
Online Appendices to “Testing for a General Class of

Functional Inequalities”

Appendix A gives the proofs of Theorems 1-5, and Appendices B and C offer auxiliary

results for the proofs of Theorems 1-5. Appendix D contains the proof of Theorem AUC1.

In Appendix E, we discuss potential areas of applications of our test.

Appendix A. Proofs of Theorems 1-5

The roadmap of Appendix A is as follows. Appendix A begins with the proofs of Lemma

1 (the representation of θ̂) and Lemma 2 (the uniform convergence of v̂τ,j(x)). Then we

establish auxiliary results, Lemmas A1-A4, to prepare for the proofs of Theorems 1-3. The

brief descriptions of these auxiliary results are given below.

Lemma A1 establishes asymptotic representation of the location normalizers for the test

statistic both in the population and in the bootstrap distribution. The crucial implication

is that the difference between the population version and the bootstrap version is of order

oP (hd/2), P-uniformly. The result is in fact an immediate consequence of Lemma C12 in

Appendix C.

Lemma A2 establishes uniform asymptotic normality of the representation of θ̂ and its

bootstrap version. The asymptotic normality results use the method of Poissonization as in

Giné, Mason, and Zaitsev (2003) and Lee, Song, and Whang (2013). However, in contrast

to the preceding research, the results established here are much more general, and hold

uniformly over a wide class of probabilities. The lemma relies on Lemmas B7-B9 in Appendix

B and their bootstrap versions in Lemmas C7-C9 in Appendix C. These results are employed

to obtain the uniform asymptotic normality of the representation of θ̂ in Lemma A2.

Lemma A3 establishes that the estimated contact sets B̂A(ĉn) are covered by its enlarged

population version, and covers its shrunk population version with probability approaching

one uniformly over P ∈ P . In fact, this is an immediate consequence of the uniform conver-

gence results for v̂τ,j(x) and σ̂τ,j(x) in Assumptions 3 and 5. Lemma A3 is used later, when

we replace the estimated contact sets by their appropriate population versions, eliminating

the nuisance to deal with the estimation errors in B̂A(ĉn).

Lemma A4 presents the approximation result of the critical values for the original and

bootstrap test statistics in Lemma A2, by critical values from the standard normal distri-

bution uniformly over P ∈ P . Although we do not propose using the normal critical values,

the result is used as an intermediate step for justifying the use of the bootstrap method in

this paper. Obviously, Lemma A4 follows as a consequence of Lemma A2.

Equipped with Lemmas A1-A4, we proceed to prove Theorem 1. For this, we first use the

representation result of Lemma 1 for θ̂. In doing so, we use BA(cn,L, cn,U) as a population
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version of B̂A(ĉn). This is because

BA(cn,L, cn,U) ⊂ B̂A(ĉn)

with probability approaching one by Lemma A3, and thus, makes the bootstrap test statistic

θ̂∗ dominate the one that involves BA(cn,L, cn,U) in place of B̂A(ĉn). The distribution of the

latter bootstrap version with BA(cn,L, cn,U) is asymptotically equivalent to the representation

of θ̂ with BA(cn,L, cn,U) after location-scale normalization, as long as the limiting distribution

is nondegenerate. When the limiting distribution is degenerate, we use the second component

hd/2η+â∗ in the definition of c∗α,η to ensure the asymptotic validity of the bootstrap procedure.

For both cases of degenerate and nondegenerate limiting distributions, Lemma A1 which

enables one to replace â∗ by an appropriate population version is crucial.

The proof of Theorem 2 that shows the asymptotic exactness of the bootstrap test modifies

the proof of Theorem 1 substantially. Instead of using the representation result of Lemma

1 for θ̂ with Bn,A(cn,L, cn,U), we now use the same version but with Bn,A(cn,U , cn,L). This

is because for asymptotic exactness, we need to approximate the original and bootstrap

quantities by versions using Bn,A(qn) for small qn, and to do this, we need to control the

remainder term in the bootstrap statistic with the integral domain B̂A(ĉn)\Bn,A(qn). By our

choice of Bn,A(cn,U , cn,L) and by the fact that we have

B̂A(ĉn) ⊂ Bn,A(cn,U , cn,L),

with probability approaching one by Lemma A3, we can bound the remainder term with

a version with the integral domain Bn,A(cn,U , cn,L)\Bn,A(qn). Thus this remainder term

vanishes by the condition for λn and qn in the definition of Pn(λn, qn).

The rest of the proofs are devoted to proving the power properties of the bootstrap proce-

dure. Theorem 3 establishes consistency of the bootstrap test. Theorems 4 and 5 establish

local power functions under Pitman local drifts. The proofs of Theorems 4-5 are similar to

the proof of Theorem 2, as we need to establish the asymptotically exact form of the rejection

probability for the bootstrap test statistic. Nevertheless, we need to employ some delicate

arguments to deal with the Pitman local alternatives, and need to expand the rejection prob-

ability to obtain the final results. For this, we first establish Lemmas A5-A7. Essentially,

Lemma A5 is a version of the representation result of Lemma 1 under local alternatives.

Lemma A6 and Lemma A7 parallel Lemma A1 and Lemma 2 under local alternatives.

Let us begin by proving Lemma 1. First, recall the following definitions

(A.1) ŝτ (x) ≡
[
rn,j{v̂τ,j(x)− vn,τ,j(x)}

σ̂τ,j(x)

]
j∈NJ

and ŝ∗τ (x) ≡
[
rn,j{v̂∗τ,j(x)− v̂,τ,j(x)}

σ̂∗τ,j(x)

]
j∈NJ

.
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Also, define

(A.2) ûτ (x) ≡
[
rn,j v̂τ,j(x)

σ̂τ,j(x)

]
j∈NJ

and uτ (x; σ̂) ≡
[
rn,jvn,τ,j(x)

σ̂τ,j(x)

]
j∈NJ

.

Proof of Lemma 1. It suffices to show the following two statements:

Step 1: As n→∞,

inf
P∈P0

P

{∫
S\Bn(cn,1,cn,2)

Λp (ûτ (x)) dQ(x, τ) = 0

}
→ 1,

where we recall Bn(cn,1, cn,2) ≡ ∪A∈NJBn,A(cn,1, cn,2).

Step 2: For each A ∈ NJ , as n→∞,

inf
P∈P0

P

{∫
Bn,A(cn,1,cn,2)

{Λp (ûτ (x))− ΛA,p (ûτ (x))} dQ(x, τ) = 0

}
→ 1.

First, we prove Step 1. We write the integral in the probability as

(A.3)

∫
S\Bn(cn,1,cn,2)

Λp (̂sτ (x) + uτ (x; σ̂)) dQ(x, τ).

Let

An(x, τ) ≡
{
j ∈ NJ :

rn,jvn,τ,j(x)

σn,τ,j(x)
≥ −(cn,1 ∧ cn,2)

}
.

We first show that when (x, τ) ∈ S\Bn(cn,1, cn,2), we have An(x, τ) = ∅ under the null

hypothesis. Suppose that (x, τ) ∈ S\Bn(cn,1, cn,2) but to the contrary, An(x, τ) is nonempty.

By the definition of An(x, τ), we have (x, τ) ∈ Bn,An(x,τ)(cn,1, cn,2). However, since

S\Bn(cn,1, cn,2) = S ∩
(
∩A∈NJBc

n,A(cn,1, cn,2)
)
⊂ Bc

n,An(x,τ)(cn,1, cn,2),

this contradicts the fact that (x, τ) ∈ S\Bn(cn,1, cn,2). Hence whenever (x, τ) ∈ S\Bn(cn,1, cn,2),

we have An(x, τ) = ∅.

Note that

vn,τ,j(x)

σ̂τ,j(x)
=
vn,τ,j(x)

σn,τ,j(x)

{
1 +

σn,τ,j(x)− σ̂τ,j(x)

σ̂τ,j(x)

}
=
vn,τ,j(x)

σn,τ,j(x)
{1 + oP (1)} ,

where oP (1) is uniform over (x, τ) ∈ S and over P ∈ P by Assumption A5. Fix a small

ε > 0. We have for all j ∈ NJ ,

inf
P∈P0

P

{
rn,jvn,τ,j(x)

σ̂τ,j(x)
< −cn,1 ∧ cn,2

1 + ε
for all (x, τ) ∈ S\Bn(cn,1, cn,2)

}
≥ inf

P∈P0

P

{
rn,jvn,τ,j(x)

σn,τ,j(x)
< − cn,1 ∧ cn,2

(1 + ε) {1 + oP (1)}
for all (x, τ) ∈ S\Bn(cn,1, cn,2)

}
→ 1,

as n → ∞, where the last convergence follows because An(x, τ) = ∅ for all (x, τ) ∈
S\Bn(cn,1, cn,2). Therefore, with probability approaching one, the term in (A.3) is bounded
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by

(A.4)

∫
S\Bn(cn,1,cn,2)

Λp

(
ŝτ (x)−

(
cn,1 ∧ cn,2

1 + ε

)
1J

)
dQ(x, τ),

where 1J is a J-dimensional vector of ones. Using the definition of Λp(v), bound the above

integral by

(A.5) Jp/2

 J∑
j=1

[
rn,j sup

(x,τ)∈S

∣∣∣∣ v̂τ,j(x)− vn,τ,j(x)

σ̂τ,j(x)

∣∣∣∣− cn,1 ∧ cn,2
1 + ε

]2

+

p/2

.

Note that by Assumption A3,

rn,j sup
(x,τ)∈S

∣∣∣∣ v̂τ,j(x)− vn,τ,j(x)

σ̂τ,j(x)

∣∣∣∣ = OP

(√
log n

)
.

Fix any arbitrarily large M > 0 and denote by En the event that

rn,j sup
(x,τ)∈S

∣∣∣∣ v̂τ,j(x)− vn,τ,j(x)

σ̂τ,j(x)

∣∣∣∣ ≤M
√

log n.

The term (A.5), when restricted to this event En, is bounded by

Jp/2

(
J∑
j=1

[
M
√

log n− cn,1 ∧ cn,2
1 + ε

]2

+

)p/2

which becomes zero from some large n on, given that (cn,1 ∧ cn,2)/
√

log n → ∞. Since

supP∈P0PE
c
n → 0 as n → ∞ and then M → ∞ by Assumption A3, we obtain the desired

result of Step 1.

As for Step 2, we have for any small ε > 0, and for all j ∈ NJ\A,

P

{
rn,jvn,τ,j(x)

σ̂τ,j(x)
< −cn,1 ∧ cn,2

1 + ε
for all (x, τ) ∈ Bn,A(cn,1, cn,2)

}
(A.6)

≥ P

{
rn,jvn,τ,j(x)

σn,τ,j(x)
< − cn,1 ∧ cn,2

(1 + ε) {1 + oP (1)}
for all (x, τ) ∈ Bn,A(cn,1, cn,2)

}
→ 1,

similarly as before. Let s̄τ,A(x) be a J-dimensional vector whose j-th entry is rn,j v̂n,τ,j(x)/σ̂τ,j(x)

if j ∈ A, and rn,j{v̂n,τ,j(x) − vn,τ,j(x)}/σ̂τ,j(x) if j ∈ NJ\A. Since by Assumption A5, we

have

inf
P∈P0

P {uτ (x; σ̂) ≤ 0 for all (x, τ) ∈ S} → 1,
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as n→∞, using either definition of Λp(v) in (3.1), we find that with probability approaching

one (uniformly over P ∈ P0),∫
Bn,A(cn,1,cn,2)

ΛA,p (ûτ (x)) dQ(x, τ)(A.7)

≤
∫
Bn,A(cn,1,cn,2)

Λp (ûτ (x)) dQ(x, τ)

≤
∫
Bn,A(cn,1,cn,2)

Λp

(
s̄τ,A(x)− cn,1 ∧ cn,2

1 + ε
1−A

)
dQ(x, τ),

where 1−A is the J-dimensional vector whose j-th entry is zero if j ∈ A and one if j ∈ NJ\A,

and the last inequality holds with probability approaching one by (A.6). Note that by

Assumption A3 and by the assumption that
√

log n{c−1
n,1 + c−1

n,2} → ∞, we deduce that for

any j ∈ NJ ,

inf
P∈P0

P

{
rn,j sup

(x,τ)∈S

∣∣∣∣ v̂τ,j(x)− vn,τ,j(x)

σ̂τ,j(x)

∣∣∣∣ ≤ cn,1 ∧ cn,2
1 + ε

}
→ 1,

as n→∞. Hence, as n→∞,

inf
P∈P0

P

{ ∫
Bn,A(cn,1,cn,2)

Λp (̄sτ,A(x)− ((cn,1 ∧ cn,2)/(1 + ε))1−A) dQ(x, τ)

=
∫
Bn,A(cn,1,cn,2)

ΛA,p (̄sτ,A(x)) dQ(x, τ)

}
→ 1.

Since ∫
Bn,A(cn,1,cn,2)

ΛA,p (̄sτ,A(x)) dQ(x, τ) =

∫
Bn,A(cn,1,cn,2)

ΛA,p (ûτ (x)) dQ(x, τ),

we obtain the desired result from (A.7).

Now let us turn to the proof of Lemma 2 in Section 4.4.

Proof of Lemma 2. (i) Recall the definition bn,ij(x, τ) ≡ βn,x,τ,j (Yij, (Xi − x)/h)). Take

Mn,j ≡
√
nhd/

√
log n, and let

ban,ij(x, τ) ≡ bn,ij(x, τ)1n,ij and bbn,ij(x, τ) ≡ bn,ij(x, τ) (1− 1n,ij) ,

where 1n,ij ≡ 1{sup(x,τ)∈S |bn,ij(x, τ)| ≤Mn,j/2}. First, note that by Assumption A1,

rn,j
√
hd sup

(x,τ)∈S

∣∣∣∣ v̂τ,j(x)− vn,τ,j(x)

σ̂τ,j(x)

∣∣∣∣(A.8)

≤ sup
(x,τ)∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(
ban,ij(x, τ)− E

[
ban,ij(x, τ)

])∣∣∣∣∣
+ sup

(x,τ)∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(
bbn,ij(x, τ)− E

[
bbn,ij(x, τ)

])∣∣∣∣∣+ oP (1), P-uniformly.(A.9)
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We now prove part (i) by proving the following two steps.

Step 1:

sup
(x,τ)∈S

∣∣∣∣∣ 1√
nhd

n∑
i=1

(
bbn,ij(x, τ)− E

[
bbn,ij(x, τ)

])∣∣∣∣∣ = oP (
√

log n), P-uniformly.

Step 2:

sup
(x,τ)∈S

∣∣∣∣∣ 1√
nhd

n∑
i=1

(
ban,ij(x, τ)− E

[
ban,ij(x, τ)

])∣∣∣∣∣ = OP (
√

log n), P-uniformly.

Step 1 is carried out by some elementary moment calculations, whereas Step 2 is proved

using a maximal inequality of Massart (2007, Theorem 6.8).

Proof of Step 1: It is not hard to see that

E

[
sup

(x,τ)∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(
bbn,ij(x, τ)− E

[
bbn,ij(x, τ)

])∣∣∣∣∣
]

≤ 2
√
nE

[
sup

(x,τ)∈S
|bn,ij(x, τ)| (1− 1n,ij)

]

≤ C
√
n

(
Mn,j

2

)−3

E

[
sup

(x,τ)∈S
|bn,ij(x, τ)|4

]
≤ C1

√
n

(
Mn,j

2

)−3

,

for some C1 > 0, C > 0. The last bound follows by the uniform fourth moment bound for

bn,ij(x, τ) assumed in Lemma 2. Note that

√
n (Mn,j)

−3 = n−1h−3d/2 (log n)3/2 = o
(√

log nhd/2
)
,

by the condition that n−1/2h−d−ν → 0 for some small ν > 0.

Proof of Step 2: For each j ∈ NJ , let Fn,j ≡ {βan,x,τ,j(·, (· − x)/h)/Mn,j : (x, τ) ∈
S}, where βan,x,τ,j(Yij, (Xi − x)/h) ≡ ban,ij(x, τ). Note that the indicator function 1n,ij in

the definition of βan,x,τ,j does not depend on (x, τ) of βan,x,τ,j. Using (3.11) in Lemma 2

and following (part of) the arguments in the proof of Theorem 3 of Chen, Linton, and

Van Keilegom (2003), we find that there exist C1 > 0 and C2,j > 0 such that for all ε > 0,

N[] (ε,Fn,j, L2(P )) ≤ N

((
εMn,j

δn,j

)2/γj

,X × T , || · ||

)
≤ C1

(
εMn,j

δn,j
∧ 1

)−C2,j

,

where N[] (ε,Fn,j, L2(P )) denotes the ε-bracketing number of the class Fn,j with respect to

the L2(P )-norm and N (ε,X × T , || · ||) denotes the ε-covering number of the space X × T
with respect to the Euclidean norm || · ||. The last inequality follows by the assumption that

X and T are compact subsets of a Euclidean space. The class Fn,j is uniformly bounded by
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1/2.

Let {[βan,xk,τk,j(·, (·−xk)/h)/Mn,j−∆k(·, ·)/Mn,j, β
a
n,xk,τk,j

(·, (·−xk)/h)/Mn,j +∆k(·, ·)/Mn,j] :

k = 1, ..., Nn,j} constitutes ε-brackets, where ∆k(Yij, Xi) ≡ sup |βan,x,τ,j(Yij, (Xi − x)/h) −
βan,xk,τk,j(Yij, (Xi − xk)/h)| and the supremum is over (x, τ) ∈ S such that√

||x− xk||2 + ||τ − τk||2 ≤ C1(εMn,j/δn,j)
2/γj .

By the previous covering number bound, we can take Nn,j ≤ C1 ((εMn,j/δn,j) ∧ 1)−C2,j , and

E∆2
k(Yij, Xi)M

−2
n,j < ε2.

Note that for any k ≥ 2,

E
[
|ban,ij(x, τ)/Mn,j|k

]
≤ E

[
b2
n,ij(x, τ)

]
/M2

n,j ≤ CM−2
n,jh

d = C(log n)/n,

by the fact that |ban,ij(x, τ)/Mn,j| ≤ 1/2. Furthermore,

E
[
|∆k(Yij, Xi)/Mn,j|k

]
≤ E

[
∆2
k(Yij, Xi)/M

2
n,j

]
≤ ε2,

where the first inequality follows because |∆k(Yij, Xi)/Mn,j| ≤ 1. Therefore, by Theorem 6.8

of Massart (2007), we have (from sufficiently large n on)

E

[
sup

(x,τ)∈S

∣∣∣∣∣ 1

Mn,j

√
n

n∑
i=1

(
ban,ij(x, τ)− E

[
ban,ij(x, τ)

])∣∣∣∣∣
]

(A.10)

≤ C1

∫ C2h
d/2

Mn,j

0

{(
−C3 log

(
εMn,j

δn,j
∧ 1

))
∧ n
}1/2

dε− C4√
n

log

(√
log n√
n

)
,

where C1, C2, C3, and C4 are positive constants. (The inequality above follows because
√

log n/
√
n→

0 as n → ∞.) The leading integral has a domain restricted to [0, δn,j/Mn,j], so that it is

equal to

C1

∫ C2h
d/2

Mn,j
∧
δn,j
Mn,j

0

{(
−C3 log

(
εMn,j

δn,j

))
∧ n
}1/2

dε

=
C1δn,j
Mn,j

∫ C2h
d/2

δn,j
∧1

0

√
(−C3 log ε) ∧ ndε

= O

(
δn,j
Mn,j

(
hd/2

δn,j
∧ 1

)√
− log

(
hd/2

δn,j
∧ 1

))
.

After multiplying by Mn,j/h
d/2, the last term is of order

O

((
1 ∧ δn,j

hd/2

)√
− log

(
hd/2

δn,j
∧ 1

))
= O

(√
− log

(
hd/2

δn,j
∧ 1

))
= O(

√
log n),
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because δn,j = ns1,j and h = ns2 for some s1,j, s2 ∈ R.

Also, note that after multiplying by Mn,j/h
d/2 =

√
n/
√

log n, the last term in (A.10) (with

minus sign) becomes

− C4√
log n

log

(√
log n√
n

)
≤ C4

√
log n

2
− C4 log

√
log n√

log n
= O

(√
log n

)
,

where the inequality follows because
√

log n ≥ 1 for all n ≥ e ≡ exp(1). Collecting the

results for both the terms on the right hand side of (A.10), we obtain the desired result of

Step 2.

(ii) Define b∗n,ij(x, τ) ≡ βn,x,τ,j(Y
∗
ij , (X

∗
i − x)/h). By Assumptions B1 and B3, it suffices to

show that

sup
(x,τ)∈S

∣∣∣∣∣ 1√
nhd

n∑
i=1

(
b∗n,ij(x, τ)− E∗

[
b∗n,ij(x, τ)

])∣∣∣∣∣ = OP ∗(
√

log n), P-uniformly.

Using Le Cam’s Poissonization lemma in Giné and Zinn (1990) (Proposition 2.2 on p.855)

and following the arguments in the proof of Theorem 2.2 of Giné (1997), we deduce that

E

[
E∗

(
sup

(x,τ)∈S

∣∣∣∣∣ 1√
nhd

n∑
i=1

(
b∗n,ij(x, τ)− E∗

[
b∗n,ij(x, τ)

])∣∣∣∣∣
)]

≤ e

e− 1
E

[
sup

(x,τ)∈S

∣∣∣∣∣ 1√
nhd

n∑
i=1

(Ni − 1)

{
bn,ij(x, τ)− 1

n

n∑
k=1

bn,kj(x, τ)

}∣∣∣∣∣
]
,

where Ni’s are i.i.d. Poisson random variables with mean 1 and independent of {(Xi, Yi)}ni=1.

The last expectation is bounded by

E

[
sup

(x,τ)∈S

∣∣∣∣∣ 1√
nhd

n∑
i=1

{(Ni − 1) bn,ij(x, τ)− E [(Ni − 1) bn,ij(x, τ)]}

∣∣∣∣∣
]

+E

[
sup

(x,τ)∈S

∣∣∣∣∣ 1n
n∑
i=1

(Ni − 1)

∣∣∣∣∣
∣∣∣∣∣ 1√
nhd

n∑
k=1

(bn,kj(x, τ)− E [bn,kj(x, τ)])

∣∣∣∣∣
]
.

Using the same arguments as in the proof of (i), we find that the first expectation is

O
(√

log n
)

uniformly in P ∈ P . Using independence, we write the second expectation

as

E

[∣∣∣∣∣ 1n
n∑
i=1

(Ni − 1)

∣∣∣∣∣
]
· E

[
sup

(x,τ)∈S

∣∣∣∣∣ 1√
nhd

n∑
k=1

(bn,kj(x, τ)− E [bn,kj(x, τ)])

∣∣∣∣∣
]

which, as shown in the proof of part (i), is O(
√

log n), uniformly in P ∈ P .
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For further proofs, we introduce new notation. Define for any positive sequences cn,1 and

cn,2, and any v ∈ RJ ,

(A.11) Λ̄x,τ (v) ≡
∑
A∈NJ

ΛA,p(v)1{(x, τ) ∈ Bn,A(cn,1, cn,2)}.

We let

aRn (cn,1, cn,2) ≡
∫
X×T

E
[
Λ̄x,τ (

√
nhdzN,τ (x))

]
dQ(x, τ), and(A.12)

aR∗n (cn,1, cn,2) ≡
∫
X×T

E∗
[
Λ̄x,τ (

√
nhdz∗N,τ (x))

]
dQ(x, τ),

where zN,τ (x) and z∗N,τ (x) are random vectors whose j-th entry is respectively given by

zN,τ,j(x) ≡ 1

nhd

N∑
i=1

(
βn,x,τ,j

(
Yij,

Xi − x
h

)
− E

[
βn,x,τ,j

(
Yij,

Xi − x
h

)])
and

z∗N,τ,j(x) ≡ 1

nhd

N∑
i=1

(
βn,x,τ,j

(
Y ∗ij ,

X∗i − x
h

)
− E∗

[
βn,x,τ,j

(
Y ∗ij ,

X∗i − x
h

)])
,

and N is a Poisson random variable with mean n and independent of {Yi, Xi}∞i=1. We also

define

an(cn,1, cn,2) ≡
∫

E
[
Λ̄x,τ (W(1)

n,τ,τ (x, 0))
]
dQ(x, τ).

(See Section 6.3 for the definition of W(1)
n,τ,τ (x, u).)

Lemma A1. Suppose that Assumptions A6(i) and B4 hold and let cn,1 and cn,2 be any

nonnegative sequences. Then∣∣aRn (cn,1, cn,2)− an(cn,1, cn,2)
∣∣ = o(hd/2), uniformly in P ∈ P, and∣∣aR∗n (cn,1, cn,2)− an(cn,1, cn,2)
∣∣ = oP (hd/2), P-uniformly.

Proof of Lemma A1. The proof is essentially the same as the proof of Lemma C12 in Ap-

pendix C.

For any given nonnegative sequences cn,1, cn,2, we define

(A.13) σ2
n(cn,1, cn,2) ≡

∫
T

∫
T

∫
X
C̄τ1,τ2(x)dxdτ1dτ2,

where

C̄τ1,τ2(x) ≡
∫
U
Cov

(
Λ̄n,x,τ1(W(1)

n,τ1,τ2
(x, u)), Λ̄n,x,τ2(W(2)

n,τ1,τ2
(x, u))

)
du.

Let

(A.14) θ̄n(cn,1, cn,2) ≡
∫

Λ̄x,τ (̂sτ (x)) dQ(x, τ),
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and

(A.15) θ̄∗n(cn,1, cn,2) ≡
∫

Λ̄x,τ (̂s∗τ (x)) dQ(x, τ).

From here on, for any sequence of random quantities Zn and a random vector Z, we write

Zn
d→ N(0, 1), P0-uniformly,

if for each t > 0,

sup
P∈P0

|P {Zn ≤ t} − Φ(t)| = o(1).

And for any sequence of bootstrap quantities Z∗n and a random vector Z, we write

Z∗n
d∗→ N(0, 1), P0-uniformly,

if for each t > 0,

|P ∗ {Z∗n ≤ t} − Φ(t)| = oP ∗(1), P0-uniformly.

Lemma A2. (i) Suppose that Assumptions A1-A3, A4(i), and A5-A6 are satisfied. Then for

any sequences cn,1, cn,2 > 0 such that lim infn→∞ infP∈P0 σ
2
n(cn,1, cn,2) > 0 and

√
log n/cn,2 →

0, as n→∞,

h−d/2
(
θ̄n(cn,1, cn,2)− aRn (cn,1, cn,2)

σn(cn,1, cn,2)

)
d→ N(0, 1), P0-uniformly.

