derivations that the quadratic variation at time τi−j is bounded as [L̃i−j , L̃i−j ] ≤ Op(n
−1/2−β) +

Op(n
−3β).7 Then, using this result in conjunction with the inequalities (F.5) and (F.6), the uniform

stochastic order of the proxy variable Ẽ3 ≤ Op(n
−3/2(1/2−β)) + Op(n

−3/2β) is deduced. Hence, Ẽ3 =

op(n
−1/2+β) + op(n

−β) when β ∈ (0, 1/2), that is, the third-order Taylor expansion effect is of strictly

lower stochastic order than the corresponding second-order effect in Lemma C.10.

For the fourth-order Taylor expansion term, it readily follows that all fourth-order (cross) deriva-

7Notice, there is no summation nor scaling with ∆τ−1 = O(nβ). Hence, the terms are an order Op(n
−2β) lower.
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tives, evaluated at z, are of the form cs,g,v,uz
−3 for some constant cs,g,v,u. Hence, the uniform stochastic

order of the resulting fourth-order effect is, similarly to the third-order effect above, proportional to

that of a proxy variable Ẽ4, where

Ẽ4 =
1

∆τ3

nL∑
i=B

σ−6
τi−b

(
RK∗i−j(p)− σ2

τi−B∆τ
)4
≤ 1

∆τ3

1

k̃3

nL∑
i=B

(
RK∗i−j(p)− σ2

τi−B∆τ
)4
. (F.7)

Then, by the same arguments as above, the stochastic order Ẽ4 ≤ Op(n
−2(1/2−β)) + Op(n

−2β) is

deduced, implying that the fourth-order effect will not impact the asymptotic results. By the usual

stopping and truncation arguments for Taylor expansions, this proves that the higher-order Taylor

expansion effect in equation (B.15) is uniformly of strictly lower stochastic order than the first and

second-order effects, that is, |
∑nL

i=BRi,h| = op(n
−1/2+β) + op(n

−β), when β ∈ (0, 1/2).

7 Notes on Locally Stationary Processes

This section details how the endogenous MMS noise component, e, relates to the locally stationary

processes analyzed in Dahlhaus & Polonik (2009) and Dahlhaus (2009). Specifically, it explains how

to map assumptions, definitions, and three asymptotic results from said papers to the present setting.

7.1 Mapping Assumptions and Definitions

First, for direct comparability with Dahlhaus & Polonik (2009) and Dahlhaus (2009), this section

adopts their notation and subsequently explains how it differs from the notation used in the main

text. Hence, let Xt,n (t = 1, . . . , n) denote a locally stationary process, which has representation

Xt,n =

∞∑
j=−∞

at,n(j)εt−j ,

where at,n(j) models its time-varying parameters and εt its innovations, both are detailed below.

Moreover, for some κ > 0, let

`(j) = 1{|j|≤1} +
(
|j| log1+κ |j|

)
1{|j|>1},

and suppose there exists a sequence of functions a(·, j) : (0, 1]→ R. Then, Xt,n is assumed to satisfy

the following five regularity conditions:

L1: supt,n |at,n(j)| ≤ K/`(j);

L2: supu |a(u, j)| ≤ K/`(j);

L3: supj
∑n

t=1

∣∣at,n(j)− a(t/n, j)
∣∣ ≤ K;

L4: sup
{∑m

k=1 |a(xk, j)− a(xk−1, j)| : 0 ≤ x0 < · · · < xm ≤ 1, m ∈ N
}
≤ K/`(j);
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L5: εt is i.i.d. with E[εt] = 0 and E[ε2t ] = 1. In addition, all moments of εt are assumed to exist.

This representation and its associated regularity conditions have direct mappings to the endogenous

noise component and Assumption 3. Specifically, the parameter θ(t′i, g) corresponds to at,n(g), the

function θt(g) to a(t, g), and since (∆t′i−g)
−1/2∆W̃t′i−g

d
= N(0, 1) and i.i.d., this maps the innovations

of the endogenous noise to εt−g, noting that the former satisfy the regularity conditions in L.5. Instead

of defining a sequence `(j) and constructing various bounds using K/`(j), Assumption 3 defines

αe(g) = O(1)1{|g|≤1} +O
(
|g|−(1+re+ε)

)
1{|g|>1}, re ∈ N+,

to serve a similar purpose. The polynomial decay in αe(g) is slightly stronger than the corresponding

decay of 1/`(j). Not only is the former needed to establish the maximal inequalities in Lemma C.4,

the specification also facilitates direct comparability with the α-mixing rate for the exogenous MMS

noise component, αu(g), allowing the two noise components to be treated similarly. Moreover, the

conditions imposed in Assumptions 3(2)-3(5) are equivalent to conditions L1-L4, respectively. Finally,

Assumption 3 imposes a few additional conditions on the standard Brownian motion, ∆W̃t′i
such that

the latter facilitates correlations with increments of the efficient price process.

