ONLINE APPENDICES TO “TESTING FOR A GENERAL CLASS OF
FUNCTIONAL INEQUALITIES”

Appendix A gives the proofs of Theorems 1-5, and Appendices B and C offer auxiliary
results for the proofs of Theorems 1-5. Appendix D contains the proof of Theorem AUCI.

In Appendix E, we discuss potential areas of applications of our test.

APPENDIX A. PROOFS OF THEOREMS 1-5

The roadmap of Appendix A is as follows. Appendix A begins with the proofs of Lemma
1 (the representation of §) and Lemma 2 (the uniform convergence of o, (z)). Then we
establish auxiliary results, Lemmas A1-A4, to prepare for the proofs of Theorems 1-3. The
brief descriptions of these auxiliary results are given below.

Lemma Al establishes asymptotic representation of the location normalizers for the test
statistic both in the population and in the bootstrap distribution. The crucial implication
is that the difference between the population version and the bootstrap version is of order
op(h%?), P-uniformly. The result is in fact an immediate consequence of Lemma C12 in
Appendix C.

Lemma A2 establishes uniform asymptotic normality of the representation of  and its
bootstrap version. The asymptotic normality results use the method of Poissonization as in
Giné, Mason, and Zaitsev (2003) and Lee, Song, and Whang (2013). However, in contrast
to the preceding research, the results established here are much more general, and hold
uniformly over a wide class of probabilities. The lemma relies on Lemmas B7-B9 in Appendix
B and their bootstrap versions in Lemmas C7-C9 in Appendix C. These results are employed
to obtain the uniform asymptotic normality of the representation of 6 in Lemma A2.

Lemma A3 establishes that the estimated contact sets B 4(¢,) are covered by its enlarged
population version, and covers its shrunk population version with probability approaching
one uniformly over P € P. In fact, this is an immediate consequence of the uniform conver-
gence results for 0, ;(z) and 6, ;(z) in Assumptions 3 and 5. Lemma A3 is used later, when
we replace the estimated contact sets by their appropriate population versions, eliminating
the nuisance to deal with the estimation errors in By(é,).

Lemma A4 presents the approximation result of the critical values for the original and
bootstrap test statistics in Lemma A2, by critical values from the standard normal distri-
bution uniformly over P € P. Although we do not propose using the normal critical values,
the result is used as an intermediate step for justifying the use of the bootstrap method in
this paper. Obviously, Lemma A4 follows as a consequence of Lemma A2.

Equipped with Lemmas A1-A4, we proceed to prove Theorem 1. For this, we first use the

representation result of Lemma 1 for 6. In doing so, we use Ba(¢n, 1, nu) as a population
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version of B4(¢é,). This is because
Bu(en,r,cnu) C BA(én)

with probability approaching one by Lemma A3, and thus, makes the bootstrap test statistic
0* dominate the one that involves B a(Cn.L, cnp) in place of B 4(¢,). The distribution of the
latter bootstrap version with Ba(c,, 1, ¢, ) is asymptotically equivalent to the representation
of O with B a(Cn.L, cnp) after location-scale normalization, as long as the limiting distribution
is nondegenerate. When the limiting distribution is degenerate, we use the second component
h%?n+a* in the definition of Cpy tO ensure the asymptotic validity of the bootstrap procedure.
For both cases of degenerate and nondegenerate limiting distributions, Lemma A1 which
enables one to replace a* by an appropriate population version is crucial.

The proof of Theorem 2 that shows the asymptotic exactness of the bootstrap test modifies
the proof of Theorem 1 substantially. Instead of using the representation result of Lemma
1 for  with By a(cnr, capy), we now use the same version but with B, a(cnv, ¢, ). This
is because for asymptotic exactness, we need to approximate the original and bootstrap
quantities by versions using B, 4(¢,) for small ¢,, and to do this, we need to control the
remainder term in the bootstrap statistic with the integral domain 3A(én)\Bn,A(qn). By our

choice of By, a(cnu,cnr) and by the fact that we have

EA(én) C Bpa(cny, cnL),

with probability approaching one by Lemma A3, we can bound the remainder term with
a version with the integral domain B, s(cn v, ¢n.r)\Bn,a(gn). Thus this remainder term
vanishes by the condition for A, and ¢, in the definition of P, (A, gn)-

The rest of the proofs are devoted to proving the power properties of the bootstrap proce-
dure. Theorem 3 establishes consistency of the bootstrap test. Theorems 4 and 5 establish
local power functions under Pitman local drifts. The proofs of Theorems 4-5 are similar to
the proof of Theorem 2, as we need to establish the asymptotically exact form of the rejection
probability for the bootstrap test statistic. Nevertheless, we need to employ some delicate
arguments to deal with the Pitman local alternatives, and need to expand the rejection prob-
ability to obtain the final results. For this, we first establish Lemmas A5-A7. Essentially,
Lemma A5 is a version of the representation result of Lemma 1 under local alternatives.
Lemma A6 and Lemma A7 parallel Lemma Al and Lemma 2 under local alternatives.

Let us begin by proving Lemma 1. First, recall the following definitions

(A.l) éT(l') — rn,j{ﬁﬂj(x) — vnﬂ',j(x” and §i(x) _ rnﬁj{@;j(l’) - @,T,j(x)}

&77j<x> jEN; &i’](x) JjEN; ‘
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Also, define

07 (@) 0r(w)

Proof of Lemma 1. It suffices to show the following two statements:

(A2) ﬁT(x) = {W} and u7-<£U; 6_) — |:Tn,jvn,7,j($):| .
JEN; jEN;

Step 1: As n — oo,

inf P / A, (G, (2))dQ(x,7) =0 p — 1,
it {\() , (8, (2)) dQ(a, 7) }

where we recall B,,(¢y1, ¢n2) = Uaen, Bna(Cnis Cna).
Step 2: For each A € N, as n — oo,

PePy

inf P / {A, (G- (2)) — Aap (G- ()} dQ(z,7) =0 p — L.
Bn,A(Cn,17Cn,2)
First, we prove Step 1. We write the integral in the probability as

(A.3) / A, (8- (2) +ur(z;0)) dQ(z, 7).
S\Bn(cn,1:cn,2)

Let
An(a,7) = {j e, Tnatnri@) o >} .

.73 ()
We first show that when (x,7) € S\B, (¢, ¢n2), we have A, (z,7) = @ under the null
hypothesis. Suppose that (z,7) € S\B,,(cu1,¢n2) but to the contrary, A, (z,7) is nonempty.

By the definition of A, (z,7), we have (x,7) € By A, (z,r)(Cn,1, Cnj2). However, since

S\Bn(cn,la Cn,2) = S N (QAENJBfL’A<CTL,17 Cn,2)) C Bg,An(x77‘) (Cn,lu Cn,2)7

this contradicts the fact that (z,7) € S\ B, (¢n1, ¢n2). Hence whenever (z,7) € S\B,,(¢u1, cn2),

we have A, (z,7) = 2.

Note that
vnvaj (x) — Un,‘r,j (fL’) { 1 + O'nvaj (x) B 6sz (.1') } — Uanvj (x) {1 + OP(l)}
(3'7-7]'(1') O—n,‘r,j(m) 5'7-7]'(33') On TJ(.CE) ’

where op(1) is uniform over (z,7) € S and over P € P by Assumption A5. Fix a small
e > 0. We have for all j € Ny,

inf P {Tn’jU"’T’j<x> <l A Cn for all (z,7) € S\Bn(cn1, Cn’2>}

PePy o-i(x) 1+¢
. T'n 'vnT'<x) Cnl/\CnZ
> inf P{ DI o ’ ’ for all (z,7) € S\B,(cn1,¢n }—>1,
= pem, { O, () (I+e){L+op(1)} (@,7) & S\Balen1: nz2)
as n — oo, where the last convergence follows because A,(z,7) = @ for all (z,7) €

S\By,(¢n,1,n2). Therefore, with probability approaching one, the term in (A.3) is bounded
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by

~ Cn1 A Cn.2
Ad / A (ST(x - (;> 1 ) dQ T, T),
( ) S\Bn(cn,1,¢n,2) g ) 1+¢ d ( )

where 1; is a J-dimensional vector of ones. Using the definition of A,(v), bound the above
integral by

2
J 2 p/

(A.5) ey

J=1

Cn,1 A Cn,2
1+4+¢

07 j () — Vp 7 ()
0r5(x)

Thnj SUp
(z,7)eS

Note that by Assumption A3,

U7 (%) = Vnr ()

&, 4(x) =Or (@) '

Fix any arbitrarily large M > 0 and denote by E,, the event that

Tpj SUP
(z,7)ES

0r5() — Un 7 j (1)
0r.5()

The term (A.5), when restricted to this event E,, is bounded by

J A 2\ P/
/2 (Z [M 1ogn——0”’i+2”’2} )
+

=1

Tn,; SUP < M+/logn.

(z,7)ES

which becomes zero from some large n on, given that (¢,1 A ¢,2)/vIogn — oco. Since
suppep, PES — 0 as n — oo and then M — oo by Assumption A3, we obtain the desired
result of Step 1.

As for Step 2, we have for any small € > 0, and for all j € N\ A4,

T jVUn.r;(T) Cna N Cna
A6 P ] T < —— = for all € By alcna,cn
ng)  p{ et DO forall (7)€ Byenrocns)

Tn ',Un‘r'(m) Cnl/\cn2
> P 5J )T < _ ) )

{ Tn,7.5(7) (1+e) {1 +op(1)}
similarly as before. Let §; 4(z) be a J-dimensional vector whose j-th entry is r, j0y, - j(x) /67 ()
if j € A, and 7y, {0y j(x) — Vnr;(2)}/0-5(x) if 7 € N;j\A. Since by Assumption A5, we
have

for all (z,7) € Bn,A(Cn,hCn,Q)} — 1,

inf P{u,(x;6) <0 forall (z,7) € S} =1,
PcPy
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as n — 00, using either definition of A,(v) in (3.1), we find that with probability approaching
one (uniformly over P € P),

(A7) /B A )

N
< / L M E@)QE)

— Cn,1 A Cn,2
< / A (ST,A(.I‘) - ;14}) dQ(x, ),
Bn,A(cn,l,cn,2) 8 1 _I_ €

where 1_4 is the J-dimensional vector whose j-th entry is zero if j € A and one if j € N\ A,
and the last inequality holds with probability approaching one by (A.6). Note that by
Assumption A3 and by the assumption that /log n{c;ll + 0;12} — 00, we deduce that for
inf P<r,: su
PePo { 7 (x,T)IéS

any j € Ny,
(RWANE
S n,1 n,2 _>17
1+e¢
as n — oo. Hence, as n — oo,

{ S stenrenny Ao Bra(@) = (Cnn A ) /(14 €)1 1) dQ(x, 7) }% )
= L tonrienn Map (Bra(@)) dQ(z, 7) '

07 j () — V7 j()
()

inf P
PePy

Since

/ Mty (52a()) QG 7) = Mg (0:() dQ(.7),
B, a(en,1,6n,2) Bp,a(en,1,6n,2)

we obtain the desired result from (A.7). §
Now let us turn to the proof of Lemma 2 in Section 4.4.