(ii) Suppose that Assumptions A1-A3, A4(i), A5-A6, B1 and B4 are satisfied. Then for any

sequences cn,1, cn,2 ≥ 0 such that lim infn→∞ infP∈P0 σ
2
n(cn,1, cn,2) > 0 and

√
log n/cn,2 → 0,

as n→∞,

h−d/2
(
θ̄∗n(cn,1, cn,2)− aR∗n (cn,1, cn,2)

σn(cn,1, cn,2)

)
d∗→ N(0, 1), P0-uniformly.

Proof of Lemma A2. (i) By Lemma 1, we have (with probability approaching one)

θ̄n(cn,1, cn,2) =
∑
A∈NJ

∫
Bn,A(cn,1,cn,2)

Λp(̂sτ (x))dQ(x, τ) =
∑
A∈NJ

∫
Bn,A(cn,1,cn,2)

ΛA,p(̂sτ (x))dQ(x, τ).

Note that aRn (cn,1, cn,2) =
∑

A∈NJ a
R
n,A(cn,1, cn,2), where

aRn,A(cn,1, cn,2) ≡
∫
Bn,A(cn,1,cn,2)

E
[
ΛA,p(

√
nhdzN,τ (x))

]
dQ(x, τ).

Using Assumption A1, we find that h−d/2{θ̄n(cn,1, cn,2)− aRn (cn,1, cn,2)} is equal to

h−d/2
∑
A∈NJ

{ζn,A(Bn,A(cn,1, cn,2))− EζN,A(Bn,A(cn,1, cn,2))}+ oP (1),
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where for any Borel set B ⊂ S,

ζn,A(B) ≡
∫
B

ΛA,p(
√
nhdzn,τ (x))dQ(x, τ),

ζN,A(B) ≡
∫
B

ΛA,p(
√
nhdzN,τ (x))dQ(x, τ),

and

zn,τ (x) ≡ 1

nhd

n∑
i=1

βn,x,τ (Yi, (Xi − x)/h)− 1

hd
E [βn,x,τ (Yi, (Xi − x)/h)] ,

with

βn,x,τ (Yi, (Xi − x)/h) = (βn,x,τ,1(Yi1, (Xi − x)/h), ..., βn,x,τ,J(YiJ , (Xi − x)/h))>.

We take 0 < ε̄l → 0 as l→∞ and take Cl ⊂ Rd such that

0 < P
{
Xi ∈ Rd\Cl

}
≤ ε̄l,

and Q((X\Cl)×T )→ 0 as l→∞. Such a sequence {ε̄l}∞l=1 exists by Assumption A6(ii) by

the condition that S is compact. We write

h−d/2
∑

A∈NJ{ζn,A(Bn,A(cn,1, cn,2))− EζN,A(Bn,A(cn,1, cn,2))}
σ2
n(cn,1, cn,2)

(A.16)

=
h−d/2

∑
A∈NJ{ζn,A(Bn,A(cn,1, cn,2) ∩ (Cl × T ))− EζN,A(Bn,A(cn,1, cn,2) ∩ (Cl × T ))}

σ2
n(cn,1, cn,2)

+
h−d/2

∑
A∈NJ{ζn,A(Bn,A(cn,1, cn,2)\(Cl × T ))− EζN,A(Bn,A(cn,1, cn,2)\(Cl × T ))}

σ2
n(cn,1, cn,2)

= A1n + A2n, say.

As for A2n, we apply Lemma B7 in Appendix B, and the condition that Q((X\Cl)×T )→ 0,

as l→∞, and

liminfn→∞infP∈P0σn(c1n, c2n) > 0,

to deduce that A2n = oP (1), as n → ∞ and then l → ∞. As for A1n, first observe that as

n→∞ and then l→∞,

(A.17)
∣∣σ2
n(cn,1, cn,2)− σ̄2

n,l(cn,1, cn,2)
∣∣→ 0,

where σ̄2
n,l(cn,1, cn,2) is equal to σ2

n(cn,1, cn,2) except that Bn,A(cn,1, cn,2)’s are replaced by

Bn,A(cn,1, cn,2) ∩ (Cl × T ). The convergence follows by Assumption 6(i). Also by Lemma

B9(i) and the convergence in (A.17) and the fact that

lim inf
n→∞

inf
P∈P0

σ2
n(cn,1, cn,2) > 0,
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we have

A1n
d→ N(0, 1), P0-uniformly,

as n→∞ and as l→∞. Hence we obtain (i).

(ii) The proof can be done in the same way as in the proof of (i), using Lemmas C7 and

C9(i) in Appendix C instead of Lemmas B7 and B9(i) in Appendix B.

Lemma A3. Suppose that Assumptions A1-A5 hold. Then for any sequences cn,L, cn,U > 0

satisfying Assumption A4(ii), and for each A ∈ NJ ,

inf
P∈P

P
{
Bn,A(cn,L, cn,U) ⊂ B̂A(ĉn) ⊂ Bn,A(cn,U , cn,L)

}
→ 1, as n→∞.

Proof of Lemma A3. By using Assumptions A3-A5, and following the proof of Theorem

2, Claim 1 in Linton, Song, and Whang (2010), we can complete the proof. Details are

omitted.

Define for cn,1, cn,2 > 0,

Tn(cn,1, cn,2) ≡ h−d/2
(
θ̄n(cn,1, cn,2)− an(cn,1, cn,2)

σn(cn,1, cn,2)

)
and

T ∗n(cn,1, cn,2) ≡ h−d/2
(
θ̄∗n(cn,1, cn,2)− an(cn,1, cn,2)

σn(cn,1, cn,2)

)
.

We introduce critical values for the finite sample distribution of θ̂ as follows:

γαn (cn,1, cn,2) ≡ inf {c ∈ R : P {Tn(cn,1, cn,2) ≤ c} > 1− α} .

Similarly, let us introduce bootstrap critical values:

(A.18) γα∗n (cn,1, cn,2) ≡ inf {c ∈ R : P ∗ {T ∗n(cn,1, cn,2) ≤ c} > 1− α} .

Finally, we introduce asymptotic critical values: γα∞ ≡ Φ−1(1 − α), where Φ denotes the

standard normal CDF.

Lemma A4. Suppose that Assumptions A1-A3, A4(i), and A5-A6 hold. Then the following

holds.

(i) For any cn,1, cn,2 →∞ such that

lim inf
n→∞

inf
P∈P

σ2
n(cn,1, cn,2) > 0,

it is satisfied that

sup
P∈P
|γαn (cn,1, cn,2)− γα∞| → 0, as n→∞.

(ii) Suppose further that Assumptions B1 and B4 hold. Then for any cn,1, cn,2 → ∞ such

that

lim inf
n→∞

inf
P∈P

σ2
n(cn,1, cn,2) > 0,
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it is satisfied that

sup
P∈P
|γα∗n (cn,1, cn,2)− γα∞| → 0, as n→∞.

Proof of Lemma A4. (i) The statement immediately follows from the first statement of Lemma

A2(i) and Lemma A1.

(ii) We show only the second statement. Fix a > 0. Let us introduce two events:

En,1 ≡ {γα∗n (cn,1, cn,2)− γα∞ < −a} and En,2 ≡ {γα∗n (cn,1, cn,2)− γα∞ > a} .

On the event En,1, we have

α = P ∗
{
h−d/2

(
θ̄∗n(cn,1, cn,2)− an(cn,1, cn,2)

σn(cn,1, cn,2)

)
> γα∗n (cn,1, cn,2)

}
≥ P ∗

{
h−d/2

(
θ̄∗n(cn,1, cn,2)− an(cn,1, cn,2)

σn(cn,1, cn,2)

)
> γα∞ − a

}
.

By Lemma A2(ii) and Lemma A1, the last probability is equal to

1− Φ (γα∞ − a) + oP (1) > α + oP (1),

where oP (1) is uniform over P ∈ P and the last strict inequality follows by the definition of

γα∞ and a > 0. Hence supP∈P PEn,1 → 0 as n→∞. Similarly, on the event En,2, we have

α = P ∗
{
h−d/2

(
θ̄∗n(cn,1, cn,2)− an(cn,1, cn,2)

σn(cn,1, cn,2)

)
> γα∗n (cn,1, cn,2)

}
≤ P ∗

{
h−d/2

(
θ̄∗n(cn,1, cn,2)− an(cn,1, cn,2)

σn(cn,1, cn,2)

)
> γα∞ + a

}
.

By the first statement of Lemma A2(ii) and Lemma A1, the last bootstrap probability is

bounded by

1− Φ (γα∞ + a) + oP (1) < α + oP (1),

so that we have supP∈P PEn,2 → 0 as n→∞. We conclude that

sup
P∈P

P {|γα∗n (cn,1, cn,2)− γα∞| > a} = sup
P∈P

(PEn,1 + PEn,2)→ 0,

as n→∞, obtaining the desired result.

Proof of Theorem 1. By Lemma 1, we have

inf
P∈P0

P

{
θ̂ =

∑
A∈NJ

∫
Bn,A(cn,L,cn,U )

ΛA,p (ûτ (x)) dQ(x, τ)

}
→ 1,

as n→∞. Since under the null hypothesis, we have vn,τ,j(·)/σ̂τ,j(·) ≤ 0 for all j ∈ NJ , with

probability approaching one by Assumption A5, we have with probability approaching one
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(uniformly over P ∈ P0),∑
A∈NJ

∫
Bn,A(cn,L,cn,U )

ΛA,p (ûτ (x)) dQ(x, τ)

≤
∑
A∈NJ

∫
Bn,A(cn,L,cn,U )

ΛA,p (̂sτ (x)) dQ(x, τ) ≡ θ̄n(cn,L, cn,U).

Thus, we have as n→∞,

(A.19) inf
P∈P0

P
{
θ̂ ≤ θ̄n(cn,L, cn,U)

}
→ 1.

Let the (1− α)-th percentile of the bootstrap distribution of

θ̄∗n(cn,L, cn,U) =
∑
A∈NJ

∫
Bn,A(cn,L,cn,U )

ΛA,p(̂s
∗
τ (x))dQ(x, τ)

be denoted by c̄α∗n,L. By Lemma A3 and Assumption A4(ii), with probability approaching

one,

(A.20)
∑
A∈NJ

∫
Bn,A(cn,L,cn,U )

ΛA,p (̂s∗τ (x)) dQ(x, τ) ≤
∑
A∈NJ

∫
B̂A(ĉn)

ΛA,p (̂s∗τ (x)) dQ(x, τ).

This implies that as n→∞,

(A.21) inf
P∈P

P
{
c∗α ≥ c̄α∗n,L

}
→ 1.

There exists a sequence of probabilities {Pn}n≥1 ⊂ P0 such that

limsup
n→∞

sup
P∈P0

P
{
θ̂ > c∗α,η

}
= limsup

n→∞
Pn

{
θ̂ > c∗α,η

}
(A.22)

= limn→∞Pwn

{
θ̂wn > c∗wn,α,η

}
,

where {wn} ⊂ {n} is a certain subsequence, and θ̂wn and c∗wn,α,η are the same as θ̂ and c∗α,η
except that the sample size n is now replaced by wn.

By Assumption A6(i), {σn(cn,L, cn,U)}n≥1 is a bounded sequence. Therefore, there exists

a subsequence {un}n≥1 ⊂ {wn}n≥1, such that σun(cun,L, cun,U) converges. We consider two

cases:

Case 1: limn→∞σun(cun,L, cun,U) > 0, and

Case 2: limn→∞σun(cun,L, cun,U) = 0.

In both cases, we will show below that

(A.23) limsup
n→∞

Pun{θ̂un > c∗un,α,η} ≤ α.

Since along {wn}, Pwn{θ̂wn > c∗wn,α,η} converges, it does so along any subsequence of {wn}.
Therefore, the above limsup is equal to the last limit in (A.22). This completes the proof.
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Proof of (A.23) in Case 1: We write Pun{θ̂un > c∗un,α,η} as

Pun

(
h−d/2

(
θ̂un − aun(cun,L, cun,U)

σun(cun,L, cun,U)

)
> h−d/2

(
c∗un,α,η − aun(cun,L, cun,U)

σun(cun,L, cun,U)

))

≤ Pun

(
h−d/2

(
θ̂un − aun(cun,L, cun,U)

σun(cun,L, cun,U)

)
> h−d/2

(
c̄α∗un,L − aun(cun,L, cun,U)

σun(cun,L, cun,U)

))
+ o(1),

where the inequality follows by the fact that c∗α,η ≥ c∗α ≥ c̄α∗n,L with probability approaching

one by (A.21). Using (A.19), we bound the last probability by

(A.24)

Pun

{
h−d/2

(
θ̄un(cun,L, cun,U)− aun(cun,L, cun,U)

σun(cun,L, cun,U)

)
> h−d/2

(
c̄α∗un,L − aun(cun,L, cun,U)

σun(cun,L, cun,U)

)}
+o(1).

Therefore, since limn→∞σun(cun,L, cun,U) > 0, by Lemmas A2 and A4, we rewrite the last

probability in (A.24) as

Pun

{
h−d/2

(
θ̄un(cun,L, cun,U)− aun(cun,L, cun,U)

σun(cun,L, cun,U)

)
> γα∗un(cun,L, cun,U)

}
+ o(1)

= Pun

{
h−d/2

(
θ̄un(cun,L, cun,U)− aun(cun,L, cun,U)

σun(cun,L, cun,U)

)
> γα∞

}
+ o(1) = α + o(1).

This completes the proof of Step 1.

Proof of (A.23) in Case 2: First, observe that

a∗un(cun,L, cun,U) ≤ a∗un(ĉun),

with probability approaching one by Lemma A3. Hence using this and (A.19),

Pun

{
θ̂un > c∗un,α,η

}
= Pun

{
h−d/2

(
θ̂un − aun(cun,L, cun,U)

)
> h−d/2

(
c∗un,α,η − aun(cun,L, cun,U)

)}
≤ Pun

{
h−d/2

(
θ̄un(cun,L, cun,U)− aun(cun,L, cun,U)

)
> h−d/2

(
hd/2η + a∗un(cun,L, cun,U)− aun(cun,L, cun,U)

) }+ o(1).

By Lemma A1, the leading probability is equal to

Pun
{
h−d/2

(
θ̄un(cun,L, cun,U)− aun(cun,L, cun,U)

)
> η + oP (1)

}
+ o(1).

Since η > 0 and limn→∞σun(cun,L, cun,U) = 0, the leading probability vanishes by Lemma

B9(ii).

Proof of Theorem 2. We focus on probabilities P ∈ Pn(λn, qn)∩P0. Recalling the definition

of un,τ (x; σ̂) ≡ [rn,jvn,τ,j(x)/σ̂τ,j(x)]j∈NJ and applying Lemma 1 along with the condition

that √
log n/cn,U <

√
log n/cn,L → 0,



A-16

as n→∞, we find that with probability approaching one,

θ̂ =
∑
A∈NJ

∫
Bn,A(cn,U ,cn,L)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ)

=
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ)

+
∑
A∈NJ

∫
Bn,A(cn,U ,cn,L)\Bn,A(qn)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ).

Since under P ∈ P0, un,τ (x; σ̂) ≤ 0 for all x ∈ S, with probability approaching one by

Assumption 5, the last term multiplied by h−d/2 is bounded by (from some large n on)

h−d/2
∑
A∈NJ

∫
Bn,A(cn,U ,cn,L)\Bn,A(qn)

ΛA,p (̂sτ (x)) dQ(x, τ)

≤ h−d/2
∑
A∈NJ

(
sup

(x,τ)∈S
||̂sτ (x)||

)p

Q (Bn,A(cn,U , cn,L)\Bn,A(qn))

= OP

(
h−d/2(log n)p/2λn

)
= oP (1),

where the second to last equality follows because Q (Bn,A(cn,U , cn,L)\Bn,A(qn)) ≤ λn by the

definition of Pn(λn, qn), and the last equality follows by (3.10).

On the other hand,

h−d/2
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ)

= h−d/2
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x)) dQ(x, τ)

+h−d/2
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ)

−h−d/2
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x)) dQ(x, τ).

From the definition of Λp in (3.1), the last difference (in absolute value) is bounded by

Ch−d/2
∑
A∈NJ

∫
Bn,A(qn)

‖[un,τ (x; σ̂)]A‖ ‖[̂sτ (x)]A‖p−1 dQ(x, τ)

+Ch−d/2
∑
A∈NJ

∫
Bn,A(qn)

‖[un,τ (x; σ̂)]A‖ ‖[un,τ (x; σ̂)]A‖p−1 dQ(x, τ),

where [a]A is a vector a with the j-th entry is set to zero for all j ∈ NJ\A and C > 0 is a

constant that does not depend on n ≥ 1 or P ∈ P . We have sup(x,τ)∈Bn,A(qn) ‖[un,τ (x; σ̂)]A‖ ≤
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qn(1 + oP (1)), by the null hypothesis and by Assumption A5. Also, by Assumptions A3 and

A5,

sup(x,τ)∈Bn,A(qn) ‖[̂sτ (x)]A‖ = OP

(√
log n

)
.

Therefore, we conclude that

h−d/2
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x) + un,τ (x; σ̂)) dQ(x, τ)

= h−d/2
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x)) dQ(x, τ) +OP

(
h−d/2qn{(log n)(p−1)/2 + qp−1

n }
)
.

The last OP (1) term is oP (1) by the condition for qn in (3.10). Thus we find that

(A.25) θ̂ = θ̄n(qn) + oP (hd/2),

where θ̄n(qn) =
∑

A∈NJ

∫
Bn,A(qn)

ΛA,p (̂sτ (x)) dQ(x, τ).

Now let us consider the bootstrap statistic. We write

θ̂∗ =
∑
A∈NJ

∫
B̂A(ĉn)

ΛA,p (̂s∗τ (x)) dQ(x, τ)

=
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂s∗τ (x)) dQ(x, τ) +
∑
A∈NJ

∫
B̂A(ĉn)\Bn,A(qn)

ΛA,p (̂s∗τ (x)) dQ(x, τ).

By Lemma A3, we find that

inf
P∈P

P
{
B̂n,A(ĉn) ⊂ Bn,A(cn,U , cn,L)

}
→ 1, as n→∞,

so that∑
A∈NJ

∫
B̂A(ĉn)\Bn,A(qn)

ΛA,p (̂s∗τ (x)) dQ(x, τ) ≤
∑
A∈NJ

∫
Bn,A(cn,U ,cn,L)\Bn,A(qn)

ΛA,p (̂s∗τ (x)) dQ(x, τ),

with probability approaching one. The last term multiplied by h−d/2 is bounded by

h−d/2

(
sup

(x,τ)∈S
||̂s∗τ (x)||

)p ∑
A∈NJ

Q (Bn,A(cn,U , cn,L)\Bn,A(qn))

= OP ∗
(
h−d/2(log n)p/2λn

)
= oP ∗(1), Pn(λn, qn)-uniformly,

where the second to last equality follows by Assumption B2 and the definition of Pn(λn, qn),

and the last equality follows by (3.10). Thus, we conclude that

(A.26)
h−d/2(θ̂∗ − an(qn))

σn(qn)
=
h−d/2

(
θ̄∗n(qn)− an(qn)

)
σn(qn)

+ oP ∗(1), Pn(λn, qn)-uniformly,



A-18

where

θ̄∗(qn) ≡
∑
A∈NJ

∫
Bn,A(qn)

ΛA,p (̂s∗τ (x)) dQ(x, τ).

Using the same arguments, we also observe that

(A.27) â∗ = â∗(qn) + oP (hd/2) = an(qn) + oP (hd/2),

where the last equality uses Lemma A1. Let the (1 − α)-th percentile of the bootstrap

distribution of θ̄∗(qn) be denoted by c̄α∗n (qn). Then by (A.26), we have

(A.28)
h−d/2 (c∗α − an(qn))

σn(qn)
=
h−d/2 (c̄α∗n (qn)− an(qn))

σn(qn)
+ oP ∗(1), Pn(λn, qn)-uniformly.

By Lemma A4(ii) and by the condition that σn(qn) ≥ η/Φ−1(1−α), the leading term on the

right hand side is equal to

Φ−1(1− α) + oP ∗(1), Pn(λn, qn)-uniformly.

Note that

(A.29) c∗α ≥ hd/2η + â∗n + oP (hd/2),

by the restriction σn(qn) ≥ η/Φ−1(1 − α) in the definition of Pn(λn, qn) and (A.27). Using

this, and following the proof of Step 1 in the proof of Theorem 2, we deduce that

P

{
h−d/2

(
θ̂ − an(qn)

σn(qn)

)
> h−d/2

(
c∗α,η − an(qn)

σn(qn)

)}

= P

{
h−d/2

(
θ̄n(qn)− an(qn)

σn(qn)

)
> h−d/2

(
c∗α − an(qn)

σn(qn)

)}
+ o(1)

= P

{
h−d/2

(
θ̄n(qn)− an(qn)

σn(qn)

)
> h−d/2

(
c̄α∗n (qn)− an(qn)

σn(qn)

)}
+ o(1),

where the first equality uses (A.25) and (A.29), and the second equality uses (A.28). Since

σn(qn) ≥ η/Φ−1(1−α) > 0 for all P ∈ Pn(λn, qn)∩P0 by definition, using the same arguments

in the proof of Lemma A4, we obtain that the last probability is equal to

α + o(1),

uniformly over P ∈ Pn(λn, qn) ∩ P0.
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Proof of Theorem 3. For any convex nonnegative map f on RJ , we have 2f(b/2) ≤ f(a +

b) + f(−a). Hence we find that

θ̂ =

∫
Λp (̂sτ (x) + uτ (x; σ̂)) dQ(x, τ)

≥ 1

2p−1

∫
Λp (uτ (x; σ̂)) dQ(x, τ)−

∫
Λp (−ŝτ (x)) dQ(x, τ).

From Assumption A3, the last term is OP ((log n)p/2). Using Assumption A3, we bound the

leading integral from below by

(A.30) min
j∈NJ

rpn,j

(∫
Λp (ṽn,τ (x)) dQ(x, τ)

{∫
Λp (vn,τ (x)) dQ(x, τ)∫
Λp (ṽn,τ (x)) dQ(x, τ)

− 1

}
+ oP (1)

)
,

where vn,τ (x) ≡ [vn,τ,j(x)/σn,τ,j(x)]j∈NJ and ṽn,τ (x) ≡ [vτ,j(x)/σn,τ,j(x)]j∈NJ . Since

liminfn→∞

∫
Λp (ṽn,τ (x)) dQ(x, τ) > 0,

we use Assumption C1 and apply the Dominated Convergence Theorem to write (A.30) as

min
j∈NJ

rpn,j

∫
Λp (ṽn,τ (x)) dQ(x, τ) (1 + oP (1)) .

Since minj∈NJ rn,j → ∞ as n → ∞ and liminfn→∞
∫

Λp (ṽn,τ (x)) dQ(x, τ) > 0, we have for

any Mn →∞ such that Mn/minj∈NJ rn,j → 0, and Mn/
√

log n→∞,

P

{
1

2p−1

∫
Λp (uτ (x; σ̂)) dQ(x, τ) > Mn

}
→ 1,

as n→∞. Also since
√

log n/minj∈NJ rn,j → 0 (Assumption A4(i)), Assumption A3 implies

that

P
{
θ̂ > Mn

}
→ 1.

Also, note that by Lemma A2(ii), h−d/2(c∗α − an)/σn = OP (1). Hence

c∗α = an +OP (hd/2) = OP (1).

Given that c∗α = OP (1) and â∗ = OP (1) by Lemma A1 and Assumption A6(i), we obtain

that P{θ̂ > c∗α,η} ≥ P{θ̂ > Mn}+ o(1)→ 1, as n→∞.

Lemma A5. Suppose that the conditions of Theorem 4 or Theorem 5 hold. Then as n→∞,
the following holds: for any cn,1, cn,2 > 0 such that√

log n/cn,2 → 0,
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as n→∞. Then

inf
P∈P0

n(λn)
P

{∫
S\B0

n(cn,1,cn,2)

Λp (ûτ (x)) dQ(x, τ) = 0

}
→ 1.

Furthermore, we have for any A ∈ NJ ,

inf
P∈P0

n(λn)
P

{∫
B0
n,A(cn,1,cn,2)

{Λp (ûτ (x))− ΛA,p (ûτ (x))} dQ(x, τ) = 0

}
→ 1.

Proof of Lemma A5. Consider the first statement. Let λ be either d/2 or d/4. We write∫
S\B0

n(cn,1,cn,2)

Λp (ûτ (x)) dQ(x, τ)

=

∫
S\B0

n(cn,1,cn,2)

Λp (̂sτ (x) + uτ (x; σ̂)) dQ(x, τ).

=

∫
S\B0

n(cn,1,cn,2)

Λp

(
ŝτ (x) + u0

τ (x; σ̂) + hλδτ,σ̂(x)
)
dQ(x, τ),

where u0
τ (x; σ̂) ≡ (rn,1v

0
n,τ,1(x)/σ̂τ,1(x), ..., rn,Jv

0
n,τ,J(x)/σ̂τ,J(x)) and

(A.31) δτ,σ̂(x) ≡
(
δτ,1(x)

σ̂τ,1(x)
, ...,

δτ,J(x)

σ̂τ,J(x)

)
.

Note that δτ,σ̂(x) is bounded with probability approaching one by Assumption A3. Also note

that for each j ∈ NJ ,

sup
(x,τ)∈S

∣∣∣∣rn,j{v̂n,τ,j(x)− v0
n,τ,j(x)}

σ̂τ,j(x)

∣∣∣∣ ≤ sup
(x,τ)∈S

∣∣∣∣rn,j{v̂n,τ,j(x)− vn,τ,j(x)}
σ̂τ,j(x)

∣∣∣∣+ hλ sup
(x,τ)∈S

∣∣∣∣ δτ,j(x)

σ̂τ,j(x)

∣∣∣∣
(A.32)

= OP

(√
log n+ hλ

)
= OP

(√
log n

)
,

by Assumption A3. Hence we obtain the desired result, using the same arguments as in the

proof of Lemma 1.

Given that we have (A.32), the proof of the second statement can proceed in the same

way as the proof of the first statement.

Recall the definitions of Λ̄x,τ (v) in (A.11). We define for v ∈ RJ , Λ̄0
x,τ (v) to be Λ̄x,τ (v)

except that Bn,A(cn,1, cn,2) is replaced by B0
n,A(cn,1, cn,2). Define for λ ∈ {0, d/4, d/2},

(A.33) θ̂δ(cn,1, cn,2;λ) ≡
∫

Λ̄0
x,τ

(
ŝτ (x) + hλδτ,σ(x)

)
dQ(x, τ).