Remark 8. The use of locally stationary processes to describe dependence in the MMS noise maps

naturally into the asymptotic framework for high-frequency financial data. Dependence is defined in

tick time, here denoted by t = 1, . . . , n, yet inference is carried out using functions a(·, j) at rescaled

time points t/n ∈ [0, 1], that is, in its infill asymptotic limit.

Next, to ease the applications of Dahlhaus & Polonik (2009, Proposition 5.4) and Dahlhaus (2009,

Theorems 2.4 and 3.2) in the present analysis, write, in their notation, the time-varying spectral

density of Xt,n at the rescaled time point u as

f(u, λ) =
1

2π
|A(u, λ)|2, A(u, λ) =

∞∑
j=−∞

a(u, j) exp(−iλj),

and let the time-varying covariance at lag h be defined as

c(u, h) =

∫ π

−π
f(u, λ) exp(iλh)dλ =

∞∑
j=−∞

a(u, h+ j)a(u, j),

noting that c(u, h) is equivalent to writing Ω
(ee)
u (h) in Definition 1. Moreover, define the generalized

spectral measure as

F (φ) =

∫ 1

0

∫ π

−π
φ(u, λ)f(u, λ) dλ du,
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where φ(·) is a weight function to be discussed below, and write its empirical counterpart as

Fn(φ) =
1

n

n∑
t=1

∫ π

−π
φ(t/n, λ)Jn(t/n, λ) dλ

with Jn(t/n, λ) being defined as

Jn(t/n, λ) =
1

2π

∑
k:1≤[t+1/2±k/2]≤n

X[t+1/2+k/2],nX[t+1/2−k/2],n exp(−iλk),

which may be seen as a raw estimate of f(t/n, λ). In the present analysis, for the purpose of developing

asymptotic results for flat-top realized kernel estimators, these definitions simplify, since the weight

function is time-invariant. To see this, write φ(u, λ) = φ̃(λ), then Fn(φ) may be rewritten as

Fn(φ) =

∫ π

−π
φ̃(λ)

1

n

n∑
t=1

Jn(t/n, λ) dλ,

for which

1

n

n∑
t=1

Jn(t/n, λ) =
1

2πn

n∑
t=1

∑
k:1≤[t+1/2±k/2]≤n

X[t+1/2+k/2],nX[t+1/2−k/2],n exp(−iλk)

=
1

2πn

n∑
t=1

n∑
s=1

Xt,nXs,n exp(−iλ(t− s)) =
1

2πn

∣∣∣ n∑
t=1

xt,n exp(−iλt)
∣∣∣2,

which is the classical periodogram, In(λ,X), adopting the notation from the proof of Lemma B.2.

Hence, in this case, Fn(φ) is a standard spectral density estimator with spectral window φ̃(λ). More-

over, this estimator converges to

F (φ) =

∫ π

−π
φ̃(λ)

(∫ 1

0
f(u, λ) du

)
dλ,

that is, the integrated, or average, spectral density. In the present setting, this will correspond to the

average spectral density for the endogenous MMS noise component, thereby (1/2π times) its average

long run variance, Ω(ee), at frequency λ = 0. Specifically, applying the notation from the proof of

Lemma B.2, the direct impact of serial dependence in the endogenous noise component, e, on the

asymptotic distribution of the flat-top realized kernel estimators is

A(e) = sn

∫ π

−π
Kn(δ)In(δ, e) dδ, sn = 2πλ(2)(0)nH−2,

where Kn(δ) is the spectral window and sn is a deterministic scale, thus clearly illustrating its similarity

with the spectrum estimator, Fn(φ), for a locally stationary process.8 The endogenous noise also

8See also Priestley (1981, Section 6.2.3) for corresponding details on spectrum estimators for stationary processes.
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impacts the asymptotic distribution for flat-top realized kernels in Theorems 1 and 2 through other

channels, e.g., through correlations with increments of the efficient price process. However, these limits

are derived without relying on spectrum results from Dahlhaus (2009).

Remark 9. Whereas the current form of A(e) facilitates long-run variance estimation for the endoge-

nous noise, this may be generalized to other frequencies by modifying the spectral window, Kn(δ).