Proof of Lemma 2. (i) Recall the definition b, ;;i(z,7) = Bhor; (Yij, (X; —2)/h)). Take

M, ; = Vnh/\/logn, and let
by (2, 7) = byij(x, 7)1, and v (@ 7) = i, 7) (1= 1n45),

n,ij

where 1, ;; = 1{sup,r)es|bn,ij(®, 7)| < M, ;/2}. First, note that by Assumption Al,

A8 i sup [Pa®) =)
(z,7)ES O'Tj(flf)
xSB)I;S \/_Z MJ [b?mg(m T)D|
A9 E [0, 1), P-uniforml
( ' ) +(Su)ps Z 7”] [nzy( )}) +0P( ), unirormiy.
x,T)E 1
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We now prove part (i) by proving the following two steps.

Step 1:
(ISEI;S \/_ ; mi( —E [0z, T )])‘ = op(y/logn), P-uniformly.
Step 2:
1 <, . .
(fjll)zs N ; (0% ;i (x,7) —E[b i (x, )])' = Op(y/logn), P-uniformly.

Step 1 is carried out by some elementary moment calculations, whereas Step 2 is proved
using a maximal inequality of Massart (2007, Theorem 6.8).
Proof of Step 1: It is not hard to see that

T3 o) B ta )|

sup
(z,7)ES

< 2VnE

sup |bp,ij(w, )| (1 — 1n,ij)]
(z,7)ES

-3
Mn,j) o
2

for some C > 0, C' > 0. The last bound follows by the uniform fourth moment bound for

IN

4
sup |bnqi(x, 7)|

(z,7)ES

-3
SCI\/E<]\42%J> )

C\/ﬁ(

bnij(x, ) assumed in Lemma 2. Note that

Vi (M, ;)% =n~th=3%2 (log n)**=o <\/log nhd/2> )

by the condition that n=*/2h=4"" — 0 for some small v > 0.

Proof of Step 2: For each j € Ny, let F,; = {B5,,;(;( —x)/h)/My,; : (x,7) €
S}, where gy (Y, (Xi — x)/h) = b, ;(x,7). Note that the indicator function 1, ;; in
the definition of 3¢ Using (3.11) in Lemma 2
and following (part of) the arguments in the proof of Theorem 3 of Chen, Linton, and
Van Keilegom (2003), we find that there exist C; > 0 and C5; > 0 such that for all € > 0,

M, ; 2/7; M, —Ca,j
Ny (6. Fu La(P)) §N<(5—) ,XxT,II-II) <a(Gma)

TL,j nv.]

a
2rj does not depend on (z,7) of B; ..

where Ny (¢, F, ;, L2(P)) denotes the e-bracketing number of the class F,, ; with respect to
the Ly(P)-norm and N (¢, X x T,|| - ||) denotes the e-covering number of the space X' x T
with respect to the Euclidean norm || ||. The last inequality follows by the assumption that

X and T are compact subsets of a Euclidean space. The class F, ; is uniformly bounded by
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1/2.
Lt (5= 000/1) g =B ) M g = 20) 1) Mg+ 84 ) ]
k =1,..., N, } constitutes e-brackets, where Ak(Y,],X) = sup |8, ;(Yij, (Xi — ) /h) —

o apmq(Yijs (Xi — 21) /)| and the supremum is over (z,7) € S such that

Ve — il 2+ (|7 — 7|2 < C1(eMnj/6,5)* .

—Ca,j

By the previous covering number bound, we can take N, ; < Cy ((e M, ;/0n) A1) , and

EAz(YU,X)M < ée?
Note that for any k& > 2,

Ubn ”(SU,T>/MnJ| } <E [b2 (z, )] /sz < CMn’jhd = C(logn)/n,

n,ij

by the fact that |b% ,.(x,7)/M, ;| < 1/2. Furthermore,

nzg(

B [|A(Yiy, X))/ Mo F] < B[V, X)/M2)] < &

17

where the first inequality follows because |Ay(Y;;, X;)/M, ;| < 1. Therefore, by Theorem 6.8
of Massart (2007), we have (from sufficiently large n on)

o 3o () B )|
Cyhd/2

My, M, ; 1/2 Cy Vdiogn
C/ ’ {(—C lo (6 w/\l))/\n} de — —=1o <—)
1 0 3 10g 6’”7]‘ \/ﬁ \/ﬁ

where C1, Cy, C3, and C} are positive constants. (The inequality above follows becausey/logn//n —
0 as n — o00.) The leading integral has a domain restricted to [0, d, ;/M, ;], so that it is

sup
(z,7)ES

(A.10) E

IN

equal to

Cond/2 6, 5

M, /\Mn’j Mn . 1/2
01/ g {(—03 log (5 J)) /\n} de
0 On,j

by [N
. g
= % " /(—Csloge) A nde
n,j 0

(5n i hd/2 hd/2
= — 1 —1 1 .
X (Mn,j <5n,j : ) o <5n,j : )

After multiplying by M, ;/ h/? | the last term is of order

() ) o) -
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because 6, ; = n°" and h = n*? for some s ;, 52 € R.
Also, note that after multiplying by M, ;/h%? = \/n/\/logn, the last term in (A.10) (with

minus sign) becomes

o Viogn Civlogn  Cylog+/logn
— log < — =0 (x/logn> ,
Viogn vn 2 Viogn
where the inequality follows because y/logn > 1 for all n > e = exp(1). Collecting the
results for both the terms on the right hand side of (A.10), we obtain the desired result of
Step 2.

(ii) Define b}, ;;(z,7) = Buar (Y5, (X7 —x)/h). By Assumptions B1 and B3, it suffices to

n,iJ
show that

= Op+(y/logn), P-uniformly.

sup
(z,7)ES

Z nz] —E [b:; 1]( )])

=1

Using Le Cam’s Poissonization lemma in Giné and Zinn (1990) (Proposition 2.2 on p.855)
and following the arguments in the proof of Theorem 2.2 of Giné (1997), we deduce that

E(pﬁz i (@:7) = B [B,5(, >}>m
o 2]

where N;’s are i.i.d. Poisson random variables with mean 1 and independent of { (X}, Y;)}™ ;.

E

<

sup
(z,7)ES

e
e—1

The last expectation is bounded by

E st1£€>$ m Z{ ) bnij(, 7) — E[(N; — 1) bn,ij(xﬁ)”“
1 n
o0 | [y S| | enten - teste ]

Using the same arguments as in the proof of (i), we find that the first expectation is
@) (\/log n) uniformly in P € P. Using independence, we write the second expectation

n

%Z(NZ - 1) \/—Z ki (T, T) E[bn,kj(va)])u

which, as shown in the proof of part (i), is O(y/logn), uniformly in P € P. 1

E -E | sup

(z,7)ES
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For further proofs, we introduce new notation. Define for any positive sequences ¢, ; and

Cno, and any v € R7,

(A.11) Z Aa,(V)H{(z,7) € Bpalcni,cn2)}
AeN;
We let
(A.12) afj(cml,cmg) = / E [/_\LT(\/nhdzNJ(x))} dQ(z, ), and
XxXT

af*(cn,l,cn,z) — / E* [/_XM(V nhdz}“\,ﬁ(x))} dQ(z, ),
XXT

where zy -(7) and z} . (x) are random vectors whose j-th entry is respectively given by

N
1 X,—=x Xi—x
ZNJ,]‘(ZL‘) = W Z (ﬁn,xﬁ,j (Y;ja h ) |:ﬁnw7’j ( ij> h ):|) and
i} X; . L XF—w
ZN,T,j(I) = nhd Z (671357—] ( ijo T) —E [6n,ac,7,j (YLJ7 L >:|> )

and N is a Poisson random variable with mean n and independent of {Y;, X;}°,. We also
define

n(entsnd) = [ B (Ao (WL (,0))] dQ(z 7).
(See Section 6.3 for the definition of W,(ll)”(x, u).)

Lemma A1l. Suppose that Assumptions A6(i) and B4 hold and let ¢, 1 and ¢, be any

nonnegative sequences. Then
‘aﬁ(cnvl, Cn2) — an(Cn 1, cn72)‘ = o(h%?), uniformly in P € P, and

‘af*(cml,cn,g)—an(cn,l,cmg)‘ = op(h¥?), P-uniformly.

Proof of Lemma A1. The proof is essentially the same as the proof of Lemma C12 in Ap-
pendix C. n

For any given nonnegative sequences ¢, 1, ¢, 2, we define

(A.13) U?L(le,Cn’Q)E///CTl’TQ(.Z‘)dJJdTldTQ,
TJTJX

where

Crim (:E) = / Cov (]\n,zm (Wnl,)n T (:L’, u)) An T,T2 (Ww(f)n T (:)3, u))) du.
u
Let

(A.14) G, Cna) = / R (8-(2)) dQ(x, 7).



(A.15) 0 (s Cna) = //_\I,T (8X(x)) dQ(z, 7).
From here on, for any sequence of random quantities Z,, and a random vector Z, we write
Zn a4 N(0,1), Po-uniformly,

if for each ¢t > 0,

Sup [P {Zn <t} = @(t)] = o(1).

And for any sequence of bootstrap quantities Z* and a random vector Z, we write
7+ %5 N(0,1), Po-uniformly,

if for each ¢t > 0,
|P*{Z" <t} — ®(t)| = op+(1), Po-uniformly.

Lemma A2. (i) Suppose that Assumptions A1-A3, Aj(i), and A5-A6 are satisfied. Then for
any sequences Cy 1, cp2 > 0 such that liminf,_, . infpep, JZ(cnﬁl, Cn2) > 0 and v/logn/cpo —

0, as n — o0,

en n,l, *n —al n,l, “n ;
h_d/2 < (C 1,C ,2) a, (C 1,C ,2)) i) N(O,l), Po—umformly.

Onp (lea Cn,2)
(ii) Suppose that Assumptions A1-A3, A4(i), A5-A6, B1 and B4 are satisfied. Then for any
sequences Cn1,Cn2 > 0 such that iminf, . infpep, 02(cn1, cn2) > 0 and /logn/c,s — 0,

as n — oo,

o n n —af* n,1, tn * .
hd/2 ( Ot Cn2) = @y (Cns, € ’2)) 4 N(0,1), Po-uniformly.

O'n<cn,1) Cn,2)

Proof of Lemma A2. (i) By Lemma 1, we have (with probability approaching one)

Ap(8,(2)dQ(,m) = ) Aap(3:(2))dQ(z, 7).

AN \/;n,A(Cn,hCnﬂ) AEN Bn,A(Cn,l,Cn,Q)

en(cn,la Cn,Z) =
Note that af(ca1,cn2) = D scn, @na(Cn, Cn2), Where
aiA(C,thn’Q) = / E [AAJ,(V nhdzN,T(x))] dQ(x, ).
Bn,A(Cn,lycn,Q)

Using Assumption A1, we find that h=%2{0,,(cp1,n2) — aZ(cn1,cn2)} is equal to

W™ N " {Cua(Bua(Cns n2)) — ECva(Baa(ca, en2))} + op(1),
AeN;



where for any Borel set B C S,

(oa(B) = /B Ay (Viihiiz, ,(2))dQ(x, 7),
(xa(B) = / Ay (Vihizy (2))dQ(x, 7).
and .
2r(8) = i3 D B (i (X5 = 0)/1) = 2B B (Y5 (X = )/ 1)
with

577/712,7'(}/;7 (Xz - l’)/h) = (ﬁ’n,CE,T,l (Y;h (Xz - l’)/h), ceey ﬁn,x,T,J(}/;Ja (Xz - x)/h))—r
We take 0 < £, — 0 as | — oo and take C; € R? such that
0< P{X;eR\C} <7,

and Q((X\C;) x T) — 0 as [ — oo. Such a sequence {&;}°, exists by Assumption A6(ii) by
the condition that S is compact. We write
h_d/2 ZAG/\/’J{Cn,A<Bn,A(Cn,17 Cn,2)) - ECN,A(Bn,A<Cn,17 Cn,2))}
0'721<Cn,17 Cn,2)
h_d/2 ZAGNJ{Cn,A(Bn,A(Cn,h Cn,2) N (Cl X T)) - ECN,A(Bn,A<Cn,17 Cn,2) N (Cl X T))}
0_721<Cn,1> cn,2)
h_d/2 EAGNJ{Cn,A(Bn,A(cn,la Cn,?)\(cl X T)) - ECN,A(Bn,A(Cn,la Cn,?)\<cl X T))}

U%(Cn,la Cn,Q)

(A.16)

+

- Aln + A2na say.