Let

aRn,δ(cn,1, cn,2;λ) ≡
∫

E
[
Λ̄0
x,τ

(√
nhdzN,τ (x) + hλδτ,σ(x)

)]
dQ(x, τ),
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θ̂∗δ(cn,1, cn,2;λ) ≡
∫

Λ̄0
x,τ

(
ŝ∗τ (x) + hλδτ,σ(x)

)
dQ(x, τ),

and

(A.34) aR∗n,δ(cn,1, cn,2;λ) ≡
∫

E∗
[
Λ̄0
x,τ

(√
nhdz∗N,τ (x) + hλδτ,σ(x)

)]
dQ(x, τ).

We also define

an,δ(cn,1, cn,2;λ) ≡
∫

E
[
Λ̄0
x,τ (W(1)

n,τ,τ (x, 0) + hλδτ,σ(x))
]
dQ(x, τ).

When cn,1 = cn,2 = cn, we simply write aRn,δ(cn;λ), aR∗n,δ(cn;λ), and an,δ(cn;λ), instead of

writing aRn,δ(cn, cn;λ), aR∗n,δ(cn, cn;λ), and an,δ(cn, cn;λ).

Lemma A6. Suppose that the conditions of Assumptions A6(i) and B4 hold. Then for each

P ∈ P such that the local alternatives in (4.2) hold with bn,j = rn,jh
−λ, j = 1, ..., J , for some

λ ∈ {0, d/4, d/2}, and for all nonnegative sequences cn,1, cn,2,∣∣aRn,δ(cn,1, cn,2;λ)− an,δ(cn,1, cn,2;λ)
∣∣ = o(hd/2), and∣∣aR∗n,δ(cn,1, cn,2;λ)− an,δ(cn,1, cn,2;λ)
∣∣ = oP (hd/2).

Proof of Lemma A6. The result follows immediately from Lemma C12 in Appendix C.

Lemma A7. Suppose that the conditions of Theorem 4 are satisfied. Then for each λ ∈
{0, d/4, d/2}, for each P ∈ P0

n(λn) such that the local alternatives in (4.2) hold,

h−d/2

(
θ̄n,δ(cn,U , cn,L;λ)− aRn,δ(cn,U , cn,L;λ)

σn(cn,U , cn,L)

)
d→ N(0, 1) and

h−d/2

(
θ̄∗n,δ(cn,U , cn,L;λ)− aR∗n,δ(cn,U , cn,L;λ)

σn(cn,U , cn,L)

)
d∗→ N(0, 1), P0

n(λn)-uniformly.

Proof of Lemma A7. Note that by the definition of P0
n(λn), we have

lim inf
n→∞

inf
P∈P0

n(λn)
σ2
n(cn,U , cn,L) ≥ η

Φ−1(1− α)
.

Hence we can follow the proof of Lemma A2 to obtain the desired results.

Proof of Theorem 4. Using Lemma A5, we find that

θ̂ =
∑
A∈NJ

∫
B0
n,A(cn,U ,cn,L)

ΛA,p (̂sτ (x) + uτ (x; σ̂)) dQ(x, τ)

with probability approaching one. We write the leading sum as∑
A∈NJ

∫
B0
n,A(0)

ΛA,p (̂sτ (x) + uτ (x; σ̂)) dQ(x, τ) +Rn,
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where

Rn ≡
∑
A∈NJ

∫
B0
n,A(cn,U ,cn,L)\B0

n,A(0)

ΛA,p (̂sτ (x) + uτ (x; σ̂)) dQ(x, τ).

We write h−d/2Rn as

h−d/2
∑
A∈NJ

∫
B0
n,A(cn,U ,cn,L)\B0

n,A(0)

ΛA,p

(
ŝτ (x) + u0

τ (x; σ̂)

+hd/2δτ,σ̂(x)(1 + o(1))

)
dQ(x, τ)

≤ h−d/2
∑
A∈NJ

∫
B0
n,A(cn,U ,cn,L)\B0

n,A(0)

ΛA,p

(
ŝτ (x) + hd/2δτ,σ̂(x)(1 + o(1))

)
dQ(x, τ),

by Assumption C2. We bound the last sum as

Ch−d/2
∑
A∈NJ

(
sup

(x,τ)∈S
||̂sτ (x)||

)p

Q
(
B0
n,A(cn,U , cn,L)\B0

n,A(0)
)

= OP

(
h−d/2 (log n)p/2 λn

)
= oP (1)

using Assumption A3 and the rate condition in (3.10). We conclude that

h−d/2θ̂ = h−d/2
∑
A∈NJ

∫
B0
n,A(0)

ΛA,p (̂sτ (x) + uτ (x; σ̂)) dQ(x, τ) + oP (1)(A.35)

= h−d/2
∑
A∈NJ

∫
B0
n,A(0)

ΛA,p

(
ŝτ (x) + hd/2δτ,σ̂(x)

)
dQ(x, τ) + oP (1),

where the second equality follows by Assumption C2 and by the definition of B0
n,A(0).

Fix small κ > 0 and define

δLτ,σ,κ,j(x) ≡

{
δτ,j(x)

(1+κ)σn,τ,j(x)
if δτ,j(x) ≥ 0

δτ,j(x)

(1−κ)σn,τ,j(x)
if δτ,j(x) < 0

and

δUτ,σ,κ,j(x) ≡

{
δτ,j(x)

(1−κ)σn,τ,j(x)
if δτ,j(x) ≥ 0

δτ,j(x)

(1+κ)σn,τ,j(x)
if δτ,j(x) < 0

.

Define δLτ,σ,κ(x) and δUτ,σ,κ(x) to be RJ -valued maps whose j-th entries are given by δLτ,σ,κ,j(x)

and δUτ,σ,κ,j(x) respectively. By construction, Assumptions A3 and C2(ii), we have

P
{
δLτ,σ,κ(x) ≤ δτ,σ̂(x) ≤ δUτ,σ,κ(x)

}
→ 1,
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as n→∞. Therefore, with probability approaching one,

θ̂δ,L(0; d/2) ≡
∑
A∈NJ

∫
B0
n,A(0)

ΛA,p

(
ŝτ (x) + hd/2δLτ,σ,κ(x)

)
dQ(x, τ)(A.36)

≤
∑
A∈NJ

∫
B0
n,A(0)

ΛA,p

(
ŝτ (x) + hd/2δτ,σ̂(x)

)
dQ(x, τ)

≤
∑
A∈NJ

∫
B0
n,A(0)

ΛA,p

(
ŝτ (x) + hd/2δUτ,σ,κ(x)

)
dQ(x, τ) ≡ θ̂δ,U(0; d/2).

We conclude from (A.35) that

(A.37) θ̂δ,L(0; d/2) + oP (hd/2) ≤ θ̂ ≤ θ̂δ,U(0; d/2) + oP (hd/2).

As for the bootstrap counterpart, note that since δτ,j(x) is bounded and σn,τ,j(x) is bounded

away from zero uniformly over (x, τ) ∈ S and n ≥ 1, and hence

(A.38) sup
(x,τ)∈S

∣∣∣∣ 1

h−d/2
δτ,j(x)

σn,τ,j(x)

∣∣∣∣ ≤ Chd/2 → 0,

as n→∞. By (A.38), the difference between rn,jvn,τ,j(x)/σn,τ,j(x) and rn,jv
0
n,τ,j(x)/σn,τ,j(x)

vanishes uniformly over (x, τ) ∈ S. Therefore, combining this with Lemma A3, we find that

(A.39) P
{
B̂n(ĉn) ⊂ B0

n(cn,U , cn,L)
}
→ 1,

as n→∞.

Now with probability approaching one,

θ̂∗ =
∑
A∈NJ

∫
B̂A(ĉn)

ΛA,p (̂s∗τ (x)) dQ(x, τ)(A.40)

=
∑
A∈NJ

∫
B0
n,A(0)

ΛA,p (̂s∗τ (x)) dQ(x, τ)

+
∑
A∈NJ

∫
B̂A(ĉn)\B0

n,A(0)

ΛA,p (̂s∗τ (x)) dQ(x, τ).

As for the last sum, it is bounded by∑
A∈NJ

∫
B0
n,A(cn,U ,cn,L)\B0

n,A(0)

ΛA,p (̂s∗τ (x)) dQ(x, τ),
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with probability approaching one by (A.39). The above sum multiplied by h−d/2 is bounded

by

h−d/2

(
sup

(x,τ)∈S
||̂s∗τ (x)||

)p ∑
A∈NJ

Q
(
B0
n,A(cn,U , cn,L)\B0

n,A(0)
)

= OP ∗
(
h−d/2(log n)p/2λn

)
= oP ∗(1), P-uniformly,

by Assumption B2 and the rate condition for λn. Thus, we conclude that

(A.41) θ̂∗ = θ̄∗(0) + oP ∗(h
d/2), P0

n(λn)-uniformly,

where

θ̄∗(0) ≡
∑
A∈NJ

∫
B0
n,A(0)

ΛA,p (̂s∗τ (x)) dQ(x, τ).

Let c̄α∗n (0) be the (1−α)-th quantile of the bootstrap distribution of θ̄∗(0) and let γα∗n (0) be

the (1− α)-th quantile of the bootstrap distribution of

(A.42) h−d/2
(
θ̄∗(0)− aR∗n (0)

σn(0)

)
.

By the definition of P0
n(λn), we have σ2

n(0) > η/Φ−1(1−α). Let aRδ,U(0; d/2) and aRδ,L(0; d/2)

be aRn,δ(0; d/2) except that δτ,σ is replaced by δUτ,σ,κ and δLτ,σ,κ respectively. Also, let aδ,U(0; d/2)

and aδ,L(0; d/2) be an,δ(0; d/2) except that δτ,σ is replaced by δUτ,σ,κ and δLτ,σ,κ respectively.

We bound P{θ̂ > c∗α,η} by

P

{
h−d/2

(
θ̂δ,U(0; d/2)− aRδ,U(0; d/2)

σn(0)

)
> h−d/2

(
c∗α − aRδ,U(0; d/2)

σn(0)

)}
+ o(1)

= P

{
h−d/2

(
θ̂δ,U(0; d/2)− aRδ,U(0; d/2)

σn(0)

)
> h−d/2

(
c̄α∗n (0)− aRδ,U(0; d/2)

σn(0)

)}
+ o(1),

where the equality uses (A.41). Then we observe that

c̄α∗n (0)− aRδ,U(0; d/2)

σn(0)
=

c̄α∗n (0)− aR∗n (0)

σn(0)
+
aR∗n (0)− aRδ,U(0; d/2)

σn(0)

= hd/2γα∗n (0) +
aR∗n (0)− aRδ,U(0; d/2)

σn(0)
.

As for the last term, we use Lemmas A1 and A6 to deduce that

aR∗n (0)− aRδ,U(0; d/2) = aRn (0)− aRδ,U(0; d/2) + oP (hd/2)

= an(0)− aδ,U(0; d/2) + oP (hd/2).
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As for an(0)− aδ,U(0; d/2), we observe that

σn(0)−1h−d/2
{
E
[
ΛA,p

(
W(1)

n,τ,τ (x, 0) + hd/2δUτ,σ,κ(x)
)]
− E

[
ΛA,p(W(1)

n,τ,τ (x, 0))
]}

(A.43)

= σn(0)−1h−d/2
{
E
[
ΛA,p

(
W(1)

n,τ,τ (x, 0) + hd/2δUτ,σ,κ(x)
)]
− E

[
ΛA,p(W(1)

n,τ,τ (x, 0))
]}

= ψ
(1)
n,A,τ (0;x)>δUτ,σ,κ(x) +O

(
hd/2

)
,

so that

h−d/2 (an(0)− aδ,U(0))

σn(0)
= −

∑
A∈NJ

∫
ψ

(1)
n,A,τ (0;x)>δUτ,σ,κ(x)dQ(x, τ) + o(1)

= −
∑
A∈NJ

∫
ψ

(1)
A,τ (0;x)>δUτ,σ,κ(x)dQ(x, τ) + o(1),

where the last equality follows by the Dominated Convergence Theorem. On the other hand,

by Lemma A7, we have

h−d/2

(
θ̂δ,U(0; d/2)− aRδ,U(0; d/2)

σn(0)

)
d→ N(0, 1).

Since γα∗n (0) = γα,∞ + oP (1) by Lemma A4, we use this result to deduce that

lim
n→∞

P

{
h−d/2

(
θ̂δ,U(0; d/2)− aRδ,U(0; d/2)

σn(0)

)
> h−d/2

(
c̄α∗n (0)− aRδ,U(0; d/2)

σn(0)

)}

= 1− Φ

(
z1−α −

∑
A∈NJ

∫
ψ

(1)
A,τ (0;x)>δUτ,σ,κ(x)dQ(x, τ)

)
.

Similarly, we also use (A.37) to bound P
{
θ̂ > c∗α,η

}
from below by

P

{
h−d/2

(
θ̂δ,L(0; d/2)− aRδ,L(0; d/2)

σn(0)

)
> h−d/2

(
c̄α∗n (0)− aRδ,L(0; d/2)

σn(0)

)}
+ o(1),

and using similar arguments as before, we obtain that

lim
n→∞

P

{
h−d/2

(
θ̂δ,L(0; d/2)− aRδ,L(0; d/2)

σn(0)

)
> h−d/2

(
c̄α∗n (0)− aRδ,L(0; d/2)

σn(0)

)}

= 1− Φ

(
z1−α −

∑
A∈NJ

∫
ψ

(1)
A,τ (0;x)>δLτ,σ,κ(x)dQ(x, τ)

)
.
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We conclude from this and (A.36) that for any small κ > 0,

1− Φ

(
z1−α −

∑
A∈NJ

∫
ψ

(1)
A,τ (0;x)>δLτ,σ,κ(x)dQ(x, τ)

)
+ o(1)

≤ P
{
θ̂ > c∗α,η

}
≤ 1− Φ

(
z1−α −

∑
A∈NJ

∫
ψ

(1)
A,τ (0;x)>δUτ,σ,κ(x)dQ(x, τ)

)
+ o(1).

Note that ψ
(1)
A,τ (0;x)>δUτ,σ,κ(x) and ψ

(1)
A,τ (0;x)>δLτ,σ,κ(x) are bounded maps in (x, τ) by the

assumption of the theorem, and that

lim
κ→0

δLτ,σ,κ(x) = lim
κ→0

δUτ,σ,κ(x) = δτ,σ(x),

for each (x, τ) ∈ S. Hence by sending κ → 0 and applying the Dominated Convergence

Theorem to both the bounds above, we obtain the desired result.

Proof of Theorem 5. First, observe that Lemma A5 continues to hold. This can be seen by

following the proof of Lemma A5 and noting that (A.32) becomes here

sup
(x,τ)∈S

∣∣∣∣rn,j{v̂n,τ,j(x)− v0
n,τ,j(x)}

σ̂τ,j(x)

∣∣∣∣ = OP

(√
log n+ hd/4

)
= OP

(√
log n

)
,

yielding the same convergence rate. The rest of the proof is the same. Similarly, Lemma A6

continues to hold also under the modified local alternatives of (4.2) with bn,j = rn,jh
−d/4.

We define

(A.44) δ̃τ,σ(x) ≡ h−d/4δτ,σ(x).

We follow the proof of Theorem 4 and take up arguments from (A.43). Observe that

σn(0)−1h−d/2
{

E
[
ΛA,p

(
W(1)

n,τ,τ (x, 0) + hd/2δ̃τ,σ(x)
)]
− E

[
ΛA,p(W(1)

n,τ,τ (x, 0))
]}

= σn(0)−1h−d/2
{

E
[
ΛA,p

(
W(1)

n,τ,τ (x, 0) + hd/2δ̃τ,σ(x)
)]
− E

[
ΛA,p(W(1)

n,τ,τ (x, 0))
]}

= ψ
(1)
n,A,τ (0;x)>δ̃τ,σ(x) + hd/2δ̃τ,σ(x)>ψ

(2)
n,A,τ (0;x)δ̃τ,σ(x)/2.

By the Dominated Convergence Theorem,∫
ψ

(1)
n,A,τ (0;x)>δ̃τ,σ(x)dQ(x, τ) =

∫
ψ

(1)
A,τ (0;x)>δ̃τ,σ(x)dQ(x, τ) + o(1) and∫

ψ
(2)
n,A,τ (0;x)>δ̃τ,σ(x)dQ(x, τ) =

∫
ψ

(2)
A,τ (0;x)>δ̃τ,σ(x)dQ(x, τ) + o(1).
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Since
∑

A∈NJ

∫
ψ

(1)
A,τ (0;x)>δ̃τ,σ(x)dQ(x, τ) = 0, by the condition for δτ,σ(x) in the theorem,

∑
A∈NJ

∫
h−d/2

 E
[
ΛA,p

(
W(1)

n,τ,τ (x, 0) + hd/2δ̃τ,σ(x)
)]

−E
[
ΛA,p(W(1)

n,τ,τ (x, 0))
]  dQ(x, τ)

=
1

2

∑
A∈NJ

∫
δτ,σ(x)>ψ

(2)
A,τ (0;x)δτ,σ(x)dQ(x, τ) + o(1).

Now we can use the above result by replacing δτ,σ(x) by δUτ,σ,κ(x) and δLτ,σ,κ(x) and follow the

proof of Theorem 4 to obtain the desired result.

Appendix B. Proofs of Auxiliary Results for Lemmas A2(i), Lemma A4(i),

and Theorem 1

The eventual result in this appendix is Lemma B9 which is used to show the asymptotic

normality of the location-scale normalized representation of θ̂ and its bootstrap version,

and to establish its asymptotic behavior in the degenerate case. For this, we first prepare

Lemmas B1-B3. To obtain uniformity that covers the case of degeneracy, this paper uses

a method of regularization, where the covariance matrix of random quantities is added by

a diagonal matrix of small diagonal elements. The regularized random quantities having

this covariance matrix do not suffer from degeneracy in the limit, even when the original

quantities have covariate matrix that is degenerate in the limit. Thus, for these regularized

quantities, we can obtain uniform asymptotic theory using an appropriate Berry-Esseen-type

bound. Then, we need to deal with the difference between the regularized covariance matrix

and the original one. Lemma B1 is a simple result of linear algebra that is used to control

this discrepancy.

Lemma B2 has two sub-results from which one can deduce a uniform version of Levy’s

continuity theorem. We have not seen any such results in the literature or monographs, so we

provide its full proof. The result has two functions. First, the result enables one to deduce

convergence in distribution in terms of convergence of cumulative distribution functions and

convergence in distribution in terms of convergence of characteristic functions in a manner

that is uniform over a given collection of probabilities. The original form of convergence

in distribution due to the Poissonization method in Giné, Mason, and Zaitsev (2003) is

convergence of characteristic functions. Certainly pointwise in P , this convergence implies

convergence of cumulative distribution functions, but it is not clear under what conditions

this implication is uniform over a given class of probabilities. Lemma B2 essentially clarifies

this issue.

Lemma B3 is an extension of the de-Poissonization lemma that appeared in Beirlant and

Mason (1995). The proof is based on the proof of their same result in Giné, Mason, and
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Zaitsev (2003), but involves a substantial modification, because unlike their results, we need a

version that holds uniformly over P ∈ P . This de-Poissonization lemma is used to transform

the asymptotic distribution theory for the Poissonized version of the test statistic into that

for the original test statistic.

Lemmas B4-B5 establish some moment bounds for a normalized sum of independent quan-

tities. This moment bound is later used to control a Berry-Esseen-type bound, when we

approximate those sums by corresponding centered normal random vectors.

Lemma B6 obtains an approximate version for the scale normalizer σn. The approximate

version involves a functional of a Gaussian random vector, which stems from approximating

a normalized sum of independent random vectors by a Gaussian random vector through

using a Berry-Esseen-type bound. For this result, we use the regularization method that

we mentioned before. Due to the regularization, we are able to cover the degenerate case

eventually.

Lemma B7 is an auxiliary result that is used to establish Lemma B9 in combination with

the de-Poissonization lemma (Lemma B3). And Lemma B8 establishes asymptotic normality

of the Poissonized version of the test statistics. The asymptotic normality for the Poissonized

statistic involves the discretization of the integrals, thereby, reducing the integral to a sum

of 1-dependent random variables, and then applies the Berry-Esseen-type bound in Shergin

(1993). Note that by the moment bound in Lemmas B4-B5 that is uniform over P ∈ P , we

obtain the asymptotic approximation that is uniform over P ∈ P . The lemma also presents

a corresponding result for the degenerate case.

Finally, Lemma B9 combines the asymptotic distribution theory for the Poissonized test

statistic in Lemma B7 with the de-Poissonization lemma (Lemma B3) to obtain the asymp-

totic distribution theory for the original test statistic. The result of Lemma B9 is used to

establish the asymptotic normality result in Lemma A7.

The following lemma provides some inequality of matrix algebra.

Lemma B1. For any J × J positive semidefinite symmetric matrix Σ and any ε > 0,∥∥∥(Σ + εI)1/2 − Σ1/2
∥∥∥ ≤ √Jε,

where ‖A‖ =
√
tr(AA′) for any square matrix A.

Remark 1. The main point of Lemma B1 is that the bound
√
Jε is independent of the matrix

Σ. Such a uniform bound is crucially used for the derivation of asymptotic validity of the

test uniform in P ∈ P .
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Proof of Lemma B1. First observe that

tr{(Σ + εI)1/2 − Σ1/2}2(B.1)

= tr (2Σ + εI)− 2tr((Σ + εI)1/2 Σ1/2).

Since Σ ≤ Σ + εI, we have Σ1/2 ≤ (Σ + εI)1/2 . For any positive semidefinite matri-

ces A and B, tr(AB) ≥ 0 (see e.g. Abadir and Magnus (2005)). Therefore, tr(Σ) ≤
tr((Σ + εI)1/2 Σ1/2). From (B.1), we find that

tr (2Σ + εI)− 2tr((Σ + εI)1/2 Σ1/2)

≤ tr (2Σ + εI)− 2tr(Σ) = εJ.

The following lemma can be used to derive a version of Levy’s Continuity Theorem that

is uniform in P ∈ P .

Lemma B2. Suppose that Vn ∈ Rd is a sequence of random vectors and V ∈ Rd is a random

vector. We assume without loss of generality that Vn and V live on the same measure space

(Ω,F), and P is a given collection of probabilities on (Ω,F). Furthermore define

ϕn(t) ≡ E
[
exp(it>Vn)

]
, ϕ(t) ≡ E

[
exp(it>V )

]
,

Fn(t) ≡ P {Vn ≤ t} , and F (t) ≡ P {V ≤ t} .

(i) Suppose that the distribution P ◦ V −1 is uniformly tight in {P ◦ V −1 : P ∈ P}. Then for

any continuous function f on Rd taking values in [−1, 1] and for any ε ∈ (0, 1], we have

sup
P∈P
|Ef(Vn)− Ef(V )| ≤ ε−dCd sup

P∈P
sup
t∈Rd

|Fn(t)− F (t)|+ 4ε,

where Cd > 0 is a constant that depends only on d.

(ii) Suppose that supP∈P E||V ||2 <∞. If

sup
P∈P

sup
u∈Rd

|ϕn(u)− ϕ(u)| → 0, as n→∞,

then for each t ∈ Rd,

sup
P∈P
|Fn(t)− F (t)| → 0, as n→∞.

On the other hand, if for each t ∈ Rd,

sup
P∈P
|Fn(t)− F (t)| → 0, as n→∞,

then for each u ∈ Rd,

sup
P∈P
|ϕn(u)− ϕ(u)| → 0, as n→∞.
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Proof of Lemma B2. (i) The proof uses arguments in the proof of Lemma 2.2 of van der

Vaart (1998). Take a large compact rectangle B ⊂ Rd such that P{V /∈ B} < ε. Since

the distribution of V is tight uniformly over P ∈ P , we can take such B independently of

P ∈ P . Take a partition B = ∪Jεj=1Bj and points xj ∈ Bj such that Jε ≤ Cd,1ε
−d, and

|f(x)− fε(x)| < ε for all x ∈ B, where Cd,1 > 0 is a constant that depends only on d, and

fε(x) ≡
Jε∑
j=1

f(xj)1{x ∈ Bj}.

Thus we have

|Ef(Vn)− Ef(V )| ≤ |Ef(Vn)− Efε(Vn)|+ |Efε(Vn)− Efε(V )|+ |Efε(V )− Ef(V )|

≤ 2ε+ P{Vn /∈ B}+ P{V /∈ B}+ |Efε(Vn)− Efε(V )|

≤ 4ε+ |P{Vn /∈ B} − P{V /∈ B}|+ |Efε(Vn)− Efε(V )|

= 4ε+ |P{Vn ∈ B} − P{V ∈ B}|+ |Efε(Vn)− Efε(V )| .

The second inequality following by P{V /∈ B} < ε. As for the last term, we let

bn ≡ sup
P∈P

sup
t∈Rd

|Fn(t)− F (t)| ,

and observe that

|Efε(Vn)− Efε(V )| ≤
Jε∑
j=1

|P{Vn ∈ Bj} − P{V ∈ Bj}| |f(xj)|

≤
Jε∑
j=1

|P{Vn ∈ Bj} − P{V ∈ Bj}| ≤ Cd,2bnJε,

where Cd,2 > 0 is a constant that depends only on d. The last inequality follows because

for any rectangle Bj, we have |P{Vn ∈ Bj} − P{V ∈ Bj}| ≤ Cd,2bn for some Cd,2 > 0. We

conclude that

|Ef(Vn)− Ef(V )| ≤ 4ε+ Cd,2
(
Cd,1ε

−d + 1
)
bn ≤ 4ε+ Cdε

−dbn,

where Cd = Cd,2{Cd,1 + 1}. The last inequality follows because ε ≤ 1.

(ii) We show the first statement. We first show that under the stated condition, the sequence

{P ◦ V −1
n }∞n=1 is uniformly tight over P ∈ P . That is, for any ε > 0, we show there exists a

compact set B ⊂ Rd such that for all n ≥ 1,

sup
P∈P

P
{
Vn ∈ Rd\B

}
< ε.
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For this, we assume d = 1 without loss of generality, let Pn denote the distribution of Vn and

consider the following: (using arguments in the proof of Theorem 3.3.6 of Durrett (2010))

P

{
|Vn| >

2

u

}
≤ 2

∫
|x|>2/u

(
1− 1

|ux|

)
dPn(x)

≤ 2

∫ (
1− sinux

ux

)
dPn(x)

=
1

u

∫ u

−u
(1− ϕn(t)) dt.

Define ēn ≡ supP∈P supt∈R |ϕn(t)− ϕ(t)|. Using Theorem 3.3.8 of Durrett (2010), we bound

the last term by

2ēn +
1

u

∫ u

−u
(1− ϕ(t)) dt ≤ 2ēn +

∣∣∣∣1u
∫ u

−u

(
−itEV +

t2EV 2

2

)
dt

∣∣∣∣
+2

∣∣∣∣1u
∫ u

−u
t2EV 2dt

∣∣∣∣ .
The supremum of the right hand side terms over P ∈ P vanishes as we send n → ∞ and

then u ↓ 0, by the assumption that supP∈PE|V |2 <∞. Hence the sequence {P ◦ V −1
n }∞n=1 is

uniformly tight over P ∈ P .