7.2 Application of Dahlhaus & Polonik (2009, Proposition 5.4)

The results in Dahlhaus & Polonik (2009, Proposition 5.4) are used to establish convergence of moments

for the endogenous MMS noise component in Lemma C.6, among others. Although stated with a data

taper on Dahlhaus & Polonik (2009, p. 19), they make a prior remark stating that the proposition for

ordinary covariances is recovered as the special case of no data tapering. Hence, the latter is dropped

here for notational convenience. Under conditions L1-L5, they show that

(i) supt |Cov[Xt,n, Xt+k,n]| ≤ K/`(k),

(ii) supu |c(u, k)| ≤ K/`(k),

(iii)
∑n

t=1 |Cov[Xt+k1,n, Xt−k2,n]− c(t/n, k1 + k2)| ≤ K (1 + min{|k1|, n}/`(k1 + k2))

(iv) sup
{∑m

j=1 |c(xj , k)− c(xj−1, k)| : 0 ≤ x0 < · · · < xm ≤ 1, m ∈ N
}
≤ K/`(k).

Since the endogenous noise assumption in the present setting satisfies conditions L1-L5, the corre-

sponding results may readily be translated into the notation used in the main text:

(i) supti
∣∣Cov[eti , eti+k ]

∣∣ ≤ αe(k),

(ii) supu |Ω
(ee)
u (k)| ≤ αe(k),

(iii)
∑n

i=1 |Cov[eti−h , eti+s ]− Ω
(ee)
ti

(h+ s)| ≤ K(1 + min{|h|, n}αe(h+ s))

(iv) sup
{∑m

j=1 |Ω
(ee)
xj (k)− Ω

(ee)
xj−1(k)| : 0 ≤ x0 < · · · < xm ≤ 1, m ∈ N

}
≤ αe(k).

Specifically, (ii) is used for Lemma C.4, and (iii) is used for Lemmas C.6 (a) and (c),

7.3 Application of Dahlhaus (2009, Theorems 2.4 and 3.2)

In order to state Dahlhaus (2009, Theorem 2.4), a few additional regularity conditions are imposed

on the weight function φ(u, λ). However, since φ(u, λ) = φ̃(λ) in the present setting, half of these

conditions are redundant as there is no variation of the weight function in the time direction. The

remaining two conditions are supλ |φ̃(λ)| <∞ and

sup
λ


m∑
j=1

|φ̃(λj)− φ̃(λj−1)| : −π ≤ λ0 < . . . , < λm ≤ π, m ∈ N

 <∞.
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For the asymptotic analysis in the proof of Lemma B.2, these conditions are imposed on Kn(δ), and

Lemmas C.2 (b) and (c) show that they are, indeed, satisfied. Finally, before stating and translating

Dahlhaus (2009, Theorem 2.4), write the empirical spectral process as

En(φ) =
√
n(Fn(φ)− F (φ))

and restrict attention to Gaussian innovations εt, since this applies to the endogenous noise component,

and it simplifies the expression for the asymptotic variance in the following central limit theorem by

fixing the fourth-order cumulant of εt to zero. Under the described conditions,

√
n(Fn(φ)− F (φ))

d→ N (0,Avar(Fn(φ)))

by Dahlhaus (2009, Theorem 2.4), where the asymptotic variance, Avar(Fn(φ)), may be written as

Avar(Fn(φ)) = 2π

∫ π

−π
φ̃(λ)

(
φ̃(λ) + φ̃(−λ)

)(∫ 1

0
f2(u, λ)du

)
dλ.

Hence, the use of this result in the present setting for A(e), together with standard arguments in the

spectrum estimation literature, cf. Priestley (1981, pp. 454-455), shows that

(H3n−1)1/2 (A(e)− E[A(e)])
d→ N (0,Avar(A(e))) ,

whose asymptotic variance may be written, using the notation from the proof of Lemma B.2, at

frequency δ = 0 as

Avar(A(e)) =
H3

n

4πs2
n

n

1

(2π)2

∫ 1

0
[Ω

(ee)
t ]2dt

∫ π

−π
[Kn(δ)]2dδ(1 + o(1)).

= 2

∫ 1

0
[Ω

(ee)
t ]2dt×

(
2π
(
λ(2)(0)

)2
H

∫ π

−π
[Kn(δ)]2dδ(1 + o(1))

)

= 2

∫ 1

0
[Ω

(ee)
t ]2dt×

 1

H

∑
h∈Zn−1

a

(
|h|
H

)2

(1 + o(1))

→ 4λ(22)

∫ 1

0
[Ω

(ee)
t ]2dt,

using Parseval’s theorem for the third equality, and Lemma C.2 (d) for the final convergence. Hence,

by appropriately transforming A(e), the discussion above shows that the present problem of calculating

the asymptotic distribution theory for the contribution of the endogenous noise on the flat-top realized

kernels in the proof of Lemma B.2 readily maps into the problem of spectrum estimation (at frequency

zero) for locally stationary processes, and that Dahlhaus (2009, Theorem 2.4) may be invoked.

Remark 10. The referenced Theorem 3.2 in Dahlhaus (2009) generalizes the described Theorem 2.4

to allow for data tapering and index functions φn(u, λ) that depend on n.
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