As for As,, we apply Lemma B7 in Appendix B, and the condition that Q((X\C;) x T) — 0,
as [ — oo, and

liminf,, o infpep, 0, (C1n, C2n) > 0,
to deduce that Ay, = op(1), as n — oo and then | — oo. As for Ay, first observe that as
n — oo and then [ — oo,

(A.17) }ai(cml, Cn2) — 627l(cn,1, Cnyz)‘ — 0,

where &7, /(Cn1, Cn2) i equal to 07 (cp1,Cn2) except that By a(ci,cnz2)’s are replaced by
By a(cni,cn2) N (C x T). The convergence follows by Assumption 6(i). Also by Lemma
B9(i) and the convergence in (A.17) and the fact that

liminf inf o2(c, ¢, c >0
nso0 PEPy n( n,1l, n,2) )
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we have
Al K N(0,1), Py-uniformly,

as n — oo and as [ — 0o. Hence we obtain (i).
(ii) The proof can be done in the same way as in the proof of (i), using Lemmas C7 and
C9(i) in Appendix C instead of Lemmas B7 and B9(i) in Appendix B. 1

Lemma A3. Suppose that Assumptions A1-A5 hold. Then for any sequences ¢y 1, cnu > 0
satisfying Assumption A4(ii), and for each A € Ny,
]ijngDP {BMA(cn,L, cnu) C Bu(é,) C Bn,A(ch,cn,L)} — 1, as n — oo.
S
Proof of Lemma AS3. By using Assumptions A3-Ab5, and following the proof of Theorem
2, Claim 1 in Linton, Song, and Whang (2010), we can complete the proof. Details are
omitted. g

Define for ¢, 1, cn2 > 0,

To(Cni,Cno) = h™%? (Qn(cn,l,cn,2) —an(cnyl,cn,g)) o

Un<cn,1> Cn,2)

hfd/2 (QZ(Cn,la C'rL,Q) - an(cn,la Cn,Q))

Un<cn,17 cn,2)

T;: (Cn,lv Cn,2> =

We introduce critical values for the finite sample distribution of 0 as follows:
Yoleni, n2) =inf{c € R: P{T,(ch1,cn2) <c} >1—a}.

Similarly, let us introduce bootstrap critical values:

(A.18) Yo (epa, cne) =inf{c € R: P {T)(cp1,cn2) <c} >1—a}.

Finally, we introduce asymptotic critical values: v¢, = ®7!(1 — «), where ® denotes the
standard normal CDF.

Lemma A4. Suppose that Assumptions A1-A3, A4 (i), and A5-AG hold. Then the following
holds.

(i) For any ¢y, cno — 00 such that

.. . 2
liminf inf o7 (cp1,cn2) >0,
n—oo PeP

it is satisfied that

sup |7§(0n,17 Cn,2) — vg;l — 0, asn — oo.
Pep

(i1) Suppose further that Assumptions Bl and B4 hold. Then for any c,1,cn2 — 00 such
that

liggiolgf Fl)IEl;) O'Z(Cn,l,cn,Q) >0,



it 1s satisfied that

sup |70 (en1y Cn2) — 1% = 0, as n — oo.
PeP

Proof of Lemma A4. (i) The statement immediately follows from the first statement of Lemma
A2(i) and Lemma Al.
(ii) We show only the second statement. Fix a > 0. Let us introduce two events:

Eny = {97 (nascn2) — Yo < —a} and Ey o = {7, (Cn1, Cn2) — V% > @}

On the event E, ;, we have

é* n,1y tn — Un\tn,l, tn
o — p* {h—d/Q( o (Cn1y Cn2) — An(CnsC 2)) > VS*(Cn,hCn,z)}

Un(cn,b Cn,2>

2 P* {hd/2 (é:(cn,ly Cn,Q) - an(cn,la Cn,Q)) > ’Ya . CL} )

Un<cn,17 Cn,2> >

By Lemma A2(ii) and Lemma A1, the last probability is equal to
1-® (v —a)+op(l) >a+op(l),

where op(1) is uniform over P € P and the last strict inequality follows by the definition of

7% and a > 0. Hence suppep PE, 1 — 0 as n — oo. Similarly, on the event E,, o, we have

9_* n,ly tn - Un\tn,1,tn
a = P*{h—‘W( 2(Cnu1; En2) = @n(Cna € ’2)) >%€Z*(cn,1,cn,z)}
Un(cnl7cn2>

S P* {h_d/2 (9:1(071,17 Cn,2) - a'n(cn,la Cn,Z)) > 'Ygo + (l} '

Un(cn,la Cn,Q)

By the first statement of Lemma A2(ii) and Lemma A1, the last bootstrap probability is
bounded by
1-® (e +a)+op(l) <a+op(l),

so that we have suppcp PE, 2 — 0 as n — 0co. We conclude that
sup P {|72"(cn1, Cn2) — Y| > a} = sup (PE,1 + PE, ) — 0,
peP PeP

as n — 00, obtaining the desired result. n

Proof of Theorem 1. By Lemma 1, we have

p%ﬁop{@— >

AENJ nA CnL»CnU

Aap (0 (7)) dQ(x, 7)} — 1,

as n — oo. Since under the null hypothesis, we have v, , ;(-)/d,;(-) <0 for all j € N, with
probability approaching one by Assumption A5, we have with probability approaching one
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(uniformly over P € Py),

3 / Ay (8 (2)) dQ(z, 7)

AGNJ nA(Cn L:Cn, U)

< ¥ / Aay (3o (2)) dQ(, 7) = Bn(en 1, ntr).

AGNJ nA(Cn L:Cn, U)

Thus, we have as n — oo,
Al 'fP{A<§nn,n } 1.
(A.19) Anf 0 <0,(chrCcnp)p —

Let the (1 — «)-th percentile of the bootstrap distribution of

02 (nr ) = 3 / Ay (82(2))dQ(x, 7)

AGNJ nACnchnU)

be denoted by ¢;%. By Lemma A3 and Assumption A4(ii), with probability approaching

one,
A2 Aayp (8:(2)) dQ(z, 7) < Aap (87(2)) dQ(z, 7).
AEN; /" Alen,L,en,U) ! A%\:/J /BA(én) .

This implies that as n — oo,

(A.21) nf P{c; =} =1

There exists a sequence of probabilities {P,},>1 C Py such that

(A.22) limsup sup P {é > czm} = limsupP, {é > c;n}

n—oo PEPy e
= hmn—>oonn {ewn > Cwn 04777}

where {w,} C {n} is a certain subsequence, and 6,, and Cryn oy A€ the same as 0 and Chn
except that the sample size n is now replaced by w,,.
By Assumption A6(i), {o,(¢n 1, Cnu)}n>1 is @ bounded sequence. Therefore, there exists
a subsequence {u,},>1 C {wy,}n>1, such that o, (cy, 1, cy, v) converges. We consider two
cases:
Case 1: lim,, o0y, (Cy, L, Cu,.v) > 0, and
Case 2: lim,,_,o.04, (Cu,.Ls Cup.v) = 0.
In both cases, we will show below that
(A.23) limsupP,, {0, > ¢

n—o0

}<a.

Un, 0,

Since along {w,}, Py, {0w, > ¢ ., } converges, it does so along any subsequence of {w,}.

W, Q1)

Therefore, the above limsup is equal to the last limit in (A.22). This completes the proof.



Proof of (A.23) in Case 1: We write P, {6, > ¢ ..} as

Un ,O,T)
N *
—d/2 ‘gun — Ay, (Cun,La CumU) —d/2 Cun,a,n — Qy, (CUmL? C’un,U>
P (n >
O-Un (Cunulﬂ Cun7U> O-un (Cun7L7 CunuU)

< Pun (h—d/2 <0un — aun<cun,L;Cun,U)) - h_d/2 (Eun,L - aun<cun,L7cun,U))> + 0(1)’

Ouy, (Cun,La C’zm,U) Ouy, (Cun,L> Cun,U>

where the inequality follows by the fact that ¢, , > ¢, > ¢, with probability approaching
one by (A.21). Using (A.19), we bound the last probability by
(A.24)

e_u U u — Uy Un, Ly Cu Eg* = Qup \Cup, L Cup,

Ou, (Cun,La Cun,U) Ouy, (Cun,La Cun,U)

Therefore, since lim,, 0y, (¢, L, Cu,,v) > 0, by Lemmas A2 and A4, we rewrite the last
probability in (A.24) as

eu U s “u - m " , Cy .
Py, {h—d/z ( o (CanLs Cup ) = Qi (Cu,15 € n,U)) > ygn(cun,L,cun,U)} +0o(1)

Ouy, (Cun,La cun,U)

eu U s Lu - Wy U s bu
= P, {hd/2< n (Cunsl Cunr) = Gun (Cun € "U)> > ’yg‘o} +0o(1) = a+ o(1).

Ouy, (Cun,La Cun,U)

This completes the proof of Step 1.

Proof of (A.23) in Case 2: First, observe that

a:,n (Cun,L7 Cun7U> S a:,n (éun)7

with probability approaching one by Lemma A3. Hence using this and (A.19),

A~

Pun {éun > CZH,OCJ]} = Pu’n {h_d/2 <9un - aun (CunyL’ CU/,“U)) > h_d/2 (C:Ln,aﬂ? - aun (CunyL’ Cu,,“U))}

hid/2 (H_Un (CUTML7 C'Uqu) - aun (CunyL’ CuruU))
Un B—d/2 (pd/2 * _ +o(1).
> ( T/ + a’un (cun7L7 Cuan) aun (Cun,L7 cunyU))

By Lemma Al, the leading probability is equal to

<

P, {h_d/2 (G_Un(cumL, Cup ) — s,y (Cuuyy 1y cumU)) >n+ 0p(1)} +o(1).

Since n > 0 and lim,, o0y, (Cyu, L, Cu,,v) = 0, the leading probability vanishes by Lemma
BO(ii).

Proof of Theorem 2. We focus on probabilities P € P, (A, ¢,) N Py. Recalling the definition

of W, r(2;6) = [rnjUnr;(2)/0r;(2)] e, and applying Lemma 1 along with the condition

that
Viegn/c,u < +/logn/c,, — 0,
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as n — oo, we find that with probability approaching one,

~

0 = Z / Aap (8:(2) +up o (256)) dQ(x, T)
AE/\/J HA(CnU Cn L)
= ) / Ay (3, (x) + s (236)) dQ(z, 7)
AeN; ¥ Bn,alan)

s / Anp (3-(2) + U, - (2:6)) dQ(w, 7).