Now, for each t ∈ Rd, there exists a subsequence {n′} ⊂ {n} and {Pn′} ⊂ P such that

(B.2) limsup
n→∞

sup
P∈P
|Fn(t)− F (t)| = lim

n′→∞
|Fn′(t;Pn′)− F (t;Pn′)| ,

where

Fn(t;Pn) = Pn {Vn ≤ t} and F (t;Pn) = Pn {V ≤ t} .

Since {Pn′ ◦ V −1
n′ }∞n′=1 is uniformly tight (as shown above), there exists a subsequence

{n′k} ⊂ {n′} such that

(B.3) Fn′k(t;Pn′k)→ F ∗(t), as k →∞,

for some cdf F ∗. Also {Pn′ ◦ V −1}∞n′=1 is uniformly tight (because supP∈P E||V ||2 < ∞),

{Pn′k ◦V
−1}∞k=1 is uniformly tight and hence there exists a further subsequence {n′kj} ⊂ {n

′
k}

such that

(B.4) F (t;Pn′kj
)→ F ∗∗(t), as j →∞,

for some cdf F ∗∗. Since {n′kj} ⊂ {n
′
k}, we have from (B.3),

(B.5) Fn′kj
(t;Pn′kj

)→ F ∗(t), as j →∞.
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By the condition of (ii), we have

(B.6)
∣∣∣ϕn′kj (u;Pn′kj

)− ϕ(u;Pn′kj
)
∣∣∣→ 0, as j →∞,

where

ϕn (u;Pn) = EPn (exp (iuVn)) and ϕ (u;Pn) = EPn (exp (iuV )) ,

and EPn represents expectation with respect to the probability measure Pn. Furthermore,

by (B.4) and (B.5), and Levy’s Continuity Theorem,

lim
j→∞

ϕn′kj
(u;Pn′kj

) and lim
j→∞

ϕ(u;Pn′kj
)

exist and coincide by (B.6). Therefore, for all t ∈ Rd,

F ∗∗(t) = F ∗(t).

In other words,

lim
n′→∞

|Fn′ (t;Pn′)− F (t;Pn′)| = lim
n′→∞

∣∣∣Fn′kj (t;Pn′kj)− F (t;Pn′kj)∣∣∣ = 0.

Therefore, the first statement of (ii) follows by the last limit applied to (B.2).

Let us turn to the second statement. Again, we show that {P ◦V −1
n }∞n=1 is uniformly tight

over P ∈ P . Note that given a large rectangle B,

P
{
Vn ∈ Rd\B

}
≤
∣∣P {Vn ∈ Rd\B

}
− P

{
V ∈ Rd\B

}∣∣+ P
{
V ∈ Rd\B

}
.

There exists N such that for all n ≥ N , the first difference vanishes as n→∞, uniformly in

P ∈ P , by the condition of the lemma. As for the second term, we bound it by

P {Vj > aj, j = 1, ..., d} ≤
d∑
j=1

EV 2
j

aj
,

where Vj is the j-th entry of V and B = ×dj=1[aj, bj], bj < 0 < aj. By taking aj’s large enough,

we make the last bound arbitrarily small independently of P ∈ P , because supP∈PEV 2
j <∞

for each j = 1, ..., d. Therefore, {P ◦ V −1
n }∞n=1 is uniformly tight over P ∈ P .

Now, we turn to the proof of the second statement of (ii). For each u ∈ Rd, there exists

a subsequence {n′} ⊂ {n} and {Pn′} ⊂ P such that

limsup
n→∞

sup
P∈P
|ϕn(u)− ϕ(u)| = lim

n′→∞
|ϕn′(u;Pn′)− ϕ(u;Pn′)| ,

where ϕn(u;Pn) = EPn exp(iu>Vn) and ϕ(u;Pn) = EPn exp(iu>V ). By the condition in the

second statement of (ii), for each t ∈ Rd,

(B.7) lim
n′→∞

|Fn′ (t;Pn′)− F (t;Pn′)| = 0.
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Since {Pn′ ◦ V −1
n′ }∞n′=1 is uniformly tight (as shown above), there exists a subsequence

{n′k} ⊂ {n′} such that Fn′k(t;Pn′k) → F ∗(t), as k → ∞, and hence by Levy’s Continuity

Theorem, we have ϕn′k(u;Pn′k) → ϕ∗(u), as k → ∞. Similarly, we also have ϕ(u;Pn′k) →
ϕ∗∗(u), as k →∞. By (B.7), we have F ∗(t) = F ∗∗(t) and ϕ∗(u) = ϕ∗∗(u). Therefore,

lim
n′→∞

|ϕn′ (u;Pn′)− ϕ (u;Pn′)| = lim
n′→∞

∣∣∣ϕn′kj (u;Pn′kj

)
− ϕ

(
u;Pn′kj

)∣∣∣ = 0.

Thus we arrive at the desired result.

The following lemma offers a version of the de-Poissonization lemma of Beirlant and Mason

(1995) (see Theorem 2.1 on page 5). In contrast to the result of Beirlant and Mason (1995),

the version here is uniform in P ∈ P .

Lemma B3. Let N1,n(α) and N2,n(α) be independent Poisson random variables with N1,n(α)

being Poisson (n(1−α)) and N2,n(α) being Poisson (nα), where α ∈ (0, 1). Denote Nn(α) =

N1,n(α) +N2,n(α) and set

Un(α) =
N1,n(α)− n(1− α)√

n
and Vn(α) =

N2,n(α)− nα√
n

.

Let {Sn}∞n=1 be a sequence of random variables and P be a given set of probabilities P on a

measure space on which (Sn, Un(αP ), Vn(αP )) lives, where αP ∈ (0, 1) is a quantity that may

depend on P ∈ P and for some ε > 0,

(B.8) ε ≤ inf
P∈P

αP ≤ sup
P∈P

αP ≤ 1− ε.

Furthermore, assume that for each n ≥ 1, the random vector (Sn, Un(αP )) is independent

of Vn(αP ) with respect to each P ∈ P. Let for t1, t2 ∈ R2,

bn,P (t1, t2;σP ) ≡
∣∣P {Sn ≤ t1, Un(αP ) ≤ t2} − P{σPZ1 ≤ t1,

√
1− αPZ2 ≤ t2}

∣∣ ,
where Z1 and Z2 are independent standard normal random variables and σ2

P > 0 for each

P ∈ P. (Note that infP∈P σ
2
P is allowed to be zero.)

(i) As n→∞,

sup
P∈P

sup
t∈R

∣∣∣∣E[exp(itSn)|Nn(αP ) = n]− exp

(
−σ

2
P t

2

2

)∣∣∣∣
≤ 2ε+

(
4Cd sup

P∈P
an,P (ε)

)√
2π

ε
,

where an,P (ε) ≡ ε−dbn,P + ε, bn,P ≡ supt1,t2∈R bn,P (t1, t2;σP ), and ε is the constant in (B.8).

(ii) Suppose further that for all t1, t2 ∈ R, as n→∞,

sup
P∈P

bn,P (t1, t2; 0)→ 0.
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Then, for all t ∈ R, we have as n→∞,

sup
P∈P
|E[exp(itSn)|Nn(αP ) = n]− 1| → 0.

Remark 2. While the proof of Lemma B3 follows that of Lemma 2.4 of Giné, Mason, and

Zaitsev (2003), it is worth noting that in contrast to Lemma 2.4 of Giné, Mason, and Zaitsev

(2003) or Theorem 2.1 of Beirlant and Mason (1995), Lemma B3 gives an explicit bound for

the difference between the conditional characteristic function of Sn given Nn(αP ) = n and

the characteristic function of N(0, σ2
P ). Under the stated conditions, (in particular (B.8)),

the explicit bound is shown to depend on P ∈ P only through bn,P . Thus in order to obtain

a bound uniform in P ∈ P , it suffices to control αP and bn,P uniformly in P ∈ P .

Proof of Lemma B3. (i) Let φn,P (t, u) = E[exp(itSn + iuUn(αP ))] and

φP (t, u) = exp(−(σ2
P t

2 + (1− αP )u2)/2).

By the condition of the lemma and Lemma B2(i), we have for any ε > 0,

|φn,P (t, u)− φP (t, u)| ≤ (ε−dCdbn,P + 4ε)(B.9)

≤ 4ε−dCdbn,P + 4ε = 4Cdan,P (ε).

Note that an,P (ε) depends on P ∈ P only through bn,P .

Following the proof of Lemma 2.4 of Giné, Mason, and Zaitsev (2003), we have

ψn,P (t) = E[exp(itSn)|Nn(αP ) = n]

=
1√
2π

(1 + o(1))

∫ π
√
n

−π
√
n

φn,P (t, v)E [exp(ivVn(αP ))] dv,

uniformly over P ∈ P . Note that the equality comes after applying Sterling’s formula to

2πP{Nn(αP ) = n} and change of variables from u to v/
√
n. (See the proof of Lemma 2.4 of

Giné, Mason, and Zaitsev (2003).) The distribution of Nn(αP ), being Poisson (n), does not

depend on the particular choice of αP ∈ (0, 1), and hence the o(1) term is o(1) uniformly

over t ∈ R and over P ∈ P . We follow the proof of Theorem 3 of Feller (1966, p.517) to

observe that there exists n0 > 0 such that uniformly over α ∈ [ε, 1− ε],{∫ π
√
n

−π
√
n

∣∣E exp(ivVn(α))− exp(−αv2/2)
∣∣ dv +

∫
|v|>π

√
n

exp
(
−αv2/2

)
dv

}
< ε,

for all n > n0. Note that the distribution of Vn(αP ) depends on P ∈ P only through

αP ∈ [ε, 1− ε] and ε does not depend on P . Since there exists n1 such that for all n > n1,

sup
P∈P

∫
|v|>π

√
n

exp
(
−αPv2/2

)
dv < ε,
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the previous inequality implies that for all n > max{n0, n1},

sup
P∈P

∫ π
√
n

−π
√
n

∣∣φn,P (t, u)
(
E exp(iuVn(αP ))− exp(−αPu2/2)

)∣∣ du(B.10)

≤ sup
P∈P

∫ π
√
n

−π
√
n

(
sup
P∈P
|φn,P (t, u)|

)
|E exp(iuVn(αP ))− exp(−αPu2/2)|du

≤ sup
P∈P

∫ π
√
n

−π
√
n

|E exp(iuVn(αP ))− exp(−αPu2/2)|du ≤ ε.

By (B.9) and (B.10),

sup
P∈P

∣∣∣∣∣
∫ π

√
n

−π
√
n

φn,P (t, u)E [exp(iuVn(αP ))] du−
∫ π

√
n

−π
√
n

φP (t, u) exp
(
−αPu2/2

)
du

∣∣∣∣∣
≤ sup

P∈P
sup

α∈[ε,1−ε]

∫ π
√
n

−π
√
n

∣∣φn,P (t, u)
(
E exp(iuVn(α))− exp(−αu2/2)

)∣∣ du
+

∫ π
√
n

−π
√
n

sup
P∈P

sup
α∈[ε,1−ε]

|φn,P (t, u)− φP (t, u)| exp(−αu2/2)du

≤ ε+

(
4Cd sup

P∈P
an,P (ε)

)
sup

α∈[ε,1−ε]

∫ π
√
n

−π
√
n

exp(−αu2/2)du

≤ ε+

(
4Cd sup

P∈P
an,P (ε)

)
sup

α∈[ε,1−ε]

√
2π

α
= ε+

(
4Cd sup

P∈P
an,P (ε)

)√
2π

ε

as n→∞. Since

exp

(
−σ

2
P t

2

2

)
=

1√
2π

∫ ∞
−∞

φP (t, u) exp

(
−αPu

2

2

)
du,

and from some large n that does not depend on P ∈ P ,∣∣∣∣∣
∫ ∞
−∞

φP (t, u) exp

(
−αPu

2

2

)
du−

∫ π
√
n

−π
√
n

φP (t, u) exp

(
−αPu

2

2

)
du

∣∣∣∣∣
= exp

(
−σ

2
P t

2

2

) ∣∣∣∣∣
∫ ∞
−∞

exp

(
−u

2

2

)
du−

∫ π
√
n

−π
√
n

exp

(
−u

2

2

)
du

∣∣∣∣∣ < ε,

we conclude that for each t ∈ R,∣∣∣∣ψn,P (t)− exp

(
−σ

2
P t

2

2

)∣∣∣∣ ≤ 2ε+

(
4Cd sup

P∈P
an,P (ε)

)√
2π

ε
,

as n → ∞. Since the right hand side does not depend on t ∈ R and P ∈ P , we obtain the

desired result.
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(ii) By the condition of the lemma and Lemma B2(ii), we have for any t, u ∈ R,

sup
P∈P
|φn,P (t, u)− φP (0, u)| → 0,

as n→∞. The rest of the proof is similar to that of (i). We omit the details.

Define for x ∈ X , τ1, τ2 ∈ T , and j, k ∈ NJ ,

kn,τ,j,m(x) ≡ 1

hd
E

[∣∣∣∣βn,x,τ,j (Yij, Xi − x
h

)∣∣∣∣m] .
Lemma B4. Suppose that Assumption A6(i) holds. Then for all m ∈ [2,M ], (with M > 2

being the constant that appears in Assumption A6(i)), there exists C1 ∈ (0,∞) that does not

depend on n such that for each j ∈ NJ ,

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

kn,τ,j,m(x) ≤ C1.

Proof of Lemma B4. The proof can proceed by using Assumption A6(i) and following the

proof of Lemma 4 of Lee, Song, and Whang (2013).

Let N be a Poisson random variable with mean n and independent of (Y >i , X
>
i )∞i=1.

Also, let βn,x,τ (Yi, (Xi − x)/h) be the J-dimensional vector whose j-th entry is equal to

βn,x,τ,j(Yij, (Xi − x)/h). We define

zN,τ (x) ≡ 1

nhd

N∑
i=1

βn,x,τ

(
Yi,

Xi − x
h

)
− 1

hd
Eβn,x,τ

(
Yi,

Xi − x
h

)
and

zn,τ (x) ≡ 1

nhd

n∑
i=1

βn,x,τ

(
Yi,

Xi − x
h

)
− 1

hd
Eβn,x,τ

(
Yi,

Xi − x
h

)
.

Let N1 be a Poisson random variable with mean 1, independent of (Y >i , X
>
i )∞i=1. Define

qn,τ (x) ≡ 1√
hd

∑
1≤i≤N1

{
βn,x,τ

(
Yi,

Xi − x
h

)
− Eβn,x,τ

(
Yi,

Xi − x
h

)}
and

q̄n,τ (x) ≡ 1√
hd

{
βn,x,τ

(
Yi,

Xi − x
h

)
− Eβn,x,τ

(
Yi,

Xi − x
h

)}
.

Lemma B5. Suppose that Assumption A6(i) holds. Then for any m ∈ [2,M ] (with M > 2

being the constant in Assumption A6(i))

sup
(x,τ)∈S

sup
P∈P

E [||qn,τ (x)||m] ≤ C̄1h
d(1−(m/2)) and(B.11)

sup
(x,τ)∈S

sup
P∈P

E [||q̄n,τ (x)||m] ≤ C̄2h
d(1−(m/2)),

where C̄1, C̄2 > 0 are constants that depend only on m.
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If furthermore, lim supn→∞ n
−(m/2)+1hd(1−(m/2)) < C for some constant C > 0, then

sup
(x,τ)∈S

sup
P∈P

E
[
||n1/2hd/2zN,τ (x)||m

]
≤

(
15m

logm

)m
max

{
C̄1, 2C̄1C

}
and(B.12)

sup
(x,τ)∈S

sup
P∈P

E
[
||n1/2hd/2zn,τ (x)||m

]
≤

(
15m

logm

)m
max

{
C̄2, 2C̄2C

}
,

where C̄1, C̄2 > 0 are the constants that appear in (B.11).

Proof of Lemma B5. Let qn,τ,j(x) be the j-th entry of qn,τ (x). For the first statement of the

lemma, it suffices to observe that for some positive constants C1 and C̄,

(B.13) sup
(x,τ)∈S

sup
P∈P

E [|qn,τ,j(x)|m] ≤ C1h
dkn,τ,j,m
hdm/2

≤ C̄hd(1−(m/2)),

where the first inequality uses the definition of kn,τ,j,m, and the last inequality uses Lemma

B4 and the fact that m ∈ [2,M ]. The second statement in (B.11) follows similarly.

We consider the statements in (B.12). We consider the first inequality in (B.12). Let

zN,τ,j(x) be the j-th entry of zN,τ (x). Then using Rosenthal’s inequality (e.g. (2.3) of Giné,

Mason, and Zaitsev (2003)), we find that

sup
(x,τ)∈S

sup
P∈P

E[|
√
nhdzN,τ,j(x)|m]

≤
(

15m

logm

)m
sup

(x,τ)∈S
sup
P∈P

max
{(

Eq2
n,τ,j(x)

)m/2
, n−m/2+1E|qn,τ,j(x)|m

}
.

Since Eq2
n,τ,j(x) ≤ (E|qn,τ,j(x)|m)2/m, by (B.13), the last term is bounded by(

15m

logm

)m
max

{
C̄, C̄n−(m/2)+1hd(1−(m/2))

}
≤

(
15m

logm

)m
max

{
C̄, 2C̄C

}
,

from some large n by the condition limsupn→∞n
−(m/2)+1hd(1−(m/2)) < C.

As for the second inequality in (B.12), for some C > 0, we use the second inequality in

(B.11) and use Rosenthal’s inequality in the same way as before, to obtain the inequality.

The following lemma offers a characterization of the scale normalizer of our test statistic.

For A,A′ ⊂ NJ , define ζn,τ (x) ≡
√
nhdzN,τ (x),

CR
n,τ,τ ′,A,A′(x, x

′) ≡ h−dCov (ΛA,p (ζn,τ (x)) ,ΛA′,p (ζn,τ ′(x
′))) , and(B.14)

Cn,τ,τ ′,A,A′(x, u) ≡ Cov
(

ΛA,p

(
W(1)

n,τ,τ ′(x, u)
)
,ΛA′,p

(
W(2)

n,τ,τ ′(x, u)
))

,

where we recall that [W(1)
n,τ1,τ2(x, u)>,W(2)

n,τ1,τ2(x, u)>]> is a mean zero R2J -valued Gaussian

random vector whose covariance matrix is given by (4.9).
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Then for Borel sets B,B′ ⊂ S and A,A′ ⊂ NJ , let

σRn,A,A′(B,B
′) ≡

∫
B′

∫
B

CR
n,τ,τ ′,A,A′(x, x

′)dQ(x, τ)dQ(x′, τ ′)

and

(B.15) σn,A,A′(B,B
′) ≡

∫
T

∫
T

∫
Bτ∩B′τ ′

∫
U
Cn,τ,τ ′,A,A′(x, u)dudxdτdτ ′,

where Bτ ≡ {x ∈ X : (x, τ) ∈ B} and B′τ ′ ≡ {x ∈ X : (x, τ ′) ∈ B′}.
The lemma below shows that σRn,A,A′(B,B

′) and σn,A,A′(B,B
′) are asymptotically equiva-

lent uniformly in P ∈ P . We introduce some notation. Recall the definition of Σn,τ1,τ2(x, u),

which is found below (4.7). Define for ε̄ > 0,

Σ̃n,τ1,τ2,ε̄(x, u) ≡

[
Σn,τ1,τ1(x, 0) + ε̄IJ

Σn,τ1,τ2(x, u)

Σn,τ1,τ2(x, u)

Σn,τ2,τ2(x+ uh, 0) + ε̄IJ

]
,

where IJ is the J dimensional identity matrix. Certainly Σ̃n,τ1,τ2,ε̄(x, u) is positive definite.

We define

ξN,τ1,τ2(x, u; η1, η2) ≡
√
nhdΣ̃

−1/2
n,τ1,τ2,ε̄(x, u)

[
zN,τ1(x; η1)

zN,τ2(x+ uh; η2)

]
,

where η1 ∈ RJ and η2 ∈ RJ are random vectors that are independent, and independent of

(Y >i , X
>
i )∞i=1, each following N(0, ε̄IJ), and zN,τ (x; η1) ≡ zN,τ (x)+η1/

√
nhd. We are prepared

to state the lemma.

Lemma B6. Suppose that Assumption A6(i) holds and that nhd →∞, as n→∞, and

limsup
n→∞

n−(m/2)+1hd(1−(m/2)) < C,

for some constant C > 0 and some m ∈ [2(p+ 1),M ].

Then for any sequences of Borel sets Bn, B
′
n ⊂ S and for any A,A′ ⊂ NJ ,

σRn,A,A′(Bn, B
′
n) = σn,A,A′(Bn, B

′
n) + o(1),

where o(1) vanishes uniformly in P ∈ P as n→∞.

Remark 3. The main innovative element of Lemma B6 is that the result does not require

that σn,A,A′(Bn, B
′
n) be positive for each finite n or positive in the limit. Hence the result

can be applied to the case where the scale normalizer σRn,A,A′(Bn, B
′
n) is degenerate (either

in finite samples or asymptotically).
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Proof of Lemma B6. Define Bn,τ ≡ {x ∈ X : (x, τ) ∈ Bn}, wτ,Bn(x) ≡ 1Bn,τ (x). For a given

ε̄ > 0, let

g1n,τ1,τ2,ε̄(x, u) ≡ h−dCov(ΛA,p(
√
nhdzN,τ1(x; η1)),ΛA′,p(

√
nhdzN,τ2(x+ uh; η2))),

g2n,τ1,τ2,ε̄(x, u) ≡ Cov(ΛA,p(Zn,τ1,τ2,ε̄(x)),ΛA′,p(Zn,τ1,τ2,ε̄(x+ uh))),

and
(
Z>n,τ1,τ2,ε̄(x),Z>n,τ1,τ2,ε̄(v)

)>
is a centered normal R2J -valued random vector with the

same covariance matrix as that of [
√
nhdz>N,τ1(x; η1),

√
nhdz>N,τ2(v; η2)]>. Then we define

σRn,A,A′,ε̄(Bn, B
′
n) ≡

∫
T

∫
T

∫
Bn,τ1

∫
U
g1n,τ1,τ2,ε̄(x, u)wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2,

and

σn,A,A′,ε̄(Bn, B
′
n) ≡

∫
T

∫
T

∫
Bn,τ1∩B′n,τ2

∫
U
Cn,τ1,τ2,A,A′,ε̄(x, u)dudxdτ1dτ2,

where

(B.16) Cn,τ1,τ2,A,A′,ε̄(x, u) ≡ Cov
(

ΛA,p(W(1)
n,τ1,τ2,ε̄(x, u)),ΛA′,p(W(2)

n,τ1,τ2,ε̄(x, u))
)
,

and, with Z ∼ N(0, I2J),

(B.17)

[
W(1)

n,τ1,τ2,ε̄(x, u)

W(2)
n,τ1,τ2,ε̄(x, u)

]
≡ Σ̃

1/2
n,τ1,τ2,ε̄(x, u)Z.

Thus, σRn,A,A′,ε̄(Bn, B
′
n) and σn,A,A′,ε̄(Bn, B

′
n) are “regularized” versions of σRn,A,A′(Bn, B

′
n) and

σn,A,A′(Bn, B
′
n). We also define

τn,A,A′,ε̄(Bn, B
′
n) ≡

∫
T

∫
T

∫
Bn,τ1

∫
U
g2n,τ1,τ2,ε̄(x, u)wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2.

Then it suffices for the lemma to show the following two statements.

Step 1: As n→∞,

sup
P∈P

∣∣σRn,A,A′,ε̄(Bn, B
′
n)− τn,A,A′,ε̄(Bn, B

′
n)
∣∣ → 0, and

sup
P∈P
|τn,A,A′,ε̄(Bn, B

′
n)− σn,A,A′,ε̄(Bn, B

′
n)| → 0.

Step 2: For some C > 0 that does not depend on ε̄ or n,

sup
P∈P
|σRn,A,A′,ε̄(Bn, B

′
n)− σRn,A,A′(Bn, B

′
n)| ≤ C

√
ε̄, and

sup
P∈P
|σn,A,A′,ε̄(Bn, B

′
n)− σn,A,A′(Bn, B

′
n)| ≤ C

√
ε̄.

Then the desired result follows by sending n→∞ and then ε̄ ↓ 0, while chaining Steps 1

and 2.
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Proof of Step 1: We first focus on the first statement. For any vector v = [v>1 ,v
>
2 ]> ∈ R2J ,

we define

Λ̃A,p,1 (v) ≡ ΛA,p

([
Σ̃

1/2
n,τ1,τ2,ε̄(x, u)v

]
1

)
,

Λ̃A′,p,2 (v) ≡ ΛA′,p

([
Σ̃

1/2
n,τ1,τ2,ε̄(x, u)v

]
2

)
,

and

(B.18) Cn,p(v) ≡ Λ̃A,p,1 (v) Λ̃A′,p,2 (v) ,

where [a]1 of a vector a ∈ R2J indicates the vector of the first J entries of a, and [a]2 the

vector of the remaining J entries of a. By Theorem 9 of Magnus and Neudecker (2001, p.

208),

λmin

(
Σ̃n,τ1,τ2,ε̄(x, u)

)
≥ λmin

([
Σn,τ1,τ2(x, 0)

Σ>n,τ1,τ2(x, u)

Σn,τ1,τ2(x, u)

Σn,τ2,τ2(x+ uh, 0)

])
(B.19)

+λmin

([
ε̄IJ

0

0

ε̄IJ

])

≥ λmin

([
ε̄IJ

0

0

ε̄IJ

])
= ε̄.

Let qn,τ,j(x; η1j) ≡ pn,τ,j(x) + η1j, where

pn,τ,j(x) ≡ 1√
hd

∑
1≤i≤N1

{
βn,x,τ,j

(
Yij,

Xi − x
h

)
− E

[
βn,x,τ,j

(
Yij,

Xi − x
h

)]}
,

η1j is the j-th entry of η1, andN1 is a Poisson random variable with mean 1 and ((η1j)j∈NJ , N1)

is independent of {(Y >i , X>i )}∞i=1. Let pn,τ (x) be the column vector of entries pn,τ,j(x) with j

running in the set NJ . Let [p
(i)
n,τ1(x), p

(i)
n,τ2(x + uh)] be i.i.d. copies of [pn,τ1(x), pn,τ2(x + uh)]

and η
(i)
1 and η

(i)
2 be also i.i.d. copies of η1 and η2. Define

q
(i)
n,τ,1(x) ≡ p(i)

n,τ (x) + η
(i)
1 and q

(i)
n,τ,2(x+ uh) ≡ p(i)

n,τ (x+ uh) + η
(i)
2 .

Note that

1√
n

n∑
i=1

[
q

(i)
n,τ1,1

(x)

q
(i)
n,τ2,2

(x+ uh)

]
=

1√
n

n∑
i=1

[
p

(i)
n,τ1(x)

p
(i)
n,τ2(x+ uh)

]
+

1√
n

n∑
i=1

[
η

(i)
1

η
(i)
2

]
.

The last sum has the same distribution as [η>1 , η
>
2 ]> and the leading sum on the right-hand

side has the same distribution as that of [z>N,τ1(x), z>N,τ2(x + uh)]>. Therefore, we conclude

that

ξN,τ1,τ2(x, u; η1, η2)
d
=

1√
n

n∑
i=1

W̃ (i)
n,τ1,τ2

(x, u),



A-41

where

W̃ (i)
n,τ1,τ2

(x, u) ≡ Σ̃
−1/2
n,τ1,τ2,ε̄(x, u)

[
q

(i)
n,τ1,1

(x)

q
(i)
n,τ2,2

(x+ uh)

]
.

Now we invoke the Berry-Esseen-type bound of Sweeting (1977, Theorem 1) to prove Step

1. By Lemma B5, we deduce that

(B.20) sup
(x,τ)∈S

sup
P∈P

E||q(i)
n,τ,1(x)||3 ≤ Ch−d/2,

for some C > 0. Also, recall the definition of ρn,τ1,τ1,j,j(x, 0) in (4.7) and note that

sup
τ∈T

sup
(x,u)∈Sτ (ε)×U

sup
P∈P

tr
(

Σ̃n,τ1,τ2,ε̄(x, u)
)

(B.21)

≤ sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

∑
j∈J

(ρn,τ1,τ1,j,j(x, 0) + ρn,τ2,τ2,j,j(x, 0) + 2ε̄) ≤ C,

for some C > 0 that depends only on J and ε̄ by Lemma B4. Observe that by the definition

of Cn,p in (B.18), and (B.21),

sup
v∈R2J

|Cn,p(v)− Cn,p(0)|
1 + ||v||2p+2 min {||v||, 1}

≤ C.

We find that for each u ∈ U , ||W̃ (i)
n,τ1,τ2(x, u)||2 is equal to

tr

Σ̃
−1/2
n,τ1,τ2,ε̄(x, u)

[
q

(i)
n,τ1,1

(x)

q
(i)
n,τ1,2

(x+ uh)

][
q

(i)
n,τ2,1

(x)

q
(i)
n,τ2,2

(x+ uh)

]>
Σ̃
−1/2
n,τ1,τ2,ε̄(x, u)

(B.22)

≤ λmax

(
Σ̃−1
n,τ1,τ2,ε̄

(x, u)
)
tr

[ q
(i)
n,τ1,1

(x)

q
(i)
n,τ1,2

(x+ uh)

][
q

(i)
n,τ2,1

(x)

q
(i)
n,τ2,2

(x+ uh)

]> .

Therefore, E||W̃ (i)
n,τ1,τ2(x, u)||3 is bounded by

λ3/2
max

(
Σ̃−1
n,τ1,τ2,ε̄

(x, u)
)

E

∥∥∥∥∥
[

q
(i)
n,τ1,1

(x)

q
(i)
n,τ2,2

(x+ uh)

]∥∥∥∥∥
3

.

From (B.19),

λ3/2
max(Σ̃−1

n,τ1,τ2,ε̄
(x, u)) = λ

−3/2
min (Σ̃n,τ1,τ2,ε̄(x, u)) ≤ ε̄−3/2.

Therefore, we conclude that

sup
τ∈T

sup
(x,u)∈Sτ (ε)×U

sup
P∈P

E||W̃ (i)
n,τ1,τ2

(x, u)||3

≤ C1ε̄
−3/2 · sup

τ∈T ,x∈Sτ (ε)

sup
P∈P

E||q(i)
n,τ1,1

(x)||3

+C1ε̄
−3/2 · sup

τ∈T
sup

(x,u)∈Sτ (ε)×U
sup
P∈P

E||q(i)
n,τ2,2

(x+ uh)||3 ≤ C2ε̄
−3/2/

√
hd,
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where C1 > 0 and C2 > 0 are constants depending only on J , and the last bound follows

by (B.20). Therefore, by Theorem 1 of Sweeting (1977), we find that with ε̄ > 0 fixed and

n→∞,

sup
τ∈T

sup
(x,u)∈Sτ (ε)×U

sup
P∈P

∣∣∣∣∣ECn,p
(

1√
n

n∑
i=1

W̃ (i)
n,τ1,τ2

(x, u)

)
− ECn,p

(
Z̃n,τ1,τ2(x, u)

)∣∣∣∣∣(B.23)

= O
(
n−1/2h−d/2

)
= o(1),

where Z̃n,τ1,τ2(x, u) = [Zn,τ1,τ2,ε̄(x)>,Zn,τ1,τ2,ε̄(x+ uh)>]>.

Using similar arguments, we also deduce that for j = 1, 2, and A ⊂ NJ ,

sup
τ∈T

sup
(x,u)∈Sτ (ε)×U

sup
P∈P

∣∣∣∣∣EΛ̃A,p,j

(
1√
n

n∑
i=1

W̃ (i)
n,τ1,τ2

(x, u)

)
− EΛ̃A,p,j

(
Z̃n,τ1,τ2(x, u)

)∣∣∣∣∣ = o(1).

For some C > 0,

sup
τ∈T

sup
(x,u)∈Sτ (ε)×U

sup
P∈P

Cov (Λp(Zn,τ1,τ2,ε̄(x)),Λp(Zn,τ1,τ2,ε̄(x+ uh)))

≤ sup
τ∈T

sup
(x,u)∈Sτ (ε)×U

sup
P∈P

√
E ‖Zn,τ1,τ2,ε̄(x)‖2p

√
E ‖Zn,τ1,τ2,ε̄(x+ uh)‖2p < C.

The last inequality follows because Zn,τ1,τ2,ε̄(x) and Zn,τ1,τ2,ε̄(x + uh) are centered normal

random vectors with a covariance matrix that has a finite Euclidean norm by Lemma B4.

Hence we apply the Dominated Convergence Theorem to deduce the first statement of Step

1 from (B.23).

We turn to the second statement of Step 1. The statement immediately follows because

for each u ∈ U , the covariance matrix of Σ̃
−1/2
n,τ1,τ2,ε̄(x, u)ξn,τ1,τ2,ε̄(x, u) is equal to the covariance

matrix of [W(1)>
n,τ1,τ2,ε̄(x, u),W(2)>

n,τ1,τ2,ε̄(x, u)]>and∣∣wτ1,Bn(x)wτ2,B′n(x+ uh)− wτ1,Bn(x)wτ2,B′n(x)
∣∣→ 0,

as n→∞, for each u ∈ U , and for almost every x ∈ X (with respect to Lebesgue measure.)

Proof of Step 2: We consider the first statement. First, we write∣∣∣(σRn,A,A′,ε̄(Bn, B
′
n)
)2 −

(
σRn,A,A′(Bn, B

′
n)
)2
∣∣∣(B.24)

≤
∫
T

∫
T

∫
Bn

∫
U

∣∣∆η
n,τ1,τ2,1

(x, u)
∣∣wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2

+

∫
T

∫
T

∫
Bn

∫
U

∣∣∆η
n,τ1,τ2,2

(x, u)
∣∣wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2,
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where

∆η
n,τ1,τ2,1

(x, u) = EΛA,p(
√
nhdzN,τ1(x))EΛA′,p(

√
nhdzN,τ2(x+ uh))

−EΛA,p(
√
nhdzN,τ1(x; η1))EΛA′,p(

√
nhdzN,τ2(x+ uh; η2)),

and

∆η
n,τ1,τ2,2

(x, u) = EΛA,p(
√
nhdzN,τ1(x))ΛA′,p(

√
nhdzN,τ2(x+ uh))

−EΛA,p(
√
nhdzN,τ1(x; η1))ΛA′,p(

√
nhdzN,τ2(x+ uh; η2)).

By Hölder inequality, for C > 0 that depends only on P ,∣∣∆η
n,τ1,τ2,2

(x, u)
∣∣ ≤ CA1n(x, u) + CA2n(x, u),

where, if p = 1 then we set s = 2, and q = 1, and if p > 1, we set s = (p + 1)/(p − 1) and

q = (1− 1/s)−1,

A1n(x, u) = (nhd)p
{
E ‖zN,τ1(x)− zN,τ1(x; η1)‖2q} 1

2q

×
({

E ‖zN,τ1(x)‖2s(p−1)
} 1

2s
+
{

E ‖zN,τ1(x; η1)‖2s(p−1)
} 1

2s

)
×
√

E
(
‖zN,τ2(x+ uh)‖2p),

and

A2n(x, u) = (nhd)p
{
E ‖zN,τ2(x+ uh)− zN,τ2(x+ uh; η2)‖2q} 1

2q

×
({

E ‖zN,τ2(x+ uh)‖2s(p−1)
} 1

2s
+
{

E ‖zN,τ2(x+ uh; η2)‖2s(p−1)
} 1

2s

)
×
√

E
(
‖zN,τ1(x; η1)‖2p).

Now,

sup
(x,τ)∈S

sup
P∈P

E
∥∥∥√nhd{zN,τ (x)− zN,τ (x; η1)}

∥∥∥2q

= E
∥∥√ε̄Z∥∥2q

= Cε̄q,

where Z ∈ RJ is a centered normal random vector with identity covariance matrix IJ . Also,

we deduce that for some C > 0 that does not depend on n,

sup
(x,τ)∈S

sup
P∈P

E
∥∥∥√nhdzN,τ (x)

∥∥∥2s(p−1)

≤ C,
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by (B.12) of Lemma B5 and by the fact that 2s(p − 1) = 2(p + 1) ≤ M . Similarly, from

some large n on,

sup
(x,τ)∈S

sup
P∈P

E

(∥∥∥√nhdzN,τ (x+ uh; η2)
∥∥∥2p
)

≤ sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E

(∥∥∥√nhdzN,τ (x; η2)
∥∥∥2p
)
< C,

for some C > 0. Thus we conclude that for some C > 0,

sup
(τ1,τ2)∈T ×T

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

(A1n(x, u) + A2n(x, u)) ≤ C
√
ε̄,

and that for some C > 0,

sup
(τ1,τ2)∈T ×T

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

∣∣∆η
n,τ1,τ2,2

(x, u)
∣∣ ≤ C

√
ε̄.

Using similar arguments, we also find that for some C > 0,

sup
(τ1,τ2)∈T ×T

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

∣∣∆η
n,τ1,τ2,1

(x, u)
∣∣ ≤ C

√
ε̄.

Therefore, there exist C1 > 0 and C2 > 0 such that from some large n on,

sup
P∈P

∣∣σ2
n,A,A′,ε̄(Bn, B

′
n)− σ2

n,A,A′(Bn, B
′
n)
∣∣

≤ C1

√
ε̄

∫
T

∫
T

∫
Bn

∫
U
wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2.

Since the last multiple integral is finite, we obtain the first statement of Step 2.

We turn to the second statement of Step 2. Similarly as before, we write∣∣σ2
n,A,A′,ε̄(Bn, B

′
n)− σ2

n,A,A′(Bn, B
′
n)
∣∣

≤
∫
T

∫
T

∫
Bn

∫
U

∣∣∆η
1,τ1,τ2

(x, u)
∣∣wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2

+

∫
T

∫
T

∫
Bn

∫
U

∣∣∆η
2,τ1,τ2

(x, u)
∣∣wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2,

where

∆η
1,τ1,τ2

(x, u) = EΛA,p(W(1)
n,τ1,τ2

(x, u))EΛA′,p(W(2)
n,τ1,τ2

(x, u))

−EΛA,p(W(1)
n,τ1,τ2,ε̄(x, u))EΛA′,p(W(2)

n,τ1,τ2,ε̄(x, u)),

and

∆η
2,τ1,τ2

(x, u) = EΛA,p(W(1)
n,τ1,τ2

(x, u))ΛA′,p(W(2)
n,τ1,τ2

(x, u))

−EΛA,p(W(1)
n,τ1,τ2,ε̄(x, u))ΛA′,p(W(2)

n,τ1,τ2,ε̄(x, u)).
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Now, observe that for C > 0 that does not depend on ε̄, we have by Lemma B1(i),

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

∥∥∥∥∥∥Σ̃
1/2
n,τ1,τ2,ε̄(x, u)−

[
Σn,τ1(x, 0)

Σn,τ1,τ2(x, u)

Σn,τ1,τ2(x, u)

Σn,τ2(x+ uh)

]1/2
∥∥∥∥∥∥ ≤ C

√
ε̄.

Using this, recalling the definitions of W(1)
n,τ1,τ2(x, u) and W(2)

n,τ1,τ2(x, u) in (B.17), and following

the previous arguments in the proof of Step 1, we obtain the second statement of Step 2.

Lemma B7. Suppose that for some small ν1 > 0, n−1/2h−d−ν1 → 0, as n → ∞ and the

conditions of Lemma B6 hold. Then there exists C > 0 such that for any sequence of Borel

sets Bn ⊂ S, and A ⊂ NJ , from some large n on,

sup
P∈P

E

[∣∣∣∣h−d/2 ∫
Bn

{
ΛA,p(

√
nhdzn,τ (x))− E

[
ΛA,p(

√
nhdzN,τ (x))

]}
dQ(x, τ)

∣∣∣∣]
≤ C

√
Q(Bn).

Remark 4. The result is in the same spirit as Lemma 6.2 of Giné, Mason, and Zaitsev (2003).

(Also see Lemma A8 of Lee, Song and Whang (2013).) However, unlike these results, the

location normalization here involves E[ΛA,p(
√
nhdzN,τ (x))] instead of E[ΛA,p(

√
nhdzn,τ (x))].

We can obtain the same result with E[ΛA,p(
√
nhdzN,τ (x))] replaced by E[ΛA,p(

√
nhdzn,τ (x))],

but with a stronger bandwidth condition.

Like Lemma B6, the result of Lemma B7 does not require that the quantities
√
nhdzn,τ (x)

and
√
nhdzN,τ (x) have a (pointwise in x) nondegenerate limit distribution.

Proof of Lemma B7. As in the proof of Lemma A8 of Lee, Song, and Whang (2013), it

suffices to show that there exists C > 0 such that C does not depend on n and for any Borel

set Bn ⊂ R,

Step 1:

sup
P∈P

E

[∣∣∣∣h−d/2 ∫
Bn

{
ΛA,p(

√
nhdzn,τ (x))− ΛA,p(

√
nhdzN,τ (x))

}
dQ(x, τ)

∣∣∣∣] ≤ CQ(Bn), and

Step 2:

sup
P∈P

E

[∣∣∣∣h−d/2 ∫
Bn

{
ΛA,p(

√
nhdzN,τ (x))− E

[
ΛA,p(

√
nhdzN,τ (x))

]}
dQ(x, τ)

∣∣∣∣] ≤ C
√
Q(Bn).

By chaining Steps 1 and 2, we obtain the desired result.

Proof of Step 1: Similarly as in (2.13) of Horváth (1991), we first write

(B.25) zn,τ (x) = zN,τ (x) + vn,τ (x) + sn,τ (x),
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where, for βn,x,τ (Yi, (Xi − x)/h) defined prior to Lemma B5,

vn,τ (x) ≡
(
n−N
n

)
· 1

hd
E

[
βn,x,τ

(
Yi,

Xi − x
h

)]
and

sn,τ (x) ≡ 1

nhd

n∑
i=N+1

{
βn,x,τ

(
Yi,

Xi − x
h

)
− E

[
βn,x,τ

(
Yi,

Xi − x
h

)]}
,

and we write
∑n

i=N+1 = 0 if N = n, and
∑n

i=N+1 = −
∑N

i=n+1 if N > n.

Using (B.25), we deduce that for some C1, C2 > 0 that depend only on p,∫
Bn

|ΛA,p (zn,τ (x))− ΛA,p (zN,τ (x))| dQ(x, τ)(B.26)

≤ C1

∫
Bn

‖vn,τ (x)‖
(
‖zn,τ (x)‖p−1 + ‖zN,τ (x)‖p−1) dQ(x, τ)

+C2

∫
Bn

‖sn,τ (x)‖
(
‖zn,τ (x)‖p−1 + ‖zN,τ (x)‖p−1) dQ(x, τ)

≡ D1n +D2n, say.

To deal with D1n and D2n, we first show the following:

Claim 1: sup(x,τ)∈S supP∈P E[||vn,τ (x)||2] = O(n−1), and

Claim 2: sup(x,τ)∈S supP∈P E[||sn,τ (x)||2] = O(n−3/2h−d).

Proof of Claim 1: First, note that

sup
(x,τ)∈S

E
[
||vn,τ (x)||2

]
≤ E

∣∣∣∣n−Nn
∣∣∣∣2 · sup

(x,τ)∈S

∥∥∥∥ 1

hd
E

[
βn,x,τ

(
Yi,

Xi − x
h

)]∥∥∥∥2

.

Since E|n−1/2(n−N)|2 does not depend on the joint distribution of (Yi, Xi), E|n−1/2(n−
N)|2 ≤ O(1) uniformly over P ∈ P . Combining this with the second statement of (B.12),

the product on the right hand side becomes O(n−1) uniformly over P ∈ P .

Proof of Claim 2: Let η1 ∈ RJ be the random vector defined prior to Lemma B6, and

define

sn,τ (x; η1) ≡ sn,τ (x) +
(N − n)η1

n3/2hd/2
.

Note that

(B.27) E ‖sn,τ (x)‖2 ≤ 2E ‖sn,τ (x; η1)‖2 +
2

n2hd
E

∥∥∥∥(N − n)η1√
n

∥∥∥∥2

.

As for the last term, since N and η1 are independent, it is bounded by

1

n2hd

(
E

∣∣∣∣N − n√
n

∣∣∣∣2
)
· E ‖η1‖2 ≤ Cε̄

n2hd
= O(n−2h−d−ν1),
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from some large n on.

As for the leading expectation on the right hand side of (B.27), we write

E
∥∥∥√nhdsn,τ (x; η1)

∥∥∥2

= E

∥∥∥∥∥ 1√
n

n∑
i=N+1

q
(i)
n,τ,1(x)

∥∥∥∥∥
2

=
1

n

J∑
j=1

σ̄2
n,τ,j(x)E

(
n∑

i=N+1

q
(i)
n,τ,1,j(x)

σ̄n,τ,j(x)

)2

,

where q
(i)
n,τ,1(x)’s (i = 1, 2, ...) are i.i.d. copies of qn,τ (x) + η1 and q

(i)
n,τ,1,j(x) is the j-th entry

of q
(i)
n,τ,1(x), and σ̄2

n,τ,j(x) ≡ V ar(q
(i)
n,τ,1,j(x)). Recall that qn,τ (x) was defined prior to Lemma

B5. Now we apply Lemma 1(i) of Horváth (1991) to deduce that

sup
(x,τ)∈S

sup
P∈P

E

(
n∑

i=N+1

q
(i)
n,τ,1,j(x)

σ̄n,τ,j(x)

)2

≤ E|N − n| · E|Z1|2 + CE |N − n|1/2 · sup
(x,τ)∈S

sup
P∈P

E

∣∣∣∣∣q
(i)
n,τ,1,j(x)

σ̄n,τ,j(x)

∣∣∣∣∣
3

+C sup
(x,τ)∈S

sup
P∈P

E

∣∣∣∣∣q
(i)
n,τ,1,j(x)

σ̄n,τ,j(x)

∣∣∣∣∣
4

,

for some C > 0, where Z1 ∼ N(0, 1).

First, observe that sup(x,τ)∈S supP∈P σ̄n,τ,j(x) <∞ by Lemma B5, and

(B.28) inf
(x,τ)∈S

inf
P∈P

σ̄n,τ,j(x) > ε̄ > 0,

due to the additive term η1 in qn,τ (x) + η1. Let η1j be the j-th entry of η1. We apply Lemma

B5 to deduce that for some C > 0, from some large n on,

sup
(x,τ)∈S

sup
P∈P

E|(qn,τ,j(x) + η1j)/σ̄n,τ,j(x)|3 ≤ Ch−(d/2)−(ν1/2) and(B.29)

sup
(x,τ)∈S

sup
P∈P

E|(qn,τ,j(x) + η1j)/σ̄n,τ,j(x)|4 ≤ Ch−d−ν1 .

Since E|N − n| = O(n1/2) and E |N − n|1/2 = O(n1/4) (e.g. (2.21) and (2.22) of Horváth

(1991)), there exists C > 0 such that

(B.30) sup
(x,τ)∈S

sup
P∈P

E

(
n∑

i=N+1

q
(i)
n,τ,1,j(x)

σ̄n,τ,j(x)

)2

≤ C

ε̄4

{
n1/2 + n1/4h−(d/2)−(ν1/2) + h−d−ν1

}
.
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This implies that for some C > 0, (with ε̄ > 0 fixed while n→∞)

sup
(x,τ)∈S

sup
P∈P

E
∥∥∥√nhdsn,τ (x)

∥∥∥2

(B.31)

≤ O
(
n−1h−ν1

)
+O

(
n−1/2 + n−3/4h−(d/2)−(ν1/2) + n−1h−d−ν1

)
= O

(
n−1h−ν1

)
+O(n−1/2) = O(n−1/2),

since n−1/2h−d−ν1 → 0. Hence, we obtain Claim 2.

Using Claim 1 and the second statement of Lemma B5, we deduce that

sup
P∈P

E
[
np/2hd(p−1)/2D1n

]
≤ C1Q(Bn) sup

(x,τ)∈S
sup
P∈P

√
E
∥∥√nvn,τ (x)

∥∥2

×
√

E
∥∥∥√nhdzn,τ (x)

∥∥∥2p−2

+ E
∥∥∥√nhdzN,τ (x)

∥∥∥2p−2

≤ C2Q(Bn),

for C1, C2 > 0. Similarly, we can see that

sup
P∈P

E
[
np/2hd(p−1)/2D2n

]
= O(n−1/2h−d) = o(1),

using Claim 2 and the second statement of Lemma B5. Thus, we obtain Step 1.

Proof of Step 2: We can follow the proof of Lemma B6 to show that

E

[
h−d/2

∫
Bn

(
ΛA,p(

√
nhdzN,τ (x))− E

[
ΛA,p(

√
nhdzN,τ (x))

])
dQ(x, τ)

]2

=

∫
T

∫
T

∫
Bn,τ1∩Bn,τ2

∫
U
Cn,τ1,τ2,A,A′(x, u)dudxdτ1dτ2 + o(1),

where Bn,τ is the τ -section of Bn defined at the beginning of the proof of Lemma B6,

Cn,τ1,τ2,A,A′(x, u) is defined in (B.14), and the last o(1) term is o(1) uniform over P ∈ P .

Now, observe that

sup
(τ1,τ2)∈T ×T

sup
u∈U

sup
x∈X

sup
P∈P
|Cn,τ1,τ2,A,A′(x, u)|

≤ sup
(τ1,τ2)∈T ×T

sup
u∈U

sup
x∈X

sup
P∈P

√
E||W(1)

n,τ1,τ2(x, u)||2pE||W(2)
n,τ1,τ2(x, u)||2p <∞.
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Therefore,

E

[∣∣∣∣h−d/2 ∫
Bn

(
ΛA,p(

√
nhdzN,τ (x))− E

[
ΛA,p(

√
nhdzN,τ (x))

])
dQ(x, τ)

∣∣∣∣]
≤

√∫
T

∫
T

∫
U

∫
Bn,τ1∩Bn,τ2

Cn,τ1,τ2,A,A′(x, u)dxdudτ1dτ2 + o(1)

≤ C

√∫
T

∫
T

∫
U

∫
Bn,τ1∩Bn,τ2

dxdudτ1dτ2 + o(1),

for some C > 0. Now, observe that∫
T

∫
T

∫
Bn,τ1∩Bn,τ2

dxdτ1dτ2 ≤
∫
T
dτ2 ·

(∫
T

∫
Bn,τ1

dxdτ1

)
≤ CQ(Bn),

because T is a bounded set. Thus the proof of Step 2 is completed.

The next lemma shows the joint asymptotic normality of a Poissonized version of a nor-

malized test statistic and a Poisson random variable. Using this result, we can apply the

de-Poissonization lemma in Lemma B3. To define a Poissonized version of a normalized test

statistic, we introduce some notation.

Let C ⊂ Rd be a compact set such that C does not depend on P ∈ P and αP ≡ P{X ∈
Rd\C} satisfies that 0 < infP∈P αP ≤ supP∈P αP < 1. Existence of such C is assumed in

Assumption A6(ii). For cn →∞, we let Bn,A(cn; C) ≡ Bn,A(cn)∩(C×T ), where we recall the

definition of Bn,A(cn) = Bn,A(cn, cn). (Recall the definition of Bn,A(cn,1, cn,2) before Lemma

1.) Define

ζn,A ≡
∫
Bn,A(cn;C)

ΛA,p(
√
nhdzn,τ (x))dQ(x, τ), and

ζN,A ≡
∫
Bn,A(cn;C)

ΛA,p(
√
nhdzN,τ (x))dQ(x, τ).

Let µA’s be real numbers indexed by A ∈ NJ , and define

σ2
n(C) ≡

∑
A∈NJ

∑
A′∈NJ

µAµA′σn,A,A′(Bn,A(cn; C), Bn,A′(cn; C)),

where we recall the definition of σn,A,A′(·, ·) prior to Lemma B6. Define

Sn ≡ h−d/2
∑
A∈NJ

µA {ζN,A − EζN,A} .
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Also define

Un ≡
1√
n

{
N∑
i=1

1{Xi ∈ C} − nP {Xi ∈ C}

}
, and

Vn ≡
1√
n

{
N∑
i=1

1{Xi ∈ Rd\C} − nP
{
Xi ∈ Rd\C

}}
.

Let

Hn ≡
[

Sn
σn(C)

,
Un√

1− αP

]>
.

The following lemma establishes the joint convergence of Hn. In doing so, we need to be

careful in dealing with uniformity in P ∈ P , and potential degeneracy of the normalized test

statistic Sn.

Lemma B8. Suppose that the conditions of Lemma B7 hold and that cn →∞ as n→∞.
(i) If lim infn→∞ infP∈P σ

2
n(C) > 0, then

sup
P∈P

sup
t∈R2

|P {Hn ≤ t} − P {Z ≤ t}| → 0,

where Z ∼ N(0, I2).

(ii) If lim supn→∞ σ
2
n(C) = 0, then for each (t1, t2) ∈ R2,∣∣∣∣P {Sn ≤ t1 and

Un√
1− αP

≤ t2

}
− 1{0 ≤ t1}P {Z1 ≤ t2}

∣∣∣∣→ 0,

where Z1 ∼ N(0, 1).