AGNJ nACnUCnL \Bn A(qn)

Since under P € Py, u,(r;6) < 0 for all x € S, with probability approaching one by
Assumption 5, the last term multiplied by h~%?2 is bounded by (from some large n on)

B/ Z/ Aap (8,(2))dQ(z, T)

AENJ nA(cnUCnL \Bn A(Qn)

< h Y (sup ||éT<x>||) Q (Bn,a(env, en,)\Bn,a (1))

AEN; (z,7)ES
= Op (h™"*(logn)"?X,) = op(1),
where the second to last equality follows because Q (B a(¢nu, ¢nr)\Bn.a(gn)) < An by the

definition of P, (\,, ¢n), and the last equality follows by (3.10).
On the other hand,

23 [ by 600 :0) 40

AeN; By, a(gn)

=Y [ Ay ) Q)

AENJ nA qn)

SRS / Ay (8:-(2) + s (:6)) dQ(, 7)

AeEN; By, a(gn)
S [ M) Q)
AEN; By, a (qn)
From the definition of A, in (3.1), the last difference (in absolute value) is bounded by

chir 3 / [t s (6] all |- (@) P dQ(a, )

AENJ nA qn
+Ch™%? Z / ([, (25.6)]all [ (23 6)] a7 dQ(, 7),
AGNJ nA Qn

where [a]4 is a vector a with the j-th entry is set to zero for all j € N;\A and C' > 0 is a
constant that does not depend onn > 1 or P € P. We have sup(z,r)eB, 4(g,) | [Un7(2;0)]all <
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qn(1+0p(1)), by the null hypothesis and by Assumption A5. Also, by Assumptions A3 and

A5,
SUD(z,r)eB,, 4(qn) ||[§T(:17)}AH =0Op <\/ log n> .

Therefore, we conclude that

=2 Z/ Ay (8:(2) + W (256)) dQ(z, 7)

AeN; Y Bn.a (gn)
p—d/2 Z / Aap (8-(2))dQ(z, 7) + Op (h‘d/Qqn{(logn)p 1)/2+q })
AeN; Y Bn.a (gn)

The last Op(1) term is op(1) by the condition for g, in (3.10). Thus we find that

(A.25) 0 = 0,(q.) + op(h"?),

where 0,,(¢,) = Y 4en, meA(qn) Aa,p (8,(2))dQ(z, 7).
Now let us consider the bootstrap statistic. We write

= ) Ay (85(2)) dQ(z,T)

AcN; BA (én)

- Y [ ) Qe+

AGNJ nA(Qn AENJ ‘/;A(én)\BnyA(q")

Aap (87(2)) dQ(x, 7).

By Lemma A3, we find that

}i)n;)P {E’nA(én) C Bn,A(ch,cn,L)} — 1, asn — oo,
€

so that

GO ED DY My (55(a)) dQ(a, ),

AEN; /BA(én)\BnyA(qn) AEN; n A Cn U+Cn,L \Bn A(Qn)
with probability approaching one. The last term multiplied by h~%? is bounded by

h=/? ((sup 185 (z ) Z Q (Bna(cnu, en,r)\Bn.a(qn))

z,7)ES AEN;
= Op~ (h_d/z(log n)P/Q)\n) = 0p+(1), Pn(An, gn)-uniformly,

where the second to last equality follows by Assumption B2 and the definition of P, (A, ¢,),
and the last equality follows by (3.10). Thus, we conclude that

h—d/?(é* _ an(Qn>> _ h—d/2 (§:(Qn) - an(Qn))
7 (gn) 7n(n)

(A.26) + 0p+(1), Pn(An, gn)-uniformly,



0*(qn) = Aap (85(2)) dQ(z, 7).
(2) ZN /B A ) Q)

Using the same arguments, we also observe that
(A.27) a* = a*(qn) + op(h?) = an(qn) + op(hY?),

where the last equality uses Lemma Al. Let the (1 — «)-th percentile of the bootstrap
distribution of 6*(¢,) be denoted by *(g,). Then by (A.26), we have

h_d/2 (CZ _ an(Qﬂ)) _ h_d/2 (52* (Qn) _ @n(qn))
on(n) Jn(%l)

By Lemma A4(ii) and by the condition that o, (g,) > n/®1(1 —a), the leading term on the
right hand side is equal to

(A.28)

+ op+<(1), Pn(An, ¢)-uniformly.

O (1 — a) + op-(1), Pu(An, ¢n)-uniformly.
Note that
(A.29) ¢ > hn+ a4+ op(hY?),

by the restriction o,(g,) > n/®71(1 — a) in the definition of P,(\,,¢,) and (A.27). Using
this, and following the proof of Step 1 in the proof of Theorem 2, we deduce that

—dj2 é—an(qn) a2 CZ,n—an(Qn)
P{h ("n(qn) )>h < on(n) )

P {hd/Z (Qn(qn) - an(qn)) o pds? <CZ - an(qn))} +o(1)

 onlam) n(qn)
_ p{h—d/Q (@(qi(—qs;(qﬁ) o 2 (Cz*(qu(_q:;n(Qn)>} L ofD),

where the first equality uses (A.25) and (A.29), and the second equality uses (A.28). Since
0n(qn) > n/® 1 (1—a) > 0 for all P € P, (A, g,) NPy by definition, using the same arguments
in the proof of Lemma A4, we obtain that the last probability is equal to

a+o(1),

uniformly over P € P, (An, qn) N Po. B
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Proof of Theorem 3. For any convex nonnegative map f on R’, we have 2f(b/2) < f(a +
b) + f(—a). Hence we find that

A~

i = /Ap(éT(x)—i—uT(:v;&))dQ(x,T)
Zzpl//\ u,(z;6))dQ(z, 1) — /A ) dQ(x, 7).

From Assumption A3, the last term is Op((logn)”?). Using Assumption A3, we bound the

leading integral from below by

(A30)  minr?, (/ Ay (For (7)) dQ(z, 7 {ﬁ\ i jgg:g - 1} +op(1)) ,

where v,, (2) = [Un.r; (%) /Onrj (m)]jeNJ and v, ,(z) = [vm(x)/amm- (x)]jeNJ. Since

liminf, ., / A, (Fon () dQ(a,7) > 0,

we use Assumption C1 and apply the Dominated Convergence Theorem to write (A.30) as

min? / Ay (T () dQ(a, 7) (1 + 0p(1))

JEN,

Since minjey, 7,; — 00 as n — 0o and liminf, o [A, (V- (2)) dQ(z,7) > 0, we have for
any M, — oo such that M, /minjey, r,; — 0, and M, /y/logn — oo,

P {% /Ap (w, (2:6)) dQ(z, 7) > Mn} L,

as n — oo. Also since v/logn/ minjey, 7,; — 0 (Assumption A4(i)), Assumption A3 implies
that
P {é > Mn} — 1.
Also, note that by Lemma A2(ii), h~%?(c}, — a,)/0, = Op(1). Hence
¢ = a, + Op(h??) = Op(1).

Given that ¢!, = Op(1) and a* = Op(1) by Lemma Al and Assumption A6(i), we obtain
that P{0 > Con) = P{0 > M,}+o(1) = 1, as n — co. §

Lemma A5. Suppose that the conditions of Theorem 4 or Theorem 5 hold. Then asn — oo,
the following holds: for any cy1,cn2 > 0 such that

Viegn/c, 2 — 0,
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asn — oco. Then

inf P / A, (G- (2))dQ(z,7) =0 p — 1.
PePI(An) { S\BY(¢n.1,Cn.2) p< ()) Q( ) }

Furthermore, we have for any A € N,

PePi(

mf P {/ (A, (6()) — Aa, ((2))} dQ(z, 7) = 0} Sl
n BY ,(cn,1,tn,2)

Proof of Lemma A5. Consider the first statement. Let A be either d/2 or d/4. We write

/ Ay (@r(2)) dQ(,7)

S\Bg(cn,lvcn,Z)

-/ Ay 3r(a) + 1, 232)) QL ).
S\BY(cn,1,cn,2)

= / Ap (8- (z) + ul(2;6) + 116, 5(2)) dQ(z, T),
S\BY(cn,1,cn,2)

where U(w;3) = (100, (2)/G7 (), s Tt (@ >/ (@) and
0.
(A.31) 5,0(2) = < fvl(@ (m))
Gra(z) UTJ( )
Note that 0, 5 () is bounded with probability approaching one by Assumption A3. Also note
that for each j € Ny,

(A.32)
~ 0 N
sup T”:j{vn,T,jA(x) - Un,‘r,j (l’)}’ < Sup Tn,j{vn,T,jA(x) — Un,r,j (ZE)}’ + h)\ Sup {?T,j(x)
(z,7)eS O-T,j<m> (z,7)eS O-T,j<x> (z,7)eS O-T,j(x)

=0Op (\/@—Fh’\) =Op (\/@),

by Assumption A3. Hence we obtain the desired result, using the same arguments as in the
proof of Lemma 1.
Given that we have (A.32), the proof of the second statement can proceed in the same

way as the proof of the first statement. g

Recall the definitions of A, -(v) in (A.11). We define for v.€ R7, AY _(v) to be A, -(v)
except that By, a(cp.1,cn2) is replaced by BnA(cn 1, Cn2). Define for A € {0,d/4,d/2},

(A.33) s (Cots i ) / RO (8, (2) + W6, (x)) dQ(x, 7).

Let
aﬁé(cn,l, Cn2; ) = /E [/_\gﬁ <\/ nhizy . (z) + h’\(Sw(:v))] dQ(x, 1),
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Gi(ensienaiN) = [ R, (8:(0) + 106, (0)) dQ(. ),
and
(A.34) 5 (o, s V) = / E' [Agﬁ (\/Wz}‘w(x) + h)‘5770(:1c)>} dQ(z, 7).
We also define

Uns(Cn1y Cnoy A) = /E [AY (VVn1 H(@,0) + 16, 0 (2))] dQ(x, 7).

When ¢, 1 = cn2 = ¢, we simply write aff5(ca; ), af5(ca; ), and ans(cp; A), instead of

writing a[f5(cn, cn; A), af5(Cn, cni A), and ap5(Cn, cn3 A).

Lemma A6. Suppose that the conditions of Assumptions A6(i) and B4 hold. Then for each
P € P such that the local alternatives in (4.2) hold with b, ; = rp jh™, 5 =1,...,J, for some
A €{0,d/4,d/2}, and for all nonnegative sequences cy 1, Cn 2,

|af5(cnscnpi A) = ang(nicn2i N = o(h*?), and
}aqu:s(cn,h Cn,2; >\) - an,é(cn,la Cn,2; )‘)‘ = 0P<hd/2>‘
Proof of Lemma A6. The result follows immediately from Lemma C12 in Appendix C. g

Lemma A7. Suppose that the conditions of Theorem / are satisfied. Then for each A\ €
{0,d/4,d/2}, for each P € PY(\,) such that the local alternatives in (4.2) hold,

h_d/2 <9n,(5(cn,U7 Cn,L; )\) - aﬁ&(@z,U; Cn,L; )\)

Un(cn,Ua Cn,L)

) A N(0,1) and

h_d/2 <§;,6(CH,U7 Cn,L; )‘) - aﬁ?(cn,w Cn,L; /\)

Un(cn,Uv Cn,L)

) 4 N(0,1), P2(\,)-uniformly.

Proof of Lemma A7. Note that by the definition of P2(),), we have

.. . 2 > L
i nf | Ly onensent) 2 o

Hence we can follow the proof of Lemma A2 to obtain the desired results. 1

Proof of Theorem 4. Using Lemma A5, we find that
0= Z / Aayp (8-(2) +ur(z;0)) dQ(x, 7)
AeN; BS,A(Cn,U»Cn,L)
with probability approaching one. We write the leading sum as

> / Ay (51 (0) +-(036)) Qe ) + P,

AEN}
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where

= Z / Aayp (8-(2) +ur(z;0)) dQ(x, 7).

Ae_/\/'] Cn UsCn, L \Bn A(O)
We write h~%?R,, as

- S-(x) +ul(z;6)
B2 / A §;(x) O(z; 10z, 7)
A%\:G B s(entena\BL, @)\ Hh8r5(2)(1+ 0(1))

<wy | My (8:(2) + 1726, (2) (1 +0(1))) dQ(a, 7).
AeN; Y By alen,usen,L)\By, 4(0)

by Assumption C2. We bound the last sum as

chz 3 (( sup |réT<x>|r> Q (B2a(cnr, et \BY4(0)) = Op (2 (log m)"? A, ) = 0p(1)

AEN; z,7)ES
using Assumption A3 and the rate condition in (3.10). We conclude that

(A35) W = p Y / g 5. (0) + () 4Q(w, ) (1)
AENJ

2 Z/ g (3olo) + 125, (1)) dQ(,7) + op(1),
AGNJ

where the second equality follows by Assumption C2 and by the definition of B ,(0).
Fix small k > 0 and define

(9
~
—
S
~
Il

67’,'(1) .

{ W if 0;5(x) >
oo 0rj(e
U (2) = | T @ if 07 (x

(1“1‘5)0'“’7_7]-(1) )

Define 6% (x) and 6Y_ () to be R’-valued maps whose j-th entries are given by 6L, .(x)

T,0,K T,0,K TO'I{]

and 6Y x) respectively. By construction, Assumptions A3 and C2(ii), we have
T,0,K,] Y y

P {6k, (x) < 6.p(x) <Y, ()} — 1,

TO'H TO'H
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as n — o0o. Therefore, with probability approaching one,

(A30)05.(0;d/2) = 3 / Ay (& (2) + h926%, (2)) dQ(z,7)
AeN; n,a(0
S T [ gt B sl e

< Y [ M (sele) WY, (2) QL) = B (0:d)2).
AeN; ﬂA(O

We conclude from (A.35) that

(A.37) 05.0(0;d/2) + op(h¥?) < 0 < 05(0;d/2) + op(hY?).
As for the bootstrap counterpart, note that since ¢, ; () is bounded and oy, - ;(x) is bounded
away from zero uniformly over (z,7) € S and n > 1, and hence

1 57—7]‘(1‘)
h=42 g, , ()

(A.38) sup < Chi? =0,

(z,7)eS

as n — 0o. By (A.38), the difference between 7, ;v - ;(2)/0n 7 (x) and 7y, j00 _ (2)/0nr ()

n?Th]

vanishes uniformly over (z,7) € §. Therefore, combining this with Lemma A3, we find that
(A.39) P {én(én) C By (env, cn,L)} -1,

as n — o0.

Now with probability approaching one,

~

(A.40) = > / Aap (87(x)) dQ(z, 7)
AeN; Y Ba(én)

= Aap (85(2))dQ(z, T

2/; / e 8r @) Q)

> My (55()) Qe 7).
AenN; 7 Ba(en)\B), 4(0)

As for the last sum, it is bounded by

>/ Mag (612 Q. 7).

AeN; alen,usen,L \Bn 4(0)
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with probability approaching one by (A.39). The above sum multiplied by h~%? is bounded
by

e ( sup [[87(z ) > Q (B alenus cnr)\By 4(0))
(2,7)eS AN,
= Op- (h’d/z(log n)p/2)\n) = op~(1), P-uniformly,
by Assumption B2 and the rate condition for \,,. Thus, we conclude that
(A.41) 0" = 6*(0) + op-(h*?), P°(\,)-uniformly,

where
0 (0)= ) Aap (87(2)) dQ(, 7).
AeN; BS,A(O)
Let ¢@*(0) be the (1 — a)-th quantile of the bootstrap distribution of #*(0) and let v2*(0) be
the (1 — «)-th quantile of the bootstrap distribution of

N* Rx*
(A.42) pro (PO =8 (0
a,(0)
By the definition of P(A,), we have o7 (0) > n/®~'(1 — ). Let ag;(0;d/2) and aff;(0;d/2)
be aff5(0; d/2) except that 4., is replaced by ¥, and 0%, . respectively. Also, let a5 (0;d/2)

and as1(0;d/2) be a,5(0;d/2) except that 577(, is replaced by 0¥, , and 0%, . respectively.
We bound P{f > Cont DY

. {W (éwm; 12—k d/z>> e ( =L 2>) } +o()

_ {h—d/2 <9A67U(03 d/2()7 _(06;5(](0; d/Z)) > /2 (Eﬁ*(o) ;:i)U)(O; d/2)> } +o(1),

where the equality uses (A.41). Then we observe that

cr'(0) — afly(0:d/2)  &@*(0) —af(0) | ai*(0) — affy(0:d/2)
a,,(0) 0,(0) 0,(0)
af*(0) — ag;(0;d/2)

_ hd/2 ax(( n

As for the last term, we use Lemmas A1l and A6 to deduce that
a7 (0) = agy(0;d/2) = a;(0) — agly (05 d/2) + op(h®?)
= a,(0) — asp(0;d/2) + op(hY?).
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As for a,(0) — a5 (0;d/2), we observe that

(A43)  0u(0) " h 2 {B [Any (WS (2,0) + h26%, ()] — E [Aap (WD, (2,0))]}
= 0,(0)"'h " {E [AAp (W) (,0) + h??6Y, (2))] — E [Aap(W) (2,0))]}
YO (0;2)T6Y, (2) + O (h¥?),
so that
—d/2 Qap, —a T
st 5 [0 00078 ()0, 7) 4 o)

AENJ
= =Y [0 6, )0 ) + o),
AENJ
where the last equality follows by the Dominated Convergence Theorem. On the other hand,

by Lemma A7, we have

L (eww 1d/2) — ol (0; d/2>> NGO,

7,(0)

Since 75*(0) = Ya.0o + 0p(1) by Lemma A4, we use this result to deduce that

o L (Os0(0:4/2) — ol (0:4/2)\ -y (E7(0) = afiy(0;d/2)
Jm P {h ( o (0) > h o (0)

@)

= 1-9 (Zl o Z /¢AT T(Sgaﬁ( )dQ(fE,’T)) .
AeN;

Similarly, we also use (A.37) to bound P {é > sz} from below by

. {h—d/2 (éM(o; d/gin_(Oc;QL(o;d/m) e (cg*(o) —Oj%)(o;d/m) } +o(l),

and using similar arguments as before, we obtain that

e (G072 04D L, (E00) — a0/
sm P {h ( o (0) > h 7 (0)

= 1-0 (z o ) /wmoﬂéfw >d@<x,7>>.
AeN;
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We conclude from this and (A.36) that for any small x > 0,

1-® ( - Z /@Z)(l) (0; 2) Téfan( )dQ(x,T)) +o(1)

AE/\/]

< P{9>can}<1— (zl o

Note that @DS,)T(O;[E)T(SU () and @D (0 x)"oL () are bounded maps in (x,7) by the

T,0,K T,0,K

- [ >d@<x,f>> +of1).

AENJ

assumption of the theorem, and that

L U .
}ﬁli)n 570/@( ) - }{ll)n 67'(7/{( ) - 6T,U(x)7

for each (z,7) € S. Hence by sending x — 0 and applying the Dominated Convergence

Theorem to both the bounds above, we obtain the desired result. &

Proof of Theorem 5. First, observe that Lemma A5 continues to hold. This can be seen by
following the proof of Lemma A5 and noting that (A.32) becomes here

N . _ 0 .
sup Tn,J{vn,T,JA(x) Un,r.j ()} ‘ =Op (\/logn + hd/4) =0Op <\/ log n) ’

(z,7)€S or4(x)

yielding the same convergence rate. The rest of the proof is the same. Similarly, Lemma A6
continues to hold also under the modified local alternatives of (4.2) with b, ; = r, ;h~Y%.
We define

(A.44) O0ro(z) = h™Y45, ().
We follow the proof of Theorem 4 and take up arguments from (A.43). Observe that
on(0) " h 2 LB [Aay (WU (2,0) + /25, 5(2) ) | = B [Aap (W), (2, 0))] }
= 0,0 LB [Aay (W, (2,0) + 2925, 0 (2))] — B [Aap (W, (2, 0))] }
= U (0:2) 0 (2) + B0, o (2) 0D, (03 2)0r o () /2.
By the Dominated Convergence Theorem,

/%AT ) 070 (2)dQ(z, 7) /@DAT )"0, 4(2)dQ(x,7) + o(1) and
/ W) (052) 76, o (2)dQ(z,7) = / Y (052) 76,0 (2)dQ(z, 7) + o(1).
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Since Y 4o, fzﬁAT (0:2)76, o ( )dQ(m 7) = 0, by the condition for d,,(z) in the theorem,

o | B[N (Wi (2,0) + 2225, (2))]
Z/ / ~E A4y (Wi (2,0))] k)

_ Iy / 510 () TP (0; )5, 0 (2)dQ(, 7) + o(1),

Now we can use the above result by replacing 6., (z) by 0¥, () and 6%, (=) and follow the

T,0,K

proof of Theorem 4 to obtain the desired result.

APPENDIX B. PROOFS OF AUXILIARY RESULTS FOR LEMMAS A2(1), LEMMA A4(1),
AND THEOREM 1

The eventual result in this appendix is Lemma B9 which is used to show the asymptotic
normality of the location-scale normalized representation of 0 and its bootstrap version,
and to establish its asymptotic behavior in the degenerate case. For this, we first prepare
Lemmas B1-B3. To obtain uniformity that covers the case of degeneracy, this paper uses
a method of regularization, where the covariance matrix of random quantities is added by
a diagonal matrix of small diagonal elements. The regularized random quantities having
this covariance matrix do not suffer from degeneracy in the limit, even when the original
quantities have covariate matrix that is degenerate in the limit. Thus, for these regularized
quantities, we can obtain uniform asymptotic theory using an appropriate Berry-Esseen-type
bound. Then, we need to deal with the difference between the regularized covariance matrix
and the original one. Lemma B1 is a simple result of linear algebra that is used to control
this discrepancy.

Lemma B2 has two sub-results from which one can deduce a uniform version of Levy’s
continuity theorem. We have not seen any such results in the literature or monographs, so we
provide its full proof. The result has two functions. First, the result enables one to deduce
convergence in distribution in terms of convergence of cumulative distribution functions and
convergence in distribution in terms of convergence of characteristic functions in a manner
that is uniform over a given collection of probabilities. The original form of convergence
in distribution due to the Poissonization method in Giné, Mason, and Zaitsev (2003) is
convergence of characteristic functions. Certainly pointwise in P, this convergence implies
convergence of cumulative distribution functions, but it is not clear under what conditions
this implication is uniform over a given class of probabilities. Lemma B2 essentially clarifies
this issue.

Lemma B3 is an extension of the de-Poissonization lemma that appeared in Beirlant and

Mason (1995). The proof is based on the proof of their same result in Giné, Mason, and
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Zaitsev (2003), but involves a substantial modification, because unlike their results, we need a
version that holds uniformly over P € P. This de-Poissonization lemma is used to transform
the asymptotic distribution theory for the Poissonized version of the test statistic into that
for the original test statistic.