Remark 5. The joint convergence result in Lemma B8 is divided into two separate results.

The first case is a situation where Sn is asymptotically nondegenerate uniformly in P ∈ P .

The second case deals with a situation where Sn is asymptotically degenerate for some P ∈ P .

Proof of Lemma B8. (i) Choose any small ε̄ > 0 and let

Hn,ε̄ ≡
[

Sn,ε̄
σn,ε̄(C)

,
Un√

1− αP

]>
,

where Sn,ε̄ is equal to Sn, except that ζN,A is replaced by

ζN,A,ε̄ ≡
∫
Bn,A(cn;C)

ΛA,p(
√
nhdzN,τ (x; η1))dQ(x, τ),

and zN,τ (x; η1) is as defined prior to Lemma B6, and σn,ε̄(C) is σn(C) except that Σ̃n,τ1,τ2(x, u)

is replaced by Σ̃n,τ1,τ2,ε̄(x, u). Also let

Cn ≡ EHnH
>
n and Cn,ε̄ ≡ EHn,ε̄H

>
n,ε̄.

First, we show the following statements.
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Step 1: For some C > 0, supP∈P |Cov(Sn,ε̄ − Sn, Un)| ≤ C
√
ε̄, for each fixed ε̄ > 0.

Step 2: supP∈P |Cov(Sn,ε̄, Un)| = o(hd/2), as n→∞.

Step 3: There exists c > 0 such that from some large n on,

inf
P∈P

λmin(Cn) > c.

Step 4: As n→∞,

sup
P∈P

sup
t∈R2

∣∣P {C−1/2
n Hn ≤ t

}
→ P {Z ≤ t}

∣∣→ 0.

From Steps 1-3, we find that supP∈P ‖Cn − I2‖ → 0, as n → ∞ and as ε̄ → 0. By Step 4,

we obtain (i) of Lemma B8.

Proof of Step 1: Observe that from an inequality similar to (B.26) in the proof of Lemma

B7,

|ζN,A,ε̄ − ζN,A| ≤ C||η1||
∫
Bn,A(cn;C)

∥∥∥√nhdzN,τ (x)
∥∥∥p−1

dQ(x, τ).

Using the fact that S is compact and does not depend on P ∈ P , for some constants

C1, C2, C3 > 0 that do not depend on P ∈ P or n,

E |ζN,A,ε̄ − ζN,A|2 ≤ C1E
[
||η1||2

]
·
∫
Bn,A(cn;C)

E
∥∥∥√nhdzN,τ (x)

∥∥∥2p−2

dQ(x, τ)

≤ C2ε̄ ·
∫
Bn,A(cn;C)

E
∥∥∥√nhdzN,τ (x)

∥∥∥2p−2

dQ(x, τ) ≤ C3ε̄,

by the independence between η1 and {zN,τ (x) : (x, τ) ∈ S}, and by the second statement of

Lemma B5. From the fact that

sup
P∈P

EU2
n ≤ sup

P∈P
(1− αP ) ≤ 1,

we obtain the desired result.

Proof of Step 2: Let Σ2n,τ,ε̄ be the covariance matrix of [(qn,τ (x) + η1)>, Ũn]>, where

Ũn = Un/
√
P{X ∈ C} and qn,τ (x) was defined prior to Lemma B5. We can write Σ2n,τ,ε̄ as[

Σn,τ,τ (x, 0) + ε̄IJ

E[(qn,τ (x) + η1)>Ũn]

E[(qn,τ (x) + η1)Ũn]

1

]

=

[
Σn,τ,τ (x, 0)√

1− ε̄E[q>n,τ (x)Ũn]

√
1− ε̄E[qn,τ (x)Ũn]

1− ε̄

]
+

[
ε̄IJ

0>
0

ε̄

]
+ An,τ (x),
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where

An,τ (x) ≡

[
0(

1−
√

1− ε̄
)

E[q>n,τ (x)Ũn]

(
1−
√

1− ε̄
)
E[qn,τ (x)Ũn]

0

]
.

The first matrix on the right hand side is certainly positive semidefinite. Note that(
qn,τ,j(x), Ũn

)
d
=

(
1√
n

n∑
k=1

q
(k)
n,τ,j(x),

1√
n

n∑
k=1

Ũ (k)
n

)
,

where (q
(k)
n,τ,j(x), Ũ

(k)
n )’s with k = 1, ..., n are i.i.d. copies of (qn,τ,j(x), Ūn), where

Ūn ≡
1√

P{X ∈ C}

{ ∑
1≤i≤N1

1{Xi ∈ C} − P {Xi ∈ C}

}
,

where N1 is the Poisson random variable with mean 1 that is involved in the definition of

qn,τ,j(x). Hence as for An,τ (x), note that for C1, C2 > 0,

sup
(x,τ)∈S

sup
P∈P

∣∣∣E [qn,τ,j(x)Ũn

]∣∣∣ ≤ sup
(x,τ)∈S

sup
P∈P

∣∣∣E [q(k)
n,τ,j(x)Ũ (k)

n

]∣∣∣(B.32)

≤ sup
(x,τ)∈S

sup
P∈P

E [|qn,τ,j(x)|]√
P{Xi ∈ C}

≤ sup
(x,τ)∈S

sup
P∈P

C1h
dkn,τ,j,1(x)

hd/2 (1− αP )
≤ C2h

d/2,

where kn,τ,j,1(x) was defined prior to Lemma B4. We conclude that

sup
(x,τ)∈S

sup
P∈P
||An,τ (x)|| = O(hd/2).

Therefore, from some large n on,

(B.33) inf
(x,τ)∈S

inf
P∈P

λmin (Σ2n,τ,ε̄) ≥ ε̄/2.

Let

Wn,τ (x; η1) ≡ Σ
−1/2
2n,τ,ε̄

[
qn,τ (x) + η1

Ũn

]
.

Similarly as in (B.22), we find that for some C > 0, from some large n on,

sup
(x,τ)∈S

sup
P∈P

E ‖Wn,τ (x; η1)‖3

≤ C sup
(x,τ)∈S

sup
P∈P

λ3/2
max

(
Σ−1

2n,τ,ε̄

)
sup

(x,τ)∈S
sup
P∈P

{
E
[
||qn,τ (x) + η1||3

]
+ E

[
|Ũn|3

]}
≤ C

( ε̄
2

)−3/2

sup
(x,τ)∈S

sup
P∈P

{
E
[
||qn,τ (x) + η1||3

]
+ E

[
|Ũn|3

]}
,
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where the last inequality uses (B.33). As for the last expectation, note that by Rosenthal’s

inequality, we have

sup
(x,τ)∈S

sup
P∈P

E
[
|Ũn|3

]
≤ C

for some C > 0. We apply the first statement of Lemma B5 to conclude that

sup
(x,τ)∈S

sup
P∈P

E ‖Wn,τ (x; η1)‖3 ≤ Cε̄−3/2h−d/2,

for some C > 0. For any vector v = [v>1 , v2]> ∈ RJ+1, we define

Dn,τ,p(v) ≡ ΛA,p

([
Σ

1/2
2n,τ,ε̄v

]
1

) [
Σ

1/2
2n,τ,ε̄v

]
2
,

where [a]1 of a vector a ∈ RJ+1 indicates the vector of the first J entries of a, and [a]2 the

last entry of a. By Theorem 1 of Sweeting (1977), we find that (with ε̄ > 0 fixed)

E

[
Dn,τ,p

(
1√
n

n∑
i=1

W (i)
n,τ (x; η1)

)]
= E [Dn,τ,p (ZJ+1)] +O(n−1/2h−d/2) = o(nd/2),

where ZJ+1 ∼ N(0, IJ+1) and W
(i)
n,τ (x; η1)’s are i.i.d. copies of Wn,τ (x; η1). The last equality

follows because n−1/2h−d/2 = o(hd/2) (by the condition that n−1/2h−d−ν1 → 0 for some small

ν1 > 0 as n→∞) and E[Dn,τ,p (ZJ+1)] = 0. Since

Cov
(

ΛA,p

(√
nhdzN,τ (x; η1)

)
, Un

)
= E

[
Dn,τ,p

(
1√
n

n∑
i=1

W (i)
n,τ (x; η1)

)]
,

we conclude that

sup
(x,τ)∈S

sup
P∈P

∣∣∣Cov (ΛA,p

(√
nhdzN,τ (x; η1)

)
, Un

)∣∣∣ = o(hd/2).

By applying the Dominated Convergence Theorem, we obtain Step 2.

Proof of Step 3: First, we show that

(B.34) V ar (Sn) = σ2
n(C) + o(1),

where o(1) is an asymptotically negligible term uniformly over P ∈ P . Note that

V ar (Sn) =
∑
A∈NJ

∑
A′∈NJ

µAµA′Cov(ψn,A, ψn,A′),

where ψn,A ≡ h−d/2(ζN,A − EζN,A). By Lemma B6, we find that for A,A′ ∈ NJ ,

Cov(ψn,A, ψn,A′) = σn,A,A′(Bn,A(cn; C), Bn,A′(cn; C)) + o(1),

uniformly in P ∈ P , yielding the desired result.
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Combining Steps 1 and 2, we deduce that

(B.35) sup
P∈P
|Cov(Sn, Un)| ≤ C

√
ε̄+ o(hd/2).

Let σ̄2
1 ≡ infP∈P σ

2
n(C) and σ̄2

2 ≡ infP∈P(1− αP ). Note that for some C1 > 0,

(B.36) inf
P∈P

σ̄2
1σ̄

2
2 > C1,

by the condition of the lemma. A simple calculation gives us

λmin(Cn) =
σ̄2

1 + σ̄2
2

2
− 1

2

(√
(σ̄2

1 + σ̄2
2)

2 − 4 {σ̄2
1σ̄

2
2 − Cov(Sn, Un)2}

)
(B.37)

≥ 1

2

{√
(σ̄2

1 + σ̄2
2)

2 −
(√

(σ̄2
1 + σ̄2

2)
2 − 4σ̄2

1σ̄
2
2

)}
− |Cov(Sn, Un)|

≥ σ̄2
1σ̄

2
2 − |Cov(Sn, Un)| ≥ C1 − C

√
ε̄+ o(hd/2),

where the last inequality follows by (B.35) and (B.36). Taking ε̄ small enough, we obtain

the desired result.

Proof of Step 4: Suppose that liminfn→∞ infP∈P σ
2
n(C) > 0. Let κ be the diameter of

the compact set K0 introduced in Assumption A2. Let C be given as in the lemma. Let

Zd be the set of d-tuples of integers, and let {Rn,i : i ∈ Zd} be the collection of rectangles

in Rd such that Rn,i = [an,i1 , bn,i1 ] × ... × [an,id , bn,id ], where ij is the j-th entry of i, and

hκ ≤ bn,ij − an,ij ≤ 2hκ, for all j = 1, ..., d, and two different rectangles Rn,i and Rn,j do not

have intersection with nonempty interior, and the union of the rectangles Rn,i, i ∈ Zdn, cover

X from some sufficiently large n. Here, Zdn is the set of d-tuples of integers whose absolute

values are less than or equal to n.

We let

Bn,A,x(cn) ≡ {τ ∈ T : (x, τ) ∈ BA(cn)} ,

Bn,i ≡ Rn,i ∩ C,

and In ≡ {i ∈ Zdn : Bn,i 6= ∅}. Then Bn,i has Lebesgue measure m(Bn,i) bounded by C1h
d

and the cardinality of the set In is bounded by C2h
−d for some positive constants C1 and

C2. Now let us define

∆n,A,i ≡ h−d/2
∫
Bn,i

∫
Bn,A,x(cn)

{
ΛA,p(

√
nhdzN,τ (x))− E

[
ΛA,p(

√
nhdzN,τ (x))

]}
dτdx.
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And also define Bn,A,i(cn) ≡ (Bn,i × T ) ∩Bn,A(cn),

αn,i ≡
∑

A∈NJ µA∆n,A,i

σn(C)
and

un,i ≡
1√
n

{
N∑
i=1

1 {Xi ∈ Bn,i} − nP{Xi ∈ Bn,i}

}
.

Then, we can write
Sn

σn(C)
=
∑
i∈In

αn,i and Un =
∑
i∈In

un,i.

By the definition of K0 in Assumption A2, by the definition of Rn,i and by the properties

of Poisson processes, one can see that the array {(αn,i, un,i)}i∈In is an array of 1-dependent

random field. (See Mason and Polonik (2009) for details.) For any q1, q2 ∈ R, let yn,i ≡
q1αn,i + q2un,i. The focus is on the convergence in distribution of

∑
i∈In yn,i uniform over

P ∈ P . Without loss of generality, we choose q1, q2 ∈ R\{0}. Define

V arP

(∑
i∈In

yn,i

)
= q2

1 + q2
2(1− αP ) + 2q1q2cn,P ,

uniformly over P ∈ P , where cn,P = Cov(Sn, Un). On the other hand, using Lemma B4 and

following the proof of Lemma A8 of Lee, Song, and Whang (2013), we deduce that

(B.38) sup
P∈P

∑
i∈In

E|yn,i|r = o(1)

as n→∞, for any r ∈ (2, (2p+ 2)/p]. By Theorem 1 of Shergin (1993), we have

sup
P∈P

sup
t∈R

∣∣∣∣∣P
{

1√
q2

1 + q2
2(1− αP ) + 2q1q2cn,P

∑
i∈In

yn,i ≤ t

}
− Φ (t)

∣∣∣∣∣
≤ sup

P∈P

C

{q2
1 + q2

2(1− αP ) + 2q1q2cn,P}r/2

{∑
i∈In

E|yn,i|r
}1/2

= o(1),

for some C > 0, by (B.38). Therefore, by Lemma B2(i), we have for each t ∈ R, and each

q ∈ R2\{0}, as n→∞,

sup
P∈P

∣∣∣∣∣E
[

exp

(
it

q>Hn√
q>Cnq

)]
− exp

(
−t

2

2

)∣∣∣∣∣→ 0.

Thus by Lemma B2(ii), for each t ∈ R2, we have

sup
P∈P

∣∣P {C−1/2
n Hn ≤ t

}
− P {Z ≤ t}

∣∣→ 0.
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Since the limit distribution of C
−1/2
n Hn is continuous, the convergence above is uniform in

t ∈ R2.

(ii) We fix P ∈ P such that limsupn→∞σ
2
n(C) = 0. Then by (B.34) above,

V ar (Sn) = σ2
n(C) + o(1) = o(1).

Hence, we find that Sn = oP (1). The desired result follows by applying Theorem 1 of Shergin

(1993) to the sum Un =
∑

i∈In un,i, and then applying Lemma B2(ii).

Lemma B9. Let C be the Borel set in Lemma B8.

(i) Suppose that the conditions of Lemma B8(i) are satisfied. Then as n→∞,

sup
P∈P

sup
t∈R

∣∣∣∣∣P
{
h−d/2

∑
A∈NJ µA {ζn,A − EζN,A}

σn(C)
≤ t

}
− Φ(t)

∣∣∣∣∣→ 0.

(ii) Suppose that the conditions of Lemma B8(ii) are satisfied. Then as n→∞,

h−d/2
∑
A∈NJ

µA {ζn,A − EζN,A}
p→ 0.

Note that in both statements, the location normalization has EζN,A instead of Eζn,A.

Proof of Lemma B9. (i) The conditional distribution of Sn/σn(C) given N = n is equal to

that of∑
A∈NJ µA

∫
Bn,A(cn;C)∩C

{
ΛA,p(

√
nhdzn,τ (x))− EΛA,p(

√
nhdzN,τ (x))

}
dQ(x, τ)

hd/2σn(C)
.

Using Lemmas B3(i) and B8(i), we find that

h−d/2
∑

A∈NJ µA {ζn,A − EζN,A}
σn(C)

d→ N(0, 1).

Since the limit distribution N(0, 1) is continuous and the convergence is uniform in P ∈ P ,

we obtain the desired result.

(ii) Similarly as before, the result follows from Lemmas B3(ii), B2(ii), and B8(ii).

Appendix C. Proofs of Auxiliary Results for Lemmas A2(ii), Lemma A4(ii),

and Theorem 1

The auxiliary results in this section are mostly bootstrap versions of the results in Appen-

dix B. To facilitate comparison, we name the first lemma to be Lemma C3, which is used

to control the discrepancy between the sample version of the scale normalizer σn, and its

population version. Then we proceed to prove Lemmas C4-C9 which run in parallel with

Lemmas B4-B9 as their bootstrap counterparts. We finish this subsection with Lemmas



A-57

C10-C12 which are crucial for dealing with the bootstrap test statistic’s location normal-

ization. More specifically, Lemmas C10 and C11 are auxiliary moment bound results that

are used for proving Lemma C12. Lemma C12 essentially delivers the result of Lemma A1

in Appendix A. This lemma is used to deal with the discrepancy between the population

location normalizer and the sample location normalizer. Controlling this discrepancy to the

rate oP (hd/2) is crucial for our purpose, because the bootstrap test statistic that is proposed

here does not involve the sample version of the location normalizer an for the sake of com-

putational expediency. Lemmas C10 and C11 provide necessary moment bounds to achieve

this convergence rate.

Let the random variables N and N1 represent Poisson random variables with mean n and 1

respectively. These random variables are taken to be independent of ((Y ∗i , X
∗
i )∞i=1, (Yi, Xi)

∞
i=1).

Let η1 and η2 be centered normal random vectors that are independent of each other and

independent of

((Y ∗i , X
∗
i )∞i=1, (Yi, Xi)

∞
i=1, N,N1) .

We will specify their covariance matrices in the proofs below. Throughout the proofs, the

bootstrap distribution P ∗ and expectations E∗ are viewed as the distribution of

((Y ∗i , X
∗
i )ni=1, N,N1, η1, η2) ,

conditional on (Yi, Xi)
n
i=1.

Define

ρ̃n,τ1,τ2,j,k(x, u) ≡ 1

hd
E∗
[
βn,x,τ1,j

(
Y ∗ij ,

X∗i − x
h

)
βn,x,τ2,k

(
Y ∗ik,

X∗i − x
h

+ u

)]
and

k̃n,τ,j,m(x) ≡ 1

hd
E∗
[∣∣∣∣βn,x,τ,j (Y ∗ij , X∗i − xh

)∣∣∣∣m] .
Note that ρ̃n,τ1,τ2,j,k(x, u) and k̃n,τ,j,m(x) are bootstrap versions of ρn,τ1,τ2,j,k(x, u) and k̃n,τ,j,m(x).

The lemma below establishes that the bootstrap version ρ̃n,τ1,τ2,j,k(x, u) is consistent for

ρn,τ1,τ2,j,k(x, u).

Lemma C3. Suppose that Assumption A6(i) holds and that n−1/2h−d/2 → 0, as n → ∞.

Then for each ε ∈ (0, ε1), with ε1 > 0 as in Assumption A6(i), as n→∞,

sup
(τ1,τ2)∈T ×T

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

E
(
|ρ̃n,τ1,τ2,j,k(x, u)− ρn,τ1,τ2,j,k(x, u)|2

)
→ 0.

Proof of Lemma C3. Define πn,x,u,τ1,τ2(y, z) = βn,x,τ1,j(yj, (z−x)/h)βn,x,τ2,k(yk, (z−x)/h+u)

for y = (y1, ..., yJ)> ∈ RJ , and write

ρ̃n,τ1,τ2,j,k(x, u)− ρn,τ1,τ2,j,k(x, u) =
1

nhd

n∑
i=1

{πn,x,u,τ1,τ2(Yi, Xi)− E [πn,x,u,τ1,τ2(Yi, Xi)]} .
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First, we note that

E

(
1√
n

n∑
i=1

{πn,x,u,τ1,τ2(Yi, Xi)− E [πn,x,u,τ1,τ2(Yi, Xi)]}

)2

≤ E
[
π2
n,x,u,τ1,τ2

(Yi, Xi)
]
.

By change of variables and Assumption A6(i), we have E
[
π2
n,x,u,τ1,τ2

(Yi, Xi)
]

= O(hd) uni-

formly over (τ1, τ2) ∈ T × T , (x, u) ∈ (Sτ1(ε) ∪ Sτ2(ε))× U and over P ∈ P . Hence

E
(
|ρ̃n,τ1,τ2,j,k(x, u)− ρn,τ1,τ2,j,k(x, u)|2

)
= O

(
n−1h−d

)
,

uniformly over (τ1, τ2) ∈ T × T , (x, u) ∈ (Sτ1(ε) ∪ Sτ2(ε)) × U and over P ∈ P . Since we

have assumed that n−1/2h−d/2 → 0 as n→∞, we obtain the desired result.

Lemma C4. Suppose that Assumption A6(i) holds and that for some C > 0,

lim sup
n→∞

n−1/2h−d/2 ≤ C.

Then for all m ∈ [2,M ] and all ε ∈ (0, ε1), with M > 2 and ε1 > 0 being the constants that

appear in Assumption A6(i)), there exists C1 ∈ (0,∞) that does not depend on n such that

for each j ∈ NJ ,

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E
[
k̃2
n,τ,j,m(x)

]
≤ C1.

Proof of Lemma C4. Since E∗[|βn,x,τ,j(Y ∗ij , (X∗i−x)/h)|m] = 1
n

∑n
i=1 |βn,x,τ,j(Yij, (Xi−x)/h)|m,

we find that

k̃2
n,τ,j,m(x) ≤ 2k2

n,τ,j,m(x) + 2e2
n,τ,j,m(x),

where

en,τ,j,m(x) ≡

∣∣∣∣∣ 1

nhd

n∑
i=1

∣∣∣∣βn,x,τ,j (Yij, Xi − x
h

)∣∣∣∣m − 1

hd
E

(∣∣∣∣βn,x,τ,j (Yij, Xi − x
h

)∣∣∣∣m)
∣∣∣∣∣ .

Similarly as in the proof of Lemma C3, we note that

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E
[∣∣e2

n,τ,j,m(x)
∣∣]

≤ sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

1

nh2d
E

[∣∣∣∣βn,x,τ,j (Yij, Xi − x
h

)∣∣∣∣2m
]

= O(n−1h−d) = o(1), as n→∞.

Hence the desired statement follows from Lemma B4.



A-59

Let

z∗n,τ (x) ≡ 1

nhd

n∑
i=1

βn,x,τ

(
Y ∗i ,

X∗i − x
h

)
− 1

hd
E∗
[
βn,x,τ

(
Y ∗i ,

X∗i − x
h

)]
, and

z∗N,τ (x) ≡ 1

nhd

N∑
i=1

βn,x,τ

(
Y ∗i ,

X∗i − x
h

)
− 1

hd
E∗
[
βn,x,τ

(
Y ∗i ,

X∗i − x
h

)]
.

We also let

q∗n,τ (x) ≡ 1√
hd

∑
i≤N1

{βn,x,τ (Y ∗i , (X∗i − x)/h)− E∗βn,x,τ (Y
∗
i , (X

∗
i − x)/h)} and

q̄∗n,τ (x) ≡ 1√
hd
{βn,x,τ (Y ∗i , (X∗i − x)/h)− E∗βn,x,τ (Y

∗
i , (X

∗
i − x)/h)} .

Lemma C5. Suppose that Assumption A6(i) holds and that for some C > 0,

limsupn→∞n
−1/2h−d/2 ≤ C.

Then for any m ∈ [2,M ] (with M being the constant M in Assumption A6(i)),

sup
(x,τ)∈S

sup
P∈P

√
E
[(

E∗
[
||q∗n,τ (x)||m

])2
]
≤ C̄1h

d(1−(m/2)), and(C.1)

sup
(x,τ)∈S

sup
P∈P

√
E
[(

E∗
[
||q̄∗n,τ (x)||m

])2
]
≤ C̄2h

d(1−(m/2)),

where C̄1, C̄2 > 0 are constants that depend only on m. If furthermore,

lim sup
n→∞

n−(m/2)+1hd(1−(m/2)) < C,

for some constant C > 0, then

sup
(x,τ)∈S

sup
P∈P

E
[
E∗
[
||
√
nhdz∗N,τ (x)||m

]]
≤

(
15m

logm

)m
max

{
C̄1, 2C̄1C

}
, and(C.2)

sup
(x,τ)∈X ε/2×T

sup
P∈P

E
[
E∗
[
||
√
nhdz∗n,τ (x)||m

]]
≤

(
15m

logm

)m
max

{
C̄2, 2C̄2C

}
,

where C̄1, C̄2 > 0 are the constants that appear in (C.1).

Proof of Lemma C5. Let q∗n,τ,j(x) be the j-th entry of q∗n,τ (x). For the first statement of the

lemma, it suffices to observe that for each ε ∈ (0, ε1), there exist C1 > 0 and C̄1 > 0 such

that

sup
τ∈T ,x∈Sτ (ε)

E
[(

E∗
[
|q∗n,τ,j(x)|m

])2
]

≤
C1h

2d
∑J

j=1 supτ∈T ,x∈Sτ (ε) supP∈P E
[
k̃2
n,τ,j,m(x)

]
hdm

≤ C̄1h
2d(1−(m/2)),
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where the last inequality uses Lemma C4. The second inequality in (C.1) follows similarly.

Let us consider (C.2). Let z∗N,τ,j(x) be the j-th entry of z∗N,τ (x). Then using Rosenthal’s

inequality (e.g. (2.3) of Giné, Mason, and Zaitsev (2003)), for some constant C1 > 0,

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E
[
E∗[|
√
nhdz∗N,τ,j(x)|m]

]
≤

(
15m

logm

)2m

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

{(
E
[
E∗
(
q∗2n,τ,j(x)

)])m/2
+ E

[
n−(m/2)+1E∗|q∗n,τ,j(x)|m

]}
.

The first expectation is bounded by C̄1 by (C.1).

The second expectation is bounded by C̄1n
−(m/2)+1hd(1−(m/2)). This gives the first bound

in (C.2). The second bound in (C.2) can be obtained similarly.

For any Borel sets B,B′ ⊂ S and A,A′ ⊂ NJ , let

σ̃Rn,A,A′(B,B
′) ≡

∫
T

∫
T

∫
B′τ2

∫
Bτ1

C∗n,τ1,τ2,A,A′(x, v)dxdvdτ1dτ2,

where Bτ ≡ {x ∈ X : (x, τ) ∈ B},

(C.3) C∗n,τ1,τ2,A,A′(x, v) ≡ h−dCov∗
(

ΛA,p(
√
nhdz∗N,τ1(x)),ΛA′,p(

√
nhdz∗N,τ2(v))

)
,

and Cov∗ represents covariance under P ∗. We also define

(C.4) σ̃Rn,A(B) ≡ σ̃Rn,A,A(B,B),

for brevity. Also, let Σ∗n,τ1,τ2(x, u) be the J × J matrix whose (j, k)-th entry is given by

ρ̃n,τ1,τ2,j,k(x, u). Fix ε̄ > 0 and define

Σ̃∗n,τ1,τ2,ε̄(x, u) ≡

[
Σ∗n,τ1,τ1(x, 0) + ε̄IJ

Σ∗n,τ1,τ2(x, u)

Σ∗n,τ1,τ2(x, u)

Σ∗n,τ2,τ2(x, 0) + ε̄IJ

]
.