Lemmas B4-B5 establish some moment bounds for a normalized sum of independent quan-
tities. This moment bound is later used to control a Berry-Esseen-type bound, when we
approximate those sums by corresponding centered normal random vectors.

Lemma B6 obtains an approximate version for the scale normalizer ¢,,. The approximate
version involves a functional of a Gaussian random vector, which stems from approximating
a normalized sum of independent random vectors by a Gaussian random vector through
using a Berry-Esseen-type bound. For this result, we use the regularization method that
we mentioned before. Due to the regularization, we are able to cover the degenerate case
eventually.

Lemma B7 is an auxiliary result that is used to establish Lemma B9 in combination with
the de-Poissonization lemma (Lemma B3). And Lemma B8 establishes asymptotic normality
of the Poissonized version of the test statistics. The asymptotic normality for the Poissonized
statistic involves the discretization of the integrals, thereby, reducing the integral to a sum
of 1-dependent random variables, and then applies the Berry-Esseen-type bound in Shergin
(1993). Note that by the moment bound in Lemmas B4-B5 that is uniform over P € P, we
obtain the asymptotic approximation that is uniform over P € P. The lemma also presents
a corresponding result for the degenerate case.

Finally, Lemma B9 combines the asymptotic distribution theory for the Poissonized test
statistic in Lemma B7 with the de-Poissonization lemma (Lemma B3) to obtain the asymp-
totic distribution theory for the original test statistic. The result of Lemma B9 is used to
establish the asymptotic normality result in Lemma A7.

The following lemma provides some inequality of matrix algebra.

Lemma B1. For any J x J positive semidefinite symmetric matriz X2 and any & > 0,

|@+en”? -z < Ve,

where ||Al| = \/tr(AA’) for any square matriz A.

Remark 1. The main point of Lemma B1 is that the bound v/ Je is independent of the matrix
Y. Such a uniform bound is crucially used for the derivation of asymptotic validity of the
test uniform in P € P.
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Proof of Lemma B1. First observe that
(B.1) tr{(2 4 I)"/? — £1/?)?
= tr(2% +el) = 2r((S+el) P52
Since ¥ < ¥ + ¢, we have X2 < (E+5I)1/2. For any positive semidefinite matri-
ces A and B, tr(AB) > 0 (see e.g. Abadir and Magnus (2005)). Therefore, tr(3) <
tr((S 4 I)? $£42). From (B.1), we find that
tr (28 + el) — 2tr((S + 1) /2 £17?)
< tr(2X +el) —2tr(X) =el.

The following lemma can be used to derive a version of Levy’s Continuity Theorem that

is uniform in P € P.

Lemma B2. Suppose that V,, € R is a sequence of random vectors and V € R® is a random
vector. We assume without loss of generality that V,, and V live on the same measure space
(Q,F), and P is a given collection of probabilities on (0, F). Furthermore define

pn(t) = Elexp(it'V,)], o(t) = E [exp(it V)],
F.(t) = P{V,<t}, and F(t)=P{V <t}.
(i) Suppose that the distribution P oV =1 is uniformly tight in {PoV =1 : P € P}. Then for

any continuous function f on RY taking values in [—1,1] and for any € (0,1], we have

sup |[Ef(V,) —Ef(V)| < e~y sup sup |F,(t) — F(t)| + 4e,
PepP PEP tcRd

where Cyq > 0 is a constant that depends only on d.
(ii) Suppose that suppep B||V||* < co. If

sup sup [pn(u) — (u)| =0, as n — oo,
PeP yeR4

then for each t € RY,
sup |F,(t) — F(t)| = 0, as n — oo.
PeP

On the other hand, if for each t € R,

sup |F,(t) — F(t)| = 0, as n — oo,
PeP

then for each u € RY,

sup |¢n(u) — e(u)| = 0, as n — oo.
PeP
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Proof of Lemma B2. (i) The proof uses arguments in the proof of Lemma 2.2 of van der
Vaart (1998). Take a large compact rectangle B C R? such that P{V ¢ B} < e. Since
the distribution of V' is tight uniformly over P € P, we can take such B independently of
P € 'P. Take a partition B = Uj;lBj and points x; € B; such that J, < Cd,le_d, and
|f(z) — fo(x)] < e for all z € B, where Cy; > 0 is a constant that depends only on d, and

fe(x) = if(xj)l{x € B;}.

Thus we have

[Ef(Va) —Ef(V)] < [Ef(Va) = EL (V) + [Ef(Vo) — Ef(V)| + [Ef(V) = Ef (V)]
< 26+ P{Vi ¢ B} + P{V ¢ B} + [Ef:(Va) — Ef:(V)]
< de+ [P{Vy ¢ B} — P{V ¢ B} + [Efe(Va) — Ef(V)]
= 4e+ |P{V, € B} — P{V € B}|+ |[Ef.(V,,) —Ef.(V)].

The second inequality following by P{V ¢ B} < . As for the last term, we let
b, = sup sup |F,(t) — F(t)],
PeP tecRd

and observe that

[Ef(Va) —EL(V)] < Z |P{V. € Bj} — P{V € B} [f(z;)]

i=1

Je
< Z |P{V,, € B;} — P{V € B;}| < Cy2b,Jz,

j=1
where Cyo > 0 is a constant that depends only on d. The last inequality follows because
for any rectangle B;, we have |P{V,, € B;} — P{V € B;}| < Cy2b, for some Cyo > 0. We

conclude that
Ef(V,) —Ef(V)| <de+ Cya (Caae™® + 1) b, < de + Cae ™,

where Cy = Cy2{Cq1 + 1}. The last inequality follows because ¢ < 1.

(il) We show the first statement. We first show that under the stated condition, the sequence
{P oV, 1} is uniformly tight over P € P. That is, for any € > 0, we show there exists a
compact set B C R? such that for all n > 1,

sup P {V,, € R\\B} <e.
PeP
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For this, we assume d = 1 without loss of generality, let P, denote the distribution of V,, and

consider the following: (using arguments in the proof of Theorem 3.3.6 of Durrett (2010))

p{|vn| > %} < 2/x|>2/u (1— ﬁ) dF,(z)
<2f (1_ Siz;‘“’"> 4P, (z)

_ l/u (1= o (b)) dt.

u —Uu

Define €,, = suppep sup;er |¢n(t) — ¢(t)|. Using Theorem 3.3.8 of Durrett (2010), we bound
the last term by

[ [ tH*EV?
26n+a/ (1—p(t)dt < 26n+‘a/ (—itEV+ 5 >dt‘

—Uu —Uu

1 u
- / t2Ev2dt' .
u u

+2

The supremum of the right hand side terms over P € P vanishes as we send n — oo and
then u | 0, by the assumption that suppepE|V|?> < co. Hence the sequence {P oV, "1}, is
uniformly tight over P € P.
Now, for each t € R?, there exists a subsequence {n’'} C {n} and {P,} C P such that
(B.2) limsup sup [F,(t) — F(t)| = lim |F.(t; Py) — F(t; Py)l,
n—oo  P€EP oo
where

F.(t;P,) = P, {V, <t} and F(t; P,) = P, {V <t}.

Since {P, o V;'}%%_, is uniformly tight (as shown above), there exists a subsequence
{n}.} € {n'} such that

(B.3) Fo (t; Py) — F*(t), as k — oo,

i
for some cdf F*. Also {Py o V'}%_, is uniformly tight (because suppcp E[|V]|? < o00),

{Pu o V112 is uniformly tight and hence there exists a further subsequence {n;]} C {n,}
such that

(B.4) F(t; Py ) — F*(1), as j — oo,
J
for some cdf F**. Since {nj, } C {n}}, we have from (B.3),

(B.5) Fuy (5 Py ) = F*(1), s j = oc.

kj
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By the condition of (ii), we have

(B6) Pn, (U; Pnﬁcj) - SO(U; P”;cj) — 0, as j — 00,

where
on (u; Py) = Ep, (exp (1uVy)) and ¢ (u; P,) = Ep, (exp (iuV))

and Ep represents expectation with respect to the probability measure P,. Furthermore,
by (B.4) and (B.5), and Levy’s Continuity Theorem,

lim @,y (u; Py ) and lim @(u; Py )

Jj—o0 Jj—o0
exist and coincide by (B.6). Therefore, for all ¢t € R,
F*™(t) = F*(t).

In other words,

lim |F, (t: Py) — F (t; Py)| = lim |E, (t; P, ) _F (t; P, )‘ —0.
n/—o00 n!—00 kj k; kj

Therefore, the first statement of (ii) follows by the last limit applied to (B.2).

Let us turn to the second statement. Again, we show that {PoV, "1} | is uniformly tight

over P € P. Note that given a large rectangle B,

P{V, e R\B} < |P{V, e R\B} — P{V e R’\B}|+ P{V € R"\B}.
There exists N such that for all n > N, the first difference vanishes as n — 0o, uniformly in
P € P, by the condition of the lemma. As for the second term, we bound it by

d 2

EV.

P{‘/;>aj7.]:177d}S§ J7
j=1

aj

where V} is the j-th entry of V and B = x?zl[aj, b;], b; < 0 < a;. By taking a;’s large enough,
we make the last bound arbitrarily small independently of P € P, because sup PGPE‘/]-Q < 00
for each j = 1,...,d. Therefore, {P o V-1}°°  is uniformly tight over P € P.
Now, we turn to the proof of the second statement of (ii). For each u € RY, there exists
a subsequence {n'} C {n} and {P,/} C P such that
limsup sup [pn(u) — (u)| = nll_r}loo |ons (w5 Por) — o(u; P

n—oo PeP
where @, (u; P,) = Ep, exp(iu'V,,) and ¢(u; P,) = Ep, exp(iu'V). By the condition in the

second statement of (ii), for each t € RY,

(B.7) im |Fy (t; Py) — F (t; Py)| = 0.

n/—o00
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Since {P, o V;'}%5_, is uniformly tight (as shown above), there exists a subsequence
{ny} C {n'} such that F (t; P, ) — F*(t), as k — oo, and hence by Levy’s Continuity
Theorem, we have @, (u; Py ) — ¢*(u), as k — oo. Similarly, we also have p(u; Py ) —
©**(u), as k — oo. By (B.7), we have F*(t) = F**(t) and ¢*(u) = ¢**(u). Therefore,

m | (u; Por) — @ (u; Py)| = lim (o <u; Pnﬁc,) —p (u; P”Lv)‘ = 0.

n/—o00 n/—oo

Thus we arrive at the desired result. g

The following lemma offers a version of the de-Poissonization lemma of Beirlant and Mason
(1995) (see Theorem 2.1 on page 5). In contrast to the result of Beirlant and Mason (1995),
the version here is uniform in P € P.

Lemma B3. Let Ny ,(«) and No (o) be independent Poisson random variables with Ny, ()
being Poisson (n(1—a)) and Ny, (a) being Poisson (na), where o € (0,1). Denote N, (a) =
Nin(a) + Nop(a) and set

(o) = () \_/7?(1 =9 d Vi(a) = W

Let {S,}22, be a sequence of random variables and P be a given set of probabilities P on a

measure space on which (S, U,(ap), Vo(ap)) lives, where ap € (0,1) is a quantity that may
depend on P € P and for some € > 0,
(B.8) e<inf ap<supap <1-—-=c.

Pep PeP

Furthermore, assume that for each n > 1, the random vector (S, U,(ap)) is independent
of Vi(ap) with respect to each P € P. Let for ti,ty € R,

b p(ti,to;0p) = ‘P{Sn <t1,Uy(ap) <to} — P{lopZy < t1,V1 —aply < tz}‘ ,
where 74 and Zso are independent standard normal random variables and 0123 > 0 for each
P € P. (Note that inf pep 0% is allowed to be zero.)
(i) As n — oo,

sup sup
PEP teR

2
< 2e+ (4Cd sup an,p(s)) \/ —W,
PcpP €

where a, p(e) = e b, p+¢,b,p = SUDy, 4,er Un,p(t1,t2;0p), and € is the constant in (B.8).
(ii) Suppose further that for all ti,ts € R, as n — oo,

Elexp(itSy) | Nn(ap) = n] —exp (_ UétQ) ‘

sup by, p(t1,t2;0) — 0.
PeP
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Then, for allt € R, we have as n — o0,

sup |E[exp(itS,)|Nn(ap) = n] — 1| — 0.
PeP

Remark 2. While the proof of Lemma B3 follows that of Lemma 2.4 of Giné, Mason, and
Zaitsev (2003), it is worth noting that in contrast to Lemma 2.4 of Giné, Mason, and Zaitsev
(2003) or Theorem 2.1 of Beirlant and Mason (1995), Lemma B3 gives an explicit bound for
the difference between the conditional characteristic function of S, given N, (ap) = n and
the characteristic function of N(0,0%). Under the stated conditions, (in particular (B.8)),
the explicit bound is shown to depend on P € P only through b, p. Thus in order to obtain

a bound uniform in P € P, it suffices to control ap and b,, p uniformly in P € P.

Proof of Lemma B3. (i) Let ¢, p(t,u) = Elexp(itS,, + 1uU,(ap))] and
¢p(t,u) = exp(—(opt® + (1 — ap)u?)/2).
By the condition of the lemma and Lemma B2(i), we have for any € > 0,

(B.9) |onp(t,u) — op(t,u)| < (5’dCdbn,p + 4e)
< 4€*dCdbn,p +4e = 4C4a,,p(€).

Note that a, p(¢) depends on P € P only through b, p.
Following the proof of Lemma 2.4 of Giné, Mason, and Zaitsev (2003), we have

Unp(t) = Elexp(itS,)|Ny(ap) = n]
1 m/n

— =1+ o(1) /_ ot VBlep(ioVaor)] v

uniformly over P € P. Note that the equality comes after applying Sterling’s formula to
21 P{N,(ap) = n} and change of variables from u to v/y/n. (See the proof of Lemma 2.4 of
Giné, Mason, and Zaitsev (2003).) The distribution of N, (ap), being Poisson (n), does not
depend on the particular choice of ap € (0,1), and hence the o(1) term is o(1) uniformly
over t € R and over P € P. We follow the proof of Theorem 3 of Feller (1966, p.517) to

observe that there exists ng > 0 such that uniformly over a € [¢,1 — €],
R

/ |E exp(ivV;, () — exp(—av?/2)| dv + /

. fof> /i

for all n > ng. Note that the distribution of V,,(ap) depends on P € P only through

ap € [g,1 — €] and € does not depend on P. Since there exists ny such that for all n > ny,

exp (—av?/2) dv} <e,

sup/ exp (—apv2/2) dv < g,
PeP Jv|>my/n
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the previous inequality implies that for all n > max{ng, n1},

B.10 o t,u) (E uV, 2/2))|d
(B.10) sp [ o) (Bespliuvior) = expl—pn’/2) | du

m/n
< sup/ (Sup |¢n7p(t,u)|) |Eexp(iuV,(ap)) — exp(—apu2/2)|du
PeP J —ny/n \PEP

m™/n

< sup/ |E exp(iuV,(ap)) — exp(—apu®/2)|du < ¢.
PeP J—n\/n

By (B.9) and (B.10),

m/n

m/n
/ Onp(t, w)E [exp(iuV,(ap))] du — / op(t,u)exp (—apu2/2) du
—nyn -

sup
PeP

IN

m/n
sup sup / !(bn,p(t, u) (Eexp(iuVy(a)) — exp(—au2/2))| du
PeP acle,1—¢€] J —nmy/n

T/n
~|—/ sup sup |¢n,p(t,u)—¢p(t,u)|exp(—au2/2)du
—my/n PEP acle,1—¢]

m/n
< e+ <4C'd sup an,p(e)) sup / exp(—au?/2)du
pPep a€le,l1—e] J —m\/n

2 2
< e+ <4Cd sup an,p(e)) sup 4/ i €+ (4Cd sup an,p(e)) ]
PcP a€le,1—¢] Q PeP €

as n — 00. Since
242 o) 2
opt 1 apu
— = t — d
exp ( 5 ) \/%/ ¢op(t,u)exp ( 5 > u,

and from some large n that does not depend on P € P,

oo 2 m/n 2
‘ / ¢p(t, u) exp (—aP“ ) du — / op(t,u) exp (—“P“ ) du
—o0 2 —7\/n 2

242 o0 2 T/n 2
e () [ e ()
= exp (— exp | —— | du — exp | —— | du
2 2 2
—o0 —my/n
242

we conclude that for each t € R,
opt 2m
np(t) —exp | — < 2e+ | 4Cysup ay p(e) —,
2 PcP €

as n — 0o. Since the right hand side does not depend on ¢t € R and P € P, we obtain the

<&,

desired result.
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(ii) By the condition of the lemma and Lemma B2(ii), we have for any t,u € R,

sup ’¢n,P<t7 u) - ¢P(O7 u)‘ — 07
pPepP

as n — 00. The rest of the proof is similar to that of (i). We omit the details. 1
Define for x € X, 71,75 € T, and j,k € Ny,

XZ'—.T "
671:1:7’]( ZJ’T) :|

Lemma B4. Suppose that Assumption A6(i) holds. Then for all m € [2, M|, (with M > 2
being the constant that appears in Assumption A6(i)), there ezists Cy € (0,00) that does not

1
kn,'r,j,m ('T) h |:

depend on n such that for each 7 € Ny,

sup sup kn,r,j,m(x) S C(1-
T€T ,x€S-(e) PEP

Proof of Lemma B4. The proof can proceed by using Assumption A6(i) and following the
proof of Lemma 4 of Lee, Song, and Whang (2013). 1

Let N be a Poisson random variable with mean n and independent of (Y;', X,'),.

Also, let B,..(Y:, (Xi — z)/h) be the J-dimensional vector whose j-th entry is equal to
/anTj( 1]7( ; )/h) We define

N
1 Xi—x 1 Xi—x
ZN,T(-73> = WZ/BTL,CE,T (Ka h )_ﬁEﬂnvl,T (Y;’T) and
=1
4 n,r,T }/z';z— — —E LT Y;-)Z— )
nhdgﬁ”( P ) hdﬁw( 3 )

Let N; be a Poisson random variable with mean 1, independent of (Y;", X;")2°,. Define

1 X, — X, —
Qn,’r(x) = WIE:N {an'r( 9 h ) Eﬁnam—( zaTx)} and

\/—{Bnmf( uT) Eﬂnzr( “T)}'

Lemma B5. Suppose that Assumption A6(i) holds. Then for any m € [2, M| (with M > 2
being the constant in Assumption A6(i))

Zn . (T)

G, (T)

(B.11) sup sup E [||gn-(2)||™] < C1R-M2) gpd
(z,7)€S PEP
sup_sup E[||ga-()[|"] < Cop®m0m/2),
(z,7)€S PEP

where Cy,Cy > 0 are constants that depend only on m.
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If furthermore, limsup,, . n~(M/2+1pd=m/2) < for some constant C' > 0, then

15 _
(B.12) sup sup E [||n1/2hd/2zN7T(x)||m] < ( m ) max {Cy,2CC} and
(#,7)€S PEP logm

1 " - =
sup supE[|]n1/2hd/2znﬁ(x)||m] < ( 5m> max {Cs,2C,C'},

(¢,7)eS PEP logm
where C1,Cy > 0 are the constants that appear in (B.11).
Proof of Lemma B5. Let ¢, r;(x) be the j-th entry of ¢, (). For the first statement of the

lemma, it suffices to observe that for some positive constants C; and C,

d
Clh kn,T,j,m

i < Ohd (m/2) )

(B.13) sup sup E[|gnr;(z)["] <
(z,7)€S PEP

where the first inequality uses the definition of £, ; ;,, and the last inequality uses Lemma
B4 and the fact that m € [2, M]. The second statement in (B.11) follows similarly.

We consider the statements in (B.12). We consider the first inequality in (B.12). Let
znrj(x) be the j-th entry of zy (). Then using Rosenthal’s inequality (e.g. (2.3) of Giné,
Mason, and Zaitsev (2003)), we find that

sup sup E[|[Vnhizy . (x)|™]

(z,7)€S PEP
15m \" ) m/2 —m/2+1 m
ogm ) (U sup max { (Eqp - ;(x))™ " n E|¢yrj(2)] } -

Since Eq2 . ;(z) < (Elgnr;(x)|™)*™, by (B.13), the last term is bounded by

( 15m > max {C CTL (m/2) +1hd m/2))}
logm

15m \"™ -
(logm> maX{C,QCC},

from some large n by the condition limsup,,_,.on~ /2 +1pd1=(m/2)) < ¢
As for the second inequality in (B.12), for some C' > 0, we use the second inequality in

(B.11) and use Rosenthal’s inequality in the same way as before, to obtain the inequality. 1

The following lemma offers a characterization of the scale normalizer of our test statistic.
For A, A’ C Ny, define ¢, -(z) = Vnhizy . (x),

(B.14) C’ﬁT’T,’A7A,(x,x') = h%Cov (Aayp (Cur(2)), Aarp (Gurr(27))) , and
Curraala,u) = Cov(Aay (W (2,0)  Aary (W (2,0)) )

where we recall that [V\\/le,)nﬁ2 (x, u)T,W”g}mm(y&,u)T]T is a mean zero R?/-valued Gaussian

random vector whose covariance matrix is given by (4.9).
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Then for Borel sets B, B’ C S and A, A’ C Ny, let

af’A’A/(B,B’) E///BC’ﬁsz’A,(x,x')dQ(x,T)dQ(m',T')

and

(B.15) Un,AyA/(B,B/) = / / / / On,f,r’,A,A’ (x,u)dudxdeT’,
T7J7JB.0B, Ju
where B, ={x € X : (x,7) € B} and B, ={zx € X : (z,7') € B'}.

The lemma below shows that of 4 ,(B, B') and 0, 4 4/(B, B') are asymptotically equiva-
lent uniformly in P € P. We introduce some notation. Recall the definition of ¥, , ,,(x, u),
which is found below (4.7). Define for £ > 0,

En,ﬁ,n (Z)ﬁ', O) + é?]J Zn,Tl,TQ (27, U)
Yo m (T, 0) Yo rm (T +uh,0) +E1;

in,‘rlﬂ‘z,f(m) U) )

where [ is the J dimensional identity matrix. Certainly in,nm,g(az,u) is positive definite.
We define
[T ae—1/2 ZN, (T3 11)
gN,Tl ,T2 (ZL’, u; M1, 772) = nhdznﬂ'{,m,é(‘xa U) o ;
ZN,r (z + uh;n)
where 17 € R” and 7, € R’ are random vectors that are independent, and independent of

(Y;", X;")22,, each following N(0,&1;), and zy . (z;m) = zy . (x)+m1/Vnhd. We are prepared

1

to state the lemma.