We also define

ξ∗N,τ1,τ2(x, u; η1, η2) ≡
√
nhdΣ

∗−1/2
n,τ1,τ2,ε̄(x, u)

[
z∗N,τ1(x; η1)

z∗N,τ2(x+ uh; η2)

]
,

where η1 ∈ RJ and η2 ∈ RJ are random vectors that are independent, and independent of

((Y ∗i , X
∗
i )∞i=1, (Yi, Xi)

∞
i=1, N,N1), each following N(0, ε̄IJ), and define z∗N,τ (x; η1) ≡ z∗N,τ (x) +

η1/
√
nhd.

Lemma C6. Suppose that Assumption A6(i) holds and that nhd →∞, and

lim sup
n→∞

n−(m/2)+1hd(1−(m/2)) < C,

for some C > 0 and some m ∈ [2(p+ 1),M ].
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Then for any sequences of Borel sets Bn, B
′
n ⊂ S and for any A,A′ ⊂ NJ ,

sup
P∈P

E
(∣∣σ̃Rn,A,A′(Bn, B

′
n − σn,A,A′(Bn, B

′
n)
∣∣)→ 0,

where σn,A,A′(Bn, B
′
n) is as defined in (B.15).

Proof of Lemma C6. The proof is very similar to that of Lemma B6. For brevity, we sketch

the proof here. Define for ε̄ > 0,

σ̃Rn,A,A′,ε̄(Bn, B
′
n) ≡

∫
T

∫
T

∫
Bn,τ1

∫
U
g̃1n,τ1,τ2,ε̄(x, u)wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2,

τ̃n,A,A′,ε̄(Bn, B
′
n) ≡

∫
T

∫
T

∫
Bn,τ1

∫
U
g̃2n,τ1,τ2,ε̄(x, u)wτ1,Bn(x)wτ2,B′n(x+ uh)dudxdτ1dτ2,

where

g̃1n,τ1,τ2,ε̄(x, u) ≡ h−dCov∗(ΛA,p(
√
nhdz∗N,τ1(x; η1)),ΛA′,p(

√
nhdz∗N,τ2(x+ uh; η2))), and

g̃2n,τ1,τ2,ε̄(x, u) ≡ Cov∗(ΛA,p(Z̃n,τ1,τ2,ε̄(x)),ΛA′,p(Z̃n,τ1,τ2,ε̄(x+ uh))),

and [Z̃>n,τ1,τ2,ε̄(x), Z̃>n,τ1,τ2,ε̄(z)]> is a centered normal R2J -valued random vector with the same

covariance matrix as the covariance matrix of [
√
nhdz∗>N,τ1(x; η1),

√
nhdz∗>N,τ2(z; η2)]> under the

product measure of the bootstrap distribution P ∗ and the distribution of (η>1 , η
>
2 )>. As in

the proof of Lemma B6, it suffices for the lemma to show the following two statements.

(Step 1 ): As n→∞,

sup
P∈P

E
(∣∣σ̃Rn,A,A′,ε̄(Bn, B

′
n)− τ̃n,A,A′,ε̄(Bn, B

′
n)
∣∣) → 0, and

sup
P∈P

E (|τ̃n,A,A′,ε̄(Bn, B
′
n)− σn,A,A′,ε̄(Bn, B

′
n)|) → 0.

(Step 2 ): For some C > 0 that does not depend on ε̄ or n,

sup
P∈P
|σ̃Rn,A,A′,ε̄(Bn, B

′
n)− σ̃Rn,A,A′(Bn, B

′
n)| ≤ C

√
ε̄.

Then the desired result follows by sending n → ∞ and ε̄ ↓ 0, while chaining Steps 1 and 2

and the second convergence in Step 2 in the proof of Lemma B6.

We first focus on the first statement of Step 1. For any vector v = [v>1 ,v
>
2 ]> ∈ R2J , we

define

(C.5) C̃n,p(v) ≡ ΛA,p

([
Σ̃
∗1/2
n,τ1,τ2,ε̄(x, u)v

]
1

)
ΛA′,p

([
Σ̃
∗1/2
n,τ1,τ2,ε̄(x, u)v

]
2

)
,

where [a]1 of a vector a ∈ R2J indicates the vector of the first J entries of a, and [a]2 the

vector of the remaining J entries of a. Also, similarly as in (B.19),

(C.6) λmin

(
Σ̃∗n,τ1,τ2,ε̄(x, u)

)
≥ ε̄.
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Let q̄∗n,τ (x; η1) be the column vector of entries q̄∗n,τ,j(x; η1j) with j running in the set NJ ,

and with

q̄∗n,τ,j(x; η1j) ≡ p∗n,τ,j(x) + η1j,

where

p∗n,τ,j(x) =
1√
hd

∑
1≤i≤N1

{
βn,x,τ,j

(
Y ∗ij ,

X∗i − x
h

)
− E

[
βn,x,τ,j

(
Y ∗ij ,

X∗i − x
h

)]}
,

η1j is the j-th entry of η1, and N1 is a Poisson random variable with mean 1 and ((η1j)j∈A, N1)

is independent of {(Y >i , X>i , Y ∗>i , X∗>i )}ni=1. Let [p
∗(i)
n,τ1(x), p

∗(i)
n,τ2(x + uh)] be the i.i.d. copies

of [p∗n,τ1(x), p∗n,τ2(x + uh)] conditional on the observations {(Yi, Xi)}ni=1, and η
(i)
1 and η

(i)
2 be

i.i.d. copies of η1 and η2. Define

q∗(i)n,τ1
(x; η

(i)
1 ) = p∗(i)n,τ1

(x) + η
(i)
1 and q∗(i)n,τ2

(x+ uh; η
(i)
2 ) = p∗(i)n,τ2

(x+ uh) + η
(i)
2 .

Note that

1√
n

n∑
i=1

[
q
∗(i)
n,τ1(x; η

(i)
1 )

q
∗(i)
n,τ2(x+ uh; η

(i)
2 )

]
=

1√
n

n∑
i=1

[
p
∗(i)
n,τ1(x)

p
∗(i)
n,τ2(x+ uh)

]
+

1√
n

n∑
i=1

[
η

(i)
1

η
(i)
2

]
.

The last sum has the same distribution as [η>1 , η
>
2 ]> and the leading sum on the right-hand

side has the same bootstrap distribution as that of [z∗>N,τ1(x), z∗>N,τ2(x+uh)]>, P -a.e. Therefore,

we conclude that

ξ∗N,τ1,τ2(x, u; η
(i)
1 , η

(i)
2 )

d∗
=

1√
n

n∑
i=1

W̃ (i)
n,τ1,τ2

(x, u; η
(i)
1 , η

(i)
2 ),

where
d∗
= indicates the distributional equivalence with respect to the product measure of the

bootstrap distribution P ∗ and the joint distribution of (η
(i)
1 , η

(i)
2 ), P -a.e, and

W̃ (i)
n,τ1,τ2

(x, u; η
(i)
1 , η

(i)
2 ) ≡ Σ̃

∗−1/2
n,τ1,τ2,ε̄(x, u)

[
q

(i)
n (x; η

(i)
1 )

q
(i)
n (x+ uh; η

(i)
2 )

]
.

Following the arguments in the proof of Lemma B6, we find that for each u ∈ U , and for

ε ∈ (0, ε1) with ε1 as in Assumption A6(i),

sup
(x,u)∈(Sτ1∪Sτ2 )×U

sup
P∈P

E
[
E∗||W̃ (i)

n,τ1,τ2
(x, u; η

(i)
1 , η

(i)
2 )||3

]
≤ C1 sup

(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U
sup
P∈P

E
[
λ3

min

(
Σ̃
∗−1/2
n,τ1,τ2,ε̄(x, u)

)
E∗||q∗(i)n,τ1

(x; η
(i)
1 )||3

]
+C1 sup

(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U
sup
P∈P

E
[
λ3

min

(
Σ̃
∗−1/2
n,τ1,τ2,ε̄(x, u)

)
E∗||q∗(i)n,τ2

(x+ uh; η
(i)
2 )||3

]
,
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for some C1 > 0. As for the leading term,

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

E
[
λ3

min

(
Σ̃
∗−1/2
n,τ1,τ2,ε̄(x, u)

)
E∗||q∗(i)n,τ1

(x; η
(i)
1 )||3

]
≤ sup

(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U
sup
P∈P

√
E

[(
E∗||q∗(i)n,τ1(x; η

(i)
1 )||3

)2
]

× sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

√
E
[
λ6

min

(
Σ̃
∗−1/2
n,τ1,τ2,ε̄(x, u)

)]
≤ C2ε̄

−3

√
hd

,

by Lemma C5 and (C.6). Similarly, we observe that

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

E
[
λ3

min

(
Σ̃
∗−1/2
n,τ1,τ2,ε̄(x, u)

)
E∗||q∗(i)n,τ2

(x+ uh; η
(i)
2 )||3

]
≤ C2ε̄

−3

√
hd

.

Define

cn,τ1,τ2(x, u) = C̃n,p

(
1√
n

n∑
i=1

W̃ (i)
n,τ1,τ2

(x, u; η
(i)
1 , η

(i)
2 )

)
.

Let Φn,τ1,τ2(·;x, u) be the joint CDF of the random vector (Z̃>n,τ1,τ2,ε̄(x), Z̃>n,τ1,τ2,ε̄(x + uh))>.

By Theorem 1 of Sweeting (1977),

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

E

[∣∣∣∣cn,τ1,τ2(x, u)−
∫
C̃n,p(ζ)dΦn,τ1,τ2(ζ;x, u)

∣∣∣∣](C.7)

≤ C1√
n

sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

E
[
E∗||W̃ (i)

n,τ1,τ2
(x, u; η

(i)
1 , η

(i)
2 )||3

]
≤ C2ε̄

−3

√
nhd

.

Hence

E

[∣∣∣∣∣
∫
Bτ1

∫
U
{g̃1n,τ1,τ2,ε̄(x, u)− g̃2n,τ1,τ2,ε̄(x, u)}wτ1,B(x)wτ2,B′(x+ uh)dudx

∣∣∣∣∣
]

≤
∫
Bτ1

∫
U

E |g̃1n,τ1,τ2,ε̄(x, u)− g̃2n,τ1,τ2,ε̄(x, u)|wτ1,B(x)wτ2,B′(x+ uh)dudx

≤
∫
Bτ1

wτ1,B(x)wτ2,B′(x)dx

× sup
(x,u)∈(Sτ1 (ε)∪Sτ2 (ε))×U

sup
P∈P

E |g̃1n,τ1,τ2,ε̄(x, u)− g̃2n,τ1,τ2,ε̄(x, u)|

→ 0,

as n → ∞. The last convergence is due to (C.7) and hence uniform over (τ1, τ2) ∈ T × T .

The proof of Step 1 is thus complete.

We turn to the second statement of Step 1. Similarly as in the proof of Step 1 in the proof

of Lemma B6, the second statement of Step 1 follows by Lemma C4.
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Now we turn to Step 2. In view of the proof of Step 2 in the proof of Lemma B6, it suffices

to show that with s = (p+ 1)/(p− 1) if p > 1 and s = 2 if p = 1,

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E

[
E∗
∥∥∥√nhdz∗N,τ (x)

∥∥∥2s(p−1)
]

< C and(C.8)

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E

[
E∗
∥∥∥√nhdz∗N,τ (x; η1)

∥∥∥2s(p−1)
]

< C,

for some C > 0. First note that for any q > 0,

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E

[
E∗
∥∥∥√nhd{z∗N,τ (x)− z∗N,τ (x; η1)}

∥∥∥2q
]

= E
∥∥√ε̄Z∥∥2q

= Cε̄q,

where Z ∈ RJ is a centered normal random vector with covariance matrix IJ . Also, we

deduce that for some constants C1, C2 > 0,

sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E

[
E∗
∥∥∥√nhdz∗N,τ (x)

∥∥∥2s(p−1)
]

≤ sup
τ∈T ,x∈Sτ (ε)

sup
P∈P

E

[
E∗
∥∥∥√nhdz∗N,τ (x; η1)

∥∥∥2s(p−1)
]

+ C1ε̄
s(p−1) ≤ C1 + C2ε̄

s(p−1),

by the third statement of Lemma C5. This leads to the first and second statements of (C.8).

Thus the proof of the lemma is complete.

Lemma C7. Suppose that for some small ν1 > 0, n−1/2h−d−ν1 → 0, as n → ∞ and the

conditions of Lemma B6 hold. Then there exists C > 0 such that for any sequence of Borel

sets Bn ⊂ S, and A ⊂ NJ , from some large n on,

sup
P∈P

E

(
E∗
[∣∣∣∣h−d/2 ∫

Bn

{
ΛA,p(

√
nhdz∗n,τ (x))− E∗

[
ΛA,p(

√
nhdz∗N,τ (x))

]}
dQ(x, τ)

∣∣∣∣])
≤ C

√
Q(Bn).

Proof of Lemma C7. We follow the proof of Lemma B7 and show that for some C > 0,

Step 1: supP∈P E
(
E∗
[∣∣∣h−d/2 ∫Bn {ΛA,p(

√
nhdz∗n,τ (x))− ΛA,p(

√
nhdz∗N,τ (x))

}
dQ(x, τ)

∣∣∣]) ≤
CQ(Bn), and

Step 2:

sup
P∈P

E

(
E∗
[∣∣∣∣h−d/2 ∫

Bn

{
ΛA,p(

√
nhdz∗N,τ (x))− E∗[ΛA,p(

√
nhdz∗N,τ (x))]

}
dQ(x, τ)

∣∣∣∣])
≤ C

√
Q(Bn).
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Proof of Step 1: Similarly as in the proof of Step 1 in the proof of Lemma B7, we first

write

z∗n,τ (x) = z∗N,τ (x) + v∗n,τ (x) + s∗n,τ (x),

where

v∗n,τ (x) ≡
(
n−N
n

)
· 1

hd
E∗
[
βn,x,τ

(
Y ∗i ,

X∗i − x
h

)]
and

s∗n,τ (x) ≡ 1

nhd

n∑
i=N+1

{
βn,x,τ

(
Y ∗i ,

X∗i − x
h

)
− E∗

[
βn,x,τ

(
Y ∗i ,

X∗i − x
h

)]}
.

Similarly as in the proof of Lemma B7, we deduce that for some C1, C2 > 0,∣∣∣∣∫
Bn

{
ΛA,p

(
z∗n,τ (x)

)
− ΛA,p

(
z∗N,τ (x)

)}
dQ(x, τ)

∣∣∣∣
≤ C1

∫
Bn

∥∥v∗n,τ (x)
∥∥(∥∥z∗n,τ (x)

∥∥p−1
+
∥∥z∗N,τ (x)

∥∥p−1
)
dQ(x, τ)

+C2

∫
Bn

∥∥s∗n,τ (x)
∥∥(∥∥z∗n,τ (x)

∥∥p−1
+
∥∥z∗N,τ (x)

∥∥p−1
)
dQ(x, τ)

= D∗1n +D∗2n, say.

To deal with D∗1n and D∗2n, we first show the following:

Claim 1: sup(x,τ)∈S supP∈P E
(
E∗[||v∗n,τ (x)||2]

)
= O(n−1).

Claim 2: sup(x,τ)∈S supP∈P E
(
E∗[||s∗n,τ (x)||2]

)
= O(n−3/2h−d).

Proof of Claim 1: Similarly as in the proof of Lemma B7, we note that

E
(
E∗[||v∗n,τ (x)||2]

)
≤ E

∣∣∣∣(n−Nn
)∣∣∣∣2 E

[∥∥∥∥ 1

hd
E∗
[
βn,x,τ

(
Y ∗i ,

X∗i − x
h

)]∥∥∥∥2
]
.

By the first statement of Lemma C5, we have

sup
(x,τ)∈S

sup
P∈P

E

[∥∥∥∥ 1

hd
E∗
[
βn,x,τ

(
Y ∗i ,

X∗i − x
h

)]∥∥∥∥2
]

= O(1).

Since E |(n−N)/n|2 = O(n−1), we obtain Claim 1.

Proof of Claim 2: Let

s∗n,τ (x; η1) = s∗n,τ (x) +
(N − n)η1

n3/2hd/2
,
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where η1 is a random vector independent of ((Y ∗i , X
∗
i )ni=1, (Yi, Xi)

n
i=1, N) and followsN(0, ε̄IJ).

Note that

sup
(x,τ)∈S

sup
P∈P

E

(
E∗
∥∥∥√nhds∗n,τ (x)

∥∥∥2
)

≤ 2 sup
(x,τ)∈S

sup
P∈P

E

(
E∗
∥∥∥√nhds∗n,τ (x; η1)

∥∥∥2
)

+
2

n
E

∥∥∥∥(N − n)η1√
n

∥∥∥∥2

≤ 2 sup
(x,τ)∈S

sup
P∈P

E

(
E∗
∥∥∥√nhds∗n,τ (x; η1)

∥∥∥2
)

+
Cε̄2

n
,

as in the proof of Lemma B7. As for the leading expectation on the right hand side of (B.27),

we let C1 > 0 be as in Lemma C4 and note that

E

(
E∗
∥∥∥√nhds∗n,τ (x; η1)

∥∥∥2
)

=
∑
j∈NJ

E

E∗

(
1√
n

n∑
i=N+1

q
∗(i)
n,τ,j(x; η

(i)
1j )

)2


=
1

n

∑
j∈NJ

E

σ̃2
n,τ,j(x)E∗

(
n∑

i=N+1

q
∗(i)
n,τ,j(x; η

(i)
1j )

σ̃n,τ,j(x)

)2
 ,

where q
∗(i)
n,τ (x; η

(i)
1 )’s (i = 1, 2, ...) are as defined in the proof of Lemma C6 and q

∗(i)
n,τ,j(x; η

(i)
1j )

is the j-th entry of q
∗(i)
n,τ (x; η

(i)
1 ) and σ̃2

n,τ,j(x) = V ar∗(q
∗(i)
n,τ,j(x; η

(i)
1j )) > 0 and V ar∗ denotes the

variance with respect to the joint distribution of ((Y ∗i , X
∗
i )ni=1, η

(i)
1j ) conditional on (Yi, Xi)

n
i=1.

We apply Lemma 1(i) of Horváth (1991) to deduce that

E∗

(
n∑

i=N+1

q
∗(i)
n,τ,j(x; η

(i)
1j )

σ̃n,τ,j(x)

)2

≤ C
√
n+ CE∗

∣∣∣∣∣q
∗(i)
n,τ,j(x; η

(i)
1j )

σ̃n,τ,j(x)

∣∣∣∣∣
3
(C.9)

+CE∗

∣∣∣∣∣q
∗(i)
n,τ,j(x; η

(i)
1j )

σ̃n,τ,j(x)

∣∣∣∣∣
4
 ,

for some C > 0. Using this, Lemma C5, and following arguments similarly as in (B.29),

(B.30) and (B.31), we conclude that

sup
(x,τ)∈S

sup
P∈P

E

(
E∗
∥∥∥√nhds∗n,τ (x)

∥∥∥2
)
≤ O

(
n−1h−ν1

)
+O

(
n−1/2 + n−3/4h−d/2−ν1 + n−1h−d−ν1

)
= O

(
n−1h−ν1

)
+O

(
n−1/2

)
,

since n−1/2h−d−ν1 → 0. This delivers Claim 2.

Using Claims 1 and 2, and following the arguments in the proof of Lemma B7, we obtain

Step 1.
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Proof of Step 2: We can follow the proof of Lemma B6 to show that

E

[
E∗
[
h−d/2

∫
Bn

(
ΛA,p(

√
nhdz∗N,τ (x))− E∗

[
ΛA,p(

√
nhdz∗N,τ (x))

])
dQ(x, τ)

]2
]

= E

[∫
T

∫
T

∫
Bn,τ1∩Bn,τ2

∫
U
C∗n,τ1,τ2,A,A′(x, u)dudxdτ1dτ2

]
+ o(1)

≤ C

∫
T

∫
T

∫
Bn,τ1∩Bn,τ2

dxdτ1dτ2 + o(1) ≤ CQ(Bn),

where C∗n,τ1,τ2,A,A′(x, v) is as defined in (C.3). We obtain the desired result of Step 2.

Let C ⊂ Rd, αP ≡ P{X ∈ Rd\C} and Bn,A(cn; C) be as introduced prior to Lemma B8.

Define

ζ∗n,A ≡
∫
Bn,A(cn;C)

ΛA,p(
√
nhdz∗n,τ (x))dQ(x, τ), and

ζ∗N,A ≡
∫
Bn,A(cn;C)

ΛA,p(
√
nhdz∗N,τ (x))dQ(x, τ).

Let µA’s be real numbers indexed by A ⊂ NJ . We also define Bn,A(cn; C) as prior to Lemma

B8 and let

S∗n ≡ h−d/2
∑
A∈NJ

µA
{
ζ∗N,A − E∗ζ∗N,A

}
,

U∗n ≡
1√
n

{
N∑
i=1

1{X∗i ∈ C} − nP ∗ {X∗i ∈ C}

}
, and

V ∗n ≡ 1√
n

{
N∑
i=1

1{X∗i ∈ Rd\C} − nP ∗
{
X∗i ∈ Rd\C

}}
.

We let

H∗n ≡
[

S∗n
σn(C)

,
U∗n√

1− αP

]
.

The following lemma is a bootstrap counterpart of Lemma B8.

Lemma C8. Suppose that the conditions of Lemma C6 hold and that cn →∞, as n→∞.
(i) If lim infn→∞ infP∈P σ

2
n(C) > 0, then for all a > 0,

sup
P∈P

P

{
sup
t∈R2

|P ∗ {H∗n ≤ t} − P {Z ≤ t}| > a

}
→ 0,

where Z ∼ N(0, I2).
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(ii) If lim supn→∞ σ
2
n(C) = 0, then, for each (t1, t2) ∈ R2 and a > 0,

sup
P∈P

P

{∣∣∣∣P ∗{S∗n ≤ t1 and
U∗n√

1− αP
≤ t2

}
− 1 {0 ≤ t1}P {Z1 ≤ t2}

∣∣∣∣ > a

}
→ 0.

Proof of Lemma C8. Similarly as in the proof of Lemma C8, we fix ε̄ > 0 and let

H∗n,ε̄ ≡
[

S∗n,ε̄
σn,ε̄(C)

,
U∗n√

1− αP

]>
,

where S∗n,ε̄ is equal to S∗n, except that ζ∗N,A is replaced by

ζ∗N,A,ε̄ ≡
∫
Bn,A(cn;C)

ΛA,p(
√
nhdz∗N,τ (x; η1))dQ(x, τ),

and z∗N,τ (x; η1) is as defined prior to Lemma C6. Also let

C̃n ≡ E∗H∗nH
∗>
n and C̃n,ε̄ ≡ E∗H∗n,ε̄H

∗>
n,ε̄.

First, we show the following statements.

Step 1: supP∈PP
{
|Cov∗(S∗n,ε̄ − S∗n, U∗n)| > M

√
ε̄
}
→ 0, as n→∞ and M →∞.

Step 2: For any a > 0, supP∈PP
{∣∣Cov(S∗n,ε̄, U

∗
n)
∣∣ > ahd/2

}
→ 0, as n→∞.

Step 3: There exists c > 0 such that from some large n on,

inf
P∈P

λmin(C̃n) > c.

Step 4: For any a > 0, as n→∞,

sup
P∈P

P

{
sup
t∈R2

∣∣∣P ∗ {C̃−1/2
n H∗n ≤ t

}
→ P {Z ≤ t}

∣∣∣ > a

}
→ 0.

Combining Steps 1-4, we obtain (i) of Lemma B8.

Proof of Step 1: Observe that∣∣ζ∗N,A,ε̄ − ζ∗N,A∣∣ ≤ C||η1||
∫
Bn,A(cn;C)

∥∥∥√nhdz∗N,τ (x)
∥∥∥p−1

dQ(x, τ).

As in the proof of Step 1 in the proof of Lemma B8, we deduce that

E∗
[∣∣ζ∗N,A,ε̄ − ζ∗N,A∣∣2] ≤ Cε̄

∫
Bn,A(cn;C)

E∗
∥∥∥√nhdz∗N,τ (x)

∥∥∥2p−2

dQ(x, τ).

Hence for some C1, C2 > 0,

E
(
E∗
[∣∣ζ∗N,A,ε̄ − ζ∗N,A∣∣2])(C.10)

≤ Cε̄

∫
Bn,A(cn;C)

E

(
E∗
∥∥∥√nhdz∗N,τ (x)

∥∥∥2p−2
)
dQ(x, τ) ≤ C2ε̄
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by the second statement of Lemma C5.

On the other hand, observe that E∗U∗2n ≤ 1. Hence

P
{
|Cov∗(S∗n,ε̄ − S∗n, U∗n)| > M

√
ε̄
}
≤ |NJ | · P

{
max
A∈NJ

E∗
[∣∣ζ∗N,A,ε̄ − ζ∗N,A∣∣2] > M2ε̄

}
.

By Markov’s inequality, the last probability is bounded by (for some C > 0 that does not

depend on P ∈ P)

M−2ε̄−1
∑
A∈NJ

E
(
E∗
[∣∣ζ∗N,A,ε̄ − ζ∗N,A∣∣2]) ≤ CM−2,

by (C.10). Hence we obtain the desired result.

Proof of Step 2: Let Σ̃∗2n,τ,ε̄ be the covariance matrix of [(q∗n,τ (x) + η1)>, Ũ∗n]> under P ∗,

where Ũ∗n = U∗n/
√
P{X ∈ C}. Using Lemma C4 and following the same arguments in (B.32),

we find that

sup
(x,τ)∈S

sup
P∈P

E
[
E∗
[
q∗n,τ,j(x)Ũ∗n

]]
≤ C2h

d/2,

for some C2 > 0. Therefore, using this result and following the proof of Step 3 in the proof

of Lemma B8, we deduce that (everywhere)

(C.11) λmin

(
Σ̃∗2n,τ,ε̄

)
≥ ε̄−

∥∥A∗n,τ (x)
∥∥ ,

for some random matrix A∗n,τ (x) such that

sup
(x,τ)∈S

sup
P∈P

E
[∥∥A∗n,τ (x)

∥∥] = O(hd/2).

Hence by (C.11),

inf
(x,τ)∈S

inf
P∈P

P
{
λmin

(
Σ̃∗2n,τ,ε̄

)
≥ ε̄/2

}
(C.12)

≥ inf
(x,τ)∈S

inf
P∈P

P
{∥∥A∗n,τ (x)

∥∥ ≤ ε̄/2
}

≥ 1− 2

ε̄
sup

(x,τ)∈S
sup
P∈P

E
[∥∥A∗n,τ (x)

∥∥]→ 1,

as n→∞.

Now note that (
q∗n,τ,j(x), Ũ∗n

)
d∗
=

(
1√
n

n∑
k=1

q
(k)∗
n,τ,j(x),

1√
n

n∑
k=1

Ũ (k)∗
n

)
,

where (q
(k)∗
n,τ,j(x), Ũ

(k)∗
n )’s with k = 1, ..., n are i.i.d. copies of (q∗n,τ,j(x), Ū∗n), and

Ū∗n ≡
1√

nP{X ∈ C}

{ ∑
1≤i≤N1

1{X∗i ∈ C} − P ∗ {X∗i ∈ C}

}
.
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Note also that by Rosenthal’s inequality,

limsupn→∞ sup
P∈P

P
{

E∗
[
|Ũ (k)∗

n |3
]
> M

}
→ 0,

as M →∞. Define

W ∗
n,τ (x; η1) ≡ Σ̃

∗−1/2
2n,τ,ε̄

[
q∗n,τ (x) + η1

Ũ∗n

]
.

Using (C.12) and Lemma C5, and following the same arguments in the proof of Step 2 in

the proof of Lemma B8, we deduce that

limsupn→∞ sup
(x,τ)∈S

sup
P∈P

P
{

E∗
∥∥W ∗

n,τ (x; η1)
∥∥3
> Mε̄−3/2h−d/2

}
→ 0,

as M →∞. For any vector v = [v>1 , v2]> ∈ RJ+1, we define

D̃n,τ,p(v) ≡ Λp

([
Σ̃
∗1/2
2n,τ,ε̄v

]
1

) [
Σ̃
∗1/2
2n,τ,ε̄v

]
2
,

where [a]1 of a vector a ∈ RJ+1 indicates the vector of the first J entries of a, and [a]2 the

last entry of a. By Theorem 1 of Sweeting (1977), we find that (with ε̄ > 0 fixed)

E∗

[
D̃n,τ,p

(
1√
n

n∑
i=1

W (i)∗
n,τ (x; η1)

)]
= E

[
D̃n,τ,p (ZJ+1)

]
+OP (n−1/2h−d/2) = oP (nd/2),

P-uniformly, where ZJ+1 ∼ N(0, IJ+1) and W
(i)∗
n,τ (x; η1)’s are i.i.d. copies of W ∗

n,τ (x; η1) under

P ∗. The last equality follows because n−1/2h−d/2 = o(hd/2) and E[D̃n,τ,p (ZJ+1)] = 0. Since

Cov∗
(

ΛA,p

(√
nhdz∗N,τ (x; η1)

)
, U∗n

)
= E∗

[
D̃n,τ,p

(
1√
n

n∑
i=1

W (i)∗
n,τ (x)

)]
,

we conclude that

(C.13) sup
(x,τ)∈S

∣∣∣Cov∗ (ΛA,p

(√
nhdz∗N,τ (x; η1)

)
, U∗n

)∣∣∣ = oP (hd/2),

uniformly in P ∈ P .

Now for some C > 0,

P
{∣∣Cov(S∗n,ε̄, U

∗
n)
∣∣ > ahd/2

}
≤ P

{
C sup

(x,τ)∈S

∣∣∣Cov∗ (ΛA,p

(√
nhdz∗N,τ (x; η1)

)
, U∗n

)∣∣∣ > ahd/2

}
.

The last probability vanishes uniformly in P ∈ P by (C.13). By applying the Dominated

Convergence Theorem, we obtain Step 2.

Proof of Step 3: First, we show that

(C.14) V ar∗ (S∗n) = σ2
n(C) + oP (1),
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where oP (1) is uniform over P ∈ P . Note that

V ar∗ (S∗n) =
∑
A∈NJ

∑
A′∈NJ

µAµA′Cov
∗(ψ∗n,A, ψ

∗
n,A′),

where ψ∗n,A ≡ h−d/2(ζ∗N,A − E∗ζ∗N,A). By Lemma C6, we find that for A,A ∈ NJ ,

Cov∗(ψ∗n,A, ψ
∗
n,A′) = σn,A,A′(Bn,A(cn; C), Bn,A′(cn; C)) + oP (1),

uniformly in P ∈ P , yielding the desired result of (C.14).

Combining Steps 1 and 2, we deduce that for some C > 0,

sup
P∈P
|Cov∗(S∗n, U∗n)| ≤

√
ε̄ ·OP (1) + oP (hd/2).

Let σ̃2
1 ≡ V ar∗(S∗n) and σ̃2

2 ≡ 1− α̃P , where α̃P ≡ P ∗
{
X∗i ∈ Rd\C

}
. Observe that

σ̃2
1 = σn(C) + oP (1) > C1 + oP (1), P-uniformly,

for some C1 > 0 that does not depend on n or P by the assumption of the lemma. Also note

that

α̃P = αP + oP (1) < 1− C2 + oP (1), P-uniformly,

for some C2 > 0. Therefore, following the same arguments as in (B.37), we obtain the desired

result.

Proof of Step 4: We take {Rn,i : i ∈ Zd}, and define

BA,x(cn) ≡ {τ ∈ T : (x, τ) ∈ BA(cn)} ,

Bn,i ≡ Rn,i ∩ C,

Bn,A,i(cn) ≡ (Bn,i × T ) ∩BA(cn),

and In ≡ {i ∈ Zdn : Bn,i 6= ∅} as in the proof of Step 4 in the proof of Lemma B8. Also,

define

∆∗n,A,i ≡ h−d/2
∫
Bn,i

∫
BA,x(cn)

{
ΛA,p(z

∗
N,τ (x))− E∗

[
ΛA,p(z

∗
N,τ (x))

]}
dτdx.

Also, define

α∗n,i ≡
∑

A∈NJ µA∆∗n,A,i√
V ar∗ (S∗n)

and

u∗n,i ≡
1√
n

{
N∑
i=1

1 {X∗i ∈ Bn,i} − nP ∗{X∗i ∈ Bn,i}

}
and write

S∗n√
V ar∗ (S∗n)

=
∑
i∈In

α∗n,i and U∗n =
∑
i∈In

u∗n,i.
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By the properties of Poisson processes, one can see that the array {(α∗n,i, u∗n,i)}i∈In is an array

of 1-dependent random field under P ∗. For any q = (q1, q2) ∈ R2\{0}, let y∗n,i ≡ q1α
∗
n,i+q2u

∗
n,i

and write

V ar∗

(∑
i∈In

y∗n,i

)
= q2

1 + q2
2(1− α̃P ) + 2q1q2c̃n,P ,

uniformly over P ∈ P , where c̃n,P = Cov∗(S∗n, U
∗
n). On the other hand, following the proof

of Lemma A8 of Lee, Song, and Whang (2013) using Lemma C4, we deduce that

(C.15)
∑
i∈In

E∗|y∗n,i|r = oP (1), P-uniformly,

as n → ∞, for any r ∈ (2, (2p + 2)/p], uniformly over P ∈ P . By Theorem 1 of Shergin

(1993), we have

sup
t∈R

∣∣∣∣∣P ∗
{

1√
q2

1 + q2
2(1− α̃P ) + 2q1q2c̃n,P

∑
i∈In

y∗n,i ≤ t

}
− Φ(t)

∣∣∣∣∣
≤ C

{q2
1 + q2

2(1− α̃P ) + 2q1q2c̃n,P}r/2

{∑
i∈In

E∗|y∗n,i|r
}1/2

= oP (1),

for some C > 0 uniformly in P ∈ P , by (C.15). By Lemma B2(i), we have for each t ∈ R

and q ∈ R2\{0} as n→∞,∣∣∣∣∣∣E∗
exp

it q>H∗n√
q>C̃nq

− exp

(
−t

2

2

)∣∣∣∣∣∣ = oP (1),

uniformly in P ∈ P . Thus by Lemma B2(ii), for each t ∈ R2, we have∣∣∣P ∗ {C̃−1/2
n H∗n ≤ t

}
− P {Z ≤ t}

∣∣∣ = oP (1).

Since the limit distribution of C̃
−1/2
n H∗n is continuous, the convergence above is uniform in

t ∈ R2.

(ii) We fix P ∈ P such that limsupn→∞σ
2
n(C) = 0. Then by (C.14) above and Lemma C6,

V ar∗ (S∗n) = σ2
n(C) + oP (1) = oP (1).

Hence, we find that S∗n = oP ∗(1) in P . The desired result follows by applying Theorem 1 of

Shergin (1993) to the sum U∗n =
∑

i∈In u
∗
n,i, and then applying Lemma B2.

Lemma C9. Let C be the Borel set in Lemma C8.
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(i) Suppose that the conditions of Lemma C8(i) are satisfied. Then for each a > 0, as

n→∞,

sup
P∈P

P

{
sup
t∈R

∣∣∣∣∣P
{
h−d/2

∑
A∈NJ µA

{
ζ∗n,A − E∗ζ∗N,A

}
σn(C)

≤ t

}
− Φ(t)

∣∣∣∣∣ > a

}
→ 0.

(ii) Suppose that the conditions of Lemma C8(ii) are satisfied. Then for each a > 0, as

n→∞,

sup
P∈P

P

{∣∣∣∣∣h−d/2 ∑
A∈NJ

µA
{
ζ∗n,A − E∗ζ∗N,A

}∣∣∣∣∣ > a

}
→ 0.

Proof of Lemma C9. The proofs are precisely the same as those of Lemma B9, except that

we use Lemma C8 instead of Lemma B8 here.

Lemma C10. Suppose that the conditions of Lemma B5 hold. Then for any small ν > 0,

there exists a positive sequence εn = o(hd) such that for all r ∈ [2,M/2] (with M ≥ 4 being

as in Assumption A6(i)),

sup
(x,τ)∈S

sup
P∈P

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||r = O

(
h−(r−2)(M−1

M−2)d−ν
)
,

where ηn ∈ RJ is distributed as N(0, εnIJ) and independent of ((Y >i , X
>
i )∞i=1, N) in the

definition of qn,τ (x), and

(C.16) Σn,τ,εn(x) ≡ Σn,τ,τ (x, 0) + εnIJ and qn,τ (x; ηn) ≡ qn,τ (x) + ηn.

Suppose furthermore that λmin(Σn,τ,τ (x, 0)) > c > 0 for some c > 0 that does not depend on

n or P ∈ P. Then

sup
(x,τ)∈S

sup
P∈P

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||r = O

(
h−(r−2)d/2

)
.

Proof of Lemma C10. We first establish the following fact.

Fact: Suppose that W is a random vector such that E||W ||2 ≤ cW for some constant cW > 0.

Then, for any r ≥ 2 and a positive integer m ≥ 1,

E [||W ||r] ≤ Cm
(
E
[
||W ||am(r)

])1/(2m)
,

where am(r) = 2m(r − 2) + 2, and Cm > 0 is a constant that depends only on m and cW .

Proof of Fact: The result follows by repeated application of Cauchy-Schwarz inequality:

E||W ||r ≤
(
E||W ||2(r−1)

)1/2 (
E||W ||2

)1/2 ≤ c
1/2
W

(
E||W ||2(r−1)

)1/2
,

where we replace r on the left hand side by 2(r − 1), and repeat the procedure to obtain

Fact.

Let us consider the first statement of the lemma. Using Fact, we take a small ν1 > 0 and
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εn = hd+ν1 , and choose a largest integer m ≥ 1 such that am(r) ≤ M . Such an m exists

because 2 ≤ r ≤M/2. We bound

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||r ≤ Cm

(
E||Σ−1/2

n,τ,εn(x)qn,τ (x; ηn)||am(r)
)1/(2m)

.

By Lemma B5, we find that

sup
(x,τ)∈S

sup
P∈P

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||am(r)(C.17)

≤ sup
(x,τ)∈S

sup
P∈P

λam(r)/2
max

(
Σ−1
n,τ,εn(x)

)
E||qn,τ (x; ηn)||am(r)

≤ λ
−am(r)/2
min (εnIJ)h(1−(am(r)/2))d.

By the definition of εn = hd+ν1 ,

ε−am(r)/2
n h(1−(am(r)/2))d = h(1−am(r))d−am(r)ν1/2.

We conclude that

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||r ≤ Cm

(
h(1−am(r))d−am(r)ν1/2

)1/2m

= Cm
(
h(−1−2m(r−2))d−(2m(r−2)+2)ν1/2

)1/2m

= Cmh
(−2−m−(r−2))d−((r−2)+2−m+1)ν1/2.

Since am(r) ≤M , or 2−m ≥ (r − 2)/(M − 2), the last term is bounded by

Cmh
−(r−2)(M−1

M−2)d−((r−2)+
2(r−2)
M−2 )ν1/2.

By taking ν1 small enough, we obtain the desired result.

Now, let us turn to the second statement of the lemma. Since

λam(r)/2
max

(
Σ−1
n,τ,εn(x)

)
< c−am(r)/2,

the last bound in (C.17) turns out to be

c−am(r)/2h(1−(am(r)/2))d.

Therefore, we conclude that

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||r ≤ Cm

(
c−am(r)/2h(1−(am(r)/2))d

)1/2m

= Cmc
−{(r−2)+21−m}/2h(2−m−{(r−2)+21−m}/2)d

= Cmc
−{(r−2)+21−m}/2h−(r−2)d/2.

Again, using the inequality 2−m ≥ (r − 2)/(M − 2), we obtain the desired result.

Lemma C11. Suppose that the conditions of Lemma C5 hold. Then for any small ν > 0,

there exists a positive sequence εn = o(hd) such that for all r ∈ [2,M/2] (with M ≥ 4 being
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as in Assumption A6(i)),

sup
(x,τ)∈S

E∗||Σ̃−1/2
n,τ,εn(x)q∗n,τ (x; ηn)||r = OP

(
h−(r−2)(M−1

M−2)d−ν
)
, uniformly in P ∈ P ,

where ηn ∈ RJ is distributed as N(0, εnIJ) and independent of ((Y ∗>i , X∗>i )ni=1, (Y
>
i , X

>
i )ni=1, N)

in the definition of q∗n,τ (x), and

Σ̃n,τ,εn(x) ≡ Σ̃n,τ,τ (x, 0) + εnIJ .

Suppose furthermore that

sup
(x,τ)∈S

sup
P∈P

P
{
λmin(Σ̃n,τ,τ (x, 0)) > c

}
→ 0,

for some c > 0 that does not depend on n or P ∈ P. Then

sup
(x,τ)∈S

E∗||Σ̃−1/2
n,τ,εn(x)q∗n,τ (x; ηn)||r = OP

(
h−(r−2)d/2

)
, uniformly in P ∈ P .

Proof of Lemma C11. The proof is precisely the same as that of Lemma C10, where we use

Lemma C5 instead of Lemma B5.

We let for a sequence of Borel sets Bn in S and λ ∈ {0, d/4, d/2}, A ⊂ NJ , and a fixed

bounded function δ on S,

aRn (Bn) ≡
∫
Bn

E
[
ΛA,p(

√
nhdzN,τ (x) + hλδ(x, τ))

]
dQ(x, τ)

aR∗n (Bn) ≡
∫
Bn

E∗
[
ΛA,p(

√
nhdz∗N,τ (x) + hλδ(x, τ))

]
dQ(x, τ), and

an(Bn) ≡
∫
Bn

E
[
ΛA,p(W(1)

n,τ,τ (x, 0) + hλδ(x, τ))
]
dQ(x, τ),

where z∗N,τ (x) is a random vector whose j-th entry is given by

z∗N,τ,j(x) ≡ 1

nhd

N∑
i=1

βn,x,τ,j(Y
∗
ij , (X

∗
i − x)/h)− 1

hd
E∗
[
βn,x,τ,j(Y

∗
ij , (X

∗
i − x)/h)

]
.

Lemma C12. Suppose that the conditions of Lemmas C10 and C11 hold and that

n−1/2h−( 3M−4
2M−4)d−ν → 0,

as n→∞, for some small ν > 0. Then for any sequence of Borel sets Bn in S,

sup
P∈P

∣∣aRn (Bn)− an(Bn)
∣∣ = o(hd/2) and

sup
P∈P

P
{∣∣aR∗n (Bn)− an(Bn)

∣∣ > ahd/2
}

= o(1).
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Proof of Lemma C12. For the statement, it suffices to show that uniformly in P ∈ P ,

sup
(x,τ)∈S

∣∣∣∣∣ EΛA,p(
√
nhdzN,τ (x) + hλδ(x, τ))

−EΛA,p(W(1)
n,τ,τ (x, 0) + hλδ(x, τ))

∣∣∣∣∣ = o(hd/2), and(C.18)

sup
(x,τ)∈S

∣∣∣∣∣ E∗ΛA,p(
√
nhdz∗N,τ (x) + hλδ(x, τ))

−EΛA,p(W(1)
n,τ,τ (x, 0) + hλδ(x, τ))

∣∣∣∣∣ = oP (hd/2).

We prove the first statement of (C.18). The proof of the second statement of (C.18) can be

done in a similar way.

Take small ν > 0. We apply Lemma C10 by choosing a positive sequence εn = o(hd) such

that for any r ∈ [2,M/2],

(C.19) sup
(x,τ)∈S

sup
P∈P

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||r = O

(
h−(r−2)(M−1

M−2)d−ν
)
,

where qn,τ (x; ηn) and Σn,τ,εn(x) are as in Lemma C10. We follow the arguments in the proof

of Step 2 in Lemma B6 to bound the left-hand side in the first supremum in (C.18) by

sup
(x,τ)∈S

sup
P∈P

∣∣∣EΛA,p(
√
nhdzN,τ (x; ηn) + hλδ(x, τ))− EΛA,p(W(1)

n,τ,τ,εn(x, 0) + hλδ(x, τ))
∣∣∣+C√εn,

for some C > 0, where

zN,τ (x; ηn) ≡ zN,τ (x) + ηn/
√
nhd,

and W(1)
n,τ,τ,εn(x, 0) is as defined in (B.17). Let

ξN,τ (x; ηn) ≡
√
nhdΣ−1/2

n,τ,εn(x) · zN,τ (x; ηn) and

Z(1)
n,τ,τ,εn(x, 0) ≡ Σ−1/2

n,τ,εn(x) ·W(1)
n,τ,τ,εn(x, 0).

We rewrite the previous absolute value as

(C.20) sup
(x,τ)∈S

sup
P∈P

∣∣∣EΛΣ
A,n,p(

√
nhdξN,τ (x; ηn))− EΛΣ

n,p(Z(1)
n,τ,τ,εn(x, 0))

∣∣∣ ,
where ΛΣ

A,n,p(v) ≡ ΛA,p(Σ
1/2
n,τ,εn(x)v+hλδ(x, τ)). Note that the condition forM in Assumption

A6(i) that M ≥ 2(p+2), we can choose r = max{p, 3}. Then r ∈ [2,M/2] as required. Using

Theorem 1 of Sweeting (1977), we bound the above supremum by (with r = max{p, 3})
C1√
n

sup
(x,τ)∈S

sup
P∈P

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||3

+
C2√
nr−2

sup
(x,τ)∈S

sup
P∈P

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||r

+C3 sup
(x,τ)∈S

sup
P∈P

Eωn,p

(
Z(1)
n,τ,τ,εn(x, 0);

C4√
n

E||Σ−1/2
n,τ,εn(x)qn,τ (x; ηn)||3

)
,
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for some positive constants C1, C2, C3, and C4, where

ωn,p (v; c) ≡ sup
{
|ΛΣ

A,n,p(v)− ΛΣ
A,n,p(y)| : y ∈ R|A|, ||v − y|| ≤ c

}
.

The proof is complete by (C.19) and by the condition n−1/2h−( 3M−4
2M−4)d−ν → 0.

Appendix D. Proof of Theorem AUC1

The conclusion of Theorem AUC1 follows immediately from Theorem 1, provided that

all the regularity conditions in Theorem 1 are satisfied. The following lemma shows that

Assumptions AUC1-AUC4 are sufficient conditions for that purpose. One key condition to

check the regularity condition of Theorem 1 is to establish asymptotic linear representations

in Assumptions A1 and B1. We borrow the results from Lee, Song, and Whang (2015).

Lemma AUC 1. Suppose that Assumptions AUC1-AUC4 hold. Then Assumptions A1-A6

and B1-B4 hold with the following definitions: J = 2, rn,j ≡
√
nhd,

vn,τ,1(x) ≡ e>1 {γτ,2(x)− γτ,3(x)},

vn,τ,2(x) ≡ b− e>1 {2γτ,2(x)− γτ,3(x)},

βn,x,τ,1(Yi, z) ≡ αn,x,τ,2(Yi, z)− αn,x,τ,3(Yi, z), and

βn,x,τ,2(Yi, z) ≡ −2αn,x,τ,2(Yi, z) + αn,x,τ,3(Yi, z),

where l̃τ (u) ≡ τ − 1{u ≤ 0}, Yi = {(B`i, Li) : ` = 1, . . . , Li}, and

αn,x,τ,k(Yi, z) ≡ −1 {Li = k}
k∑
l=1

l̃τ
(
B`i − γ>τ,k(x) ·H · c (z)

)
e>1 M

−1
n,τ,k(x)c (z)K (z) .

Proof of Lemma AUC1. First, let us turn to Assumption A1. By Assumptions AUC2 and

AUC3, it suffices to consider v̂τ,2(x) that uses b instead of b̂. The asymptotic linear repre-

sentation in Assumption A1 follows from Theorem 1 of Lee, Song, and Whang (2015). The

error rate oP (
√
hd) in Assumption A1 is satisfied, because

(D.1) h−d/2

(
log1/2 n

n1/4hd/4

)
= n−1/4h−3d/4 log1/2 n→ 0,

by Assumption AUC2(ii) and the condition r > 3d/2 − 1. Assumption A2 follows because

both βn,x,τ,1(Yi, z) and βn,x,τ,2(Yi, z) have a multiplicative component of K(z) which has a

compact support by Assumption AUC2(i). As for Assumption A3, we use Lemma 2. First
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define

ex,τ,k,li ≡ 1 {Li = k} l̃τ
(
Bli − γ>τ,k(x) ·H · c

(
Xi − x
h

))
and

ξx,τ,k,i ≡ e>1 M
−1
n,τ,k(x)c

(
Xi − x
h

)
K

(
Xi − x
h

)
First observe that for each fixed x2 ∈ Rd, τ2 ∈ T , and λ > 0,

E

[
sup

||x2−x3||+||τ2−τ3||≤λ

(
αn,x2,τ2,2

(
Yi,
Xi − x2

h

)
− αn,x3,τ3,2

(
Yi,
Xi − x3

h

))2
]

(D.2)

≤ 2
k∑
l=1

E

[
E

[
sup

||x2−x3||+||τ2−τ3||≤λ
(ex2,τ2,k,li − ex3,τ3,k,li)

2 |Xi

]
ξ2
x2,τ2,k,i

]

+2
k∑
l=1

E

[
sup

||x2−x3||+||τ2−τ3||≤λ
(ξx2,τ2,k,i − ξx3,τ3,k,i)

2

]
.

Using Lipschitz continuity of the conditional density of Bli given Li = k and Xi = x in (x, τ)

and Lipschitz continuity of γτ,k(x) in (x, τ) (Assumption AUC1), we find that the first term

is bounded by Ch−s1λ for some C > 0 and s1 > 0. Since

Mn,τ,k(x) = kP {Li = k|Xi = x} fτ,k(0|x)f(x)

∫
K(t)c(t)c(t)>dt+ o(1),

we find that M−1
n,τ,k(x) is Lipschitz continuous in (x, τ) by Assumptions AUC1. Hence the

last term in (D.2) is also bounded by Ch−s2λ2 for some C > 0 and s2 > 0. Therefore, if we

take

bn,ij(x, τ) = αn,x,τ,2

(
Yi,
Xi − x
h

)
,

this function satisfies the condition in Lemma 2. Also, observe that

E

[∣∣∣∣αn,x,τ,2(Yi,Xi − x
h

)∣∣∣∣4
]
≤ C,

because αn,x,τ,2(·, ·) is uniformly bounded. We also obtain the same result for αn,x,τ,3(·, ·).
Thus the conditions of Lemma 2 are satisfied with bn,ij(x, τ) taken to be βn,x,τ,1(Yi, (Xi−x)/h)

or βn,x,τ,2(Yi, (Xi−x)/h). Now Assumption A3 follows from Lemma 2(i). The rate condition

in Assumption A4(i) is satisfied by Assumption AUC2(ii). Assumption A4(ii) is imposed

directly by Assumption AUC4(i). Since we are taking σ̂τ,j(x) = σ̂∗τ,j(x) = 1, it suffices to

take σn,τ,j(x) = 1 in Assumption A5 and Assumption B3. Assumption A6(i) is satisfied

because βn,x,τ,j is bounded. Assumption A6(ii) is imposed directly by Assumption AUC4(ii).

Assumption B1 follows by Lemma QR2 of Lee, Song, and Whang (2015). Assumption B2

follows from Lemma 2(ii). Assumption B4 follows from the rate condition in Assumption
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AUC2(ii). In fact, when βn,x,τ,j is bounded, the rate condition in Assumption B4 is reduced

to n−1/2h−3d/2−ν → 0, as n→∞, for some small number ν > 0.

Appendix E. Potential Areas of Applications

Econometric models of games belong to a related but distinct branch of the literature,

compared to the auction models. In this literature, inference on many game theoretic models

are recently based on partial identification or functional inequalities. For example, see Tamer

(2003), Andrews, Berry, and Jia (2004), Berry and Tamer (2007), Aradillas-López and Tamer

(2008), Ciliberto and Tamer (2009), Beresteanu, Molchanov, and Molinari (2011), Galichon

and Henry (2011), Chesher and Rosen (2012), and Aradillas-López and Rosen (2013), among

others. See de Paula (2013) and references therein for a broad recent development in this

literature. Our general method provides researchers in this field with a new inference tool

when they have continuous covariates.

Inequality restrictions also arise in testing revealed preferences. Blundell, Browning, and

Crawford (2008) used revealed preference inequalities to provide the nonparametric bounds

on average consumer responses to price changes. In addition, Blundell, Kristensen, and

Matzkin (2014) used the same inequalities to bound quantile demand functions. It would

be possible to use our framework to test revealed preference inequalities either in average

demand functions or in quantile demand functions. See also Hoderlein and Stoye (2014) and

Kitamura and Stoye (2013) for related issues of testing revealed preference inequalities.

In addition to the literature mentioned above, many results on partial identification can

be written as functional inequalities. See, e.g., Imbens and Manski (2004), Manski (2003),

Manski (2007), Manski and Pepper (2000), Tamer (2010), Chesher and Rosen (2017), and

references therein.
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