Lemma B6. Suppose that Assumption A6(i) holds and that nh? — oo, as n — oo, and
limsup n~(/2F1pd=(m/2)
n—oo

for some constant C > 0 and some m € [2(p+ 1), M].
Then for any sequences of Borel sets B, B!, C S and for any A, A" C Ny,

UﬁA,A’(Bna B:z) = Un,A,A’(Bm Bg) +o(1),

where o(1) vanishes uniformly in P € P as n — oo.

Remark 3. The main innovative element of Lemma B6 is that the result does not require
that o, 44/ (Bn, B),) be positive for each finite n or positive in the limit. Hence the result
can be applied to the case where the scale normalizer o) , 4/ (By, By,) is degenerate (either

in finite samples or asymptotically).
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Proof of Lemma B6. Define B, . = {z € X : (x,7) € B,}, wyp,(x) = 1p, . (x). For a given
g >0, let
Ginmme(@,w) = W Cou(Aay(Vihizy o, (z:m)), A p(Vnhizy o, (z + ub;2))),
Gonmme(®,u) = Cov(Map(Zng me(), Marp(Znm me(x + ub))),

and (ZJ7T1’7275(:E),Z;TI’TQ,E-(U))T is a centered normal R*/-valued random vector with the

same covariance matrix as that of [Vnhdzy . (x;11), Vnhizy . (v;n2)]". Then we define

af’AyA/’g(Bn,B;) E/T/T/B /uglnﬂn,s(a:,u)le,Bn(x)meh(a:+uh)duda:dTldTg,

n,Tq

and
O'n,A,A/,é(Bm B;L) = / / / / Cﬂ,T1,727A,A'75(‘T’ u)dUd$dT1dT2’
T JT JBnrNBy -, JU
where
(B16> Cn,’?’l,TZ,A,A,7§(I7 u) = OO/U (AA7P<W£11’.),-17727§(37, u)), AA/7P(W£LQ,‘)['1,72,§<1:7 u))) I
and, with Z ~ N(0, I,;),
Wi (z,u) S1/2
B17 n,T1,72,E\*") = zn/T (T u 7.
( ) [ W1(’Lz,3'1,T2,€_(x7u) T ( )

Thus, Uf,AA/’g(Bn, B!) and 0, 4 4 (By, B),) are “regularized” versions of 02A7A,(Bn, B!) and
On,a.A (Bn, B,). We also define

Tn.aae(Bn, By) E/// /ggn,nﬂ@(:ﬁ,u)wn,Bn(x)wTQ,Ba(ﬂc+uh)dudxd7‘1d7'2.
7JT B0, Ju

Then it suffices for the lemma to show the following two statements.
Step 1: As n — oo,
sup [0 4 4 2(Bu, B) = T ,2(Bn, B)| — 0, and
PeP

iu]g\Tn,A,A/,g(Bn,B;)—Un,A,A/,g(Bn,BfM — 0.
S

Step 2: For some C > 0 that does not depend on € or n,
sup |05 4 4 2(Bn, By) — 0 4 4(Bn, B)| < CVE, and
PeP

sup |0n,A,A’,§(Bn7 B;z) - O-TL,A,A'(BTM B:@)| S C(\/E
pPepP

Then the desired result follows by sending n — oo and then € | 0, while chaining Steps 1
and 2.
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Proof of Step 1: We first focus on the first statement. For any vector v = [v{,v, | € R*,

we define
Rapa (V) = Ay ([S 0 e upv] ).
Rz (V) = Awy ([25 clauwv] ).
and
(B.18) Crp(V) = Bapa (V) Ay (V)

where [a]; of a vector a € R* indicates the vector of the first J entries of a, and [a], the
vector of the remaining J entries of a. By Theorem 9 of Magnus and Neudecker (2001, p.
208),

. ¥ )
(Blg) )\min (En,rl,rg,§($7 U)) > )\min ( n,T1,72 (I> 0; n,T1,72 ($, U) ])

Y (@ u) B, (2 + uh,0)
I\ ely; 0
A 0 e

2 )\min gIJ ;
0 &I,

Let ¢y rj(@;m;) = Purj(x) + m1j, where

X, —x X, —x
pn,'r]( \/—1<ZZ<N1 {ﬁnx73< U;T) |:ﬁn1‘7']( ij h ):|}7

1, is the j-th entry of )y, and N is a Poisson random variable with mean 1 and ((11;)en,, V1)
is independent of {(Y;", X,")}°,. Let p,..(x) be the column vector of entries p,, , j(x) with j
running in the set N;. Let [p£L7)Tl( ), pih (z + uh)] be iid. copies of (D (€), Prry (T + wh)]
and n%i) and ng) be also i.i.d. copies of n; and 7. Define

¢V (@) = pl () + ni” and ¢{") ,(z + uh) = p9) (x + uh) + 1.

Note that

1 ¢ qv(v,Z)Tll(
pnT2 x + uh)

1 Z" n;

Qn T2, 2(1’ + Uh
The last sum has the same distribution as [, 7, ]" and the leading sum on the right-hand

\/_Z[ pnTl )

side has the same distribution as that of [z . (), 2y ,,(x + uh)]". Therefore, we conclude

that
d

EN i (T, s 11, 1) = \/—Z nllm x,u),
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where

(@) (:B)
W (zu) = Ean/ZT T, n1
n,71, 7'2( ) 1, 26( ) q,EZ’)TQ,Q(iU‘i‘Uh)

Now we invoke the Berry-Esseen-type bound of Sweeting (1977, Theorem 1) to prove Step
1. By Lemma B5, we deduce that

(B.20) sup_sup BlJq, ()] < Oh-,
(z,7)eS PEP

for some C' > 0. Also, recall the definition of p, 7, r,;.;(2,0) in (4.7) and note that

(B.21) sup  sup  suptr (inm,mg(m, u))
TET (z,u)ES-(e)xU PEP

< sup supz (Prr 71,55 (2,0) + Prory . (2, 0) +28) < C,
TET ,x€S-(€) PEP

for some C' > 0 that depends only on J and & by Lemma B4. Observe that by the definition
of C,,, in (B.18), and (B.21),

G =GO _

verzs 1+ [[v[[#*2min {[|v]], 1} =

We find that for each u € U, [|W') -, (z, u)||? is equal to

(2) (%)
B.22 tr 2517/27 z,u Gn.r1 (2) G (7) ;17/27 T, u
522 g0 e run) | [ e en | o
(i) (4) T
< Amax (Zn 171 2, sz ,u)> tr (z')qn’n’l(x) (z)qn ()
qn,Tl,Q (:L' + Uh) Qn T2, 2(37 + Uh)

Therefore, E|[W,\'}, - (z, u)|[® is bounded by

qg)ﬁ 1 ()

\3/2 (-1 E
(Ernmete ) B 00

max N,T1,72,E

:

N2 (S () = AL A (S () < £

max n,T1,72,& min

From (B.19),

Therefore, we conclude that

W’rgfz'lﬁz (:E? u) | |3

sup  sup sup E||
TET (z,u)ESr(e)xU PEP

IN

Cie 2. sup supEqul( )|

T€T,x€S-(e) PEP

KOy swp sup Bl ole + b < CorY2/ViA
TET (z,u)ES-(e)xU PEP
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where C'} > 0 and C5 > 0 are constants depending only on J, and the last bound follows
by (B.20). Therefore, by Theorem 1 of Sweeting (1977), we find that with £ > 0 fixed and
n — oo,

(B.23) sup sup sup

ECn,p < Z ’nT1 7'2 ) EC n,p < n71772(‘r7u)>‘
TET (z,u)€S, () XU PEP
= 0 (n_1/2h_d/2) = o(1),

where Zn,ﬁﬂ (2,0) = [Znry my (X)) T, Loy p (@ +uh) 7] T
Using similar arguments, we also deduce that for j = 1,2, and A C Ny,

EAA,p,j <\/— Z fl,TQ ) EAAPJ (anm(x,u)>| = o(1).

sup sup sup
TET (z,u)€S-(e)xU PEP

For some C' > 0,

sup sup sup Cov (Ap(Zy, 7y 10 (%)), Ap(Zy 7y 7y (x + uh)))
TET (z,u)ESr(e)xU PEP

< sup sup sup \/E ||Zn T1,T2,E )||2p\/E ||Zn77'177'275(x + Uh)||2p <C.
TET (z,u)ESr(e)xU PEP

The last inequality follows because Z,, r, -, () and Z, -, -, (x + uh) are centered normal
random vectors with a covariance matrix that has a finite Euclidean norm by Lemma B4.
Hence we apply the Dominated Convergence Theorem to deduce the first statement of Step
1 from (B.23).

We turn to the second statement of Step 1. The statement immediately follows because

for each u € U, the covariance matrix of 3, T{ﬂ (z,u)&n 7y .1 2(z,u) is equal to the covariance

matrix of (WL, (z,u), WL, (& )] Tand

‘wTLBn (‘T)wTQ,BL(z + Uh) - le,Bn<x)wT2,B,’1(x)| — 0,

as n — 0o, for each u € U, and for almost every z € X’ (with respect to Lebesgue measure.)
Proof of Step 2: We consider the first statement. First, we write

(B.24) ‘( R g wo(Bo, B)) = (084 4 (B B%))z‘

/ / / / AT (@ w)| wey g, () wey, g (2 + uh)dudzdTdr

/ / / / (AT o(@,0)| Wy g, (@)W, (3 4 uh)dudzdrdr,
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where
AL (@) = BAuy(Vahizy, (@) EAw,(Vihizy, (o + ub)
—EA 4, (Vihizy o, (2;m) EAu,(Vihizy, , (@ + ubs 1)),
and
Al (@) = By (Vahizy g () A (Vihizy g (« + uh)

—EAa,(Vnhizy . (x;m))Aa p(Vnhizy ., (x + uh;no)).
By Holder inequality, for C' > 0 that depends only on P,
AT u)| < CA(z,u) + CAsy(, ),

n,T1, Tg?( )

where, if p =1 then we set s =2, and ¢ =1, and if p > 1, weset s = (p+1)/(p — 1) and
g=(1-1/s)7",

Awa(z,u) = (nh) {E |lznm (@) = 2 (2im) [}

1 1
< ({Blasn @I} 4 {B s (im0}

AVE (llznm (@ -+ uh)|*),

and

Agp(z,u) = (NN {E |2y (2 + uh) — zn.0, (2 + whyno) |27}
<{E ||ZN 7'2($ + uh)||28(p % } {E HZN,T2 (17 + Uh; 772)||25(p_1)}25>
< \/E (|l () [%).

Now,

sup_sup B |Vt (2) -z i)} = B[|VEZI* = C=1,

(z,7)eS PEP

where Z € R’ is a centered normal random vector with identity covariance matrix ;. Also,
we deduce that for some C' > 0 that does not depend on n,
2s(p—1)

sup sup E H\/_dzNT x)

(z,7)€S PEP
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by (B.12) of Lemma B5 and by the fact that 2s(p — 1) = 2(p + 1) < M. Similarly, from
some large n on,

Qp)
2p
< C,
sup sup

sup (Aln(x7 U) + AQn(x7 U)) S O\/§7
(11,72) ETXT (2,u)E(Sry (€)USr, (£)) xU PEP
and that for some C' > 0,

sup sup E <H\/nhdzN,T(af + uh;ng)

(z,7)ES PEP

TET,x€S-(e) PEP

< sup supE <HV hizy . (2;72)

for some C > 0. Thus we conclude that for some C > 0

sup sup sup [A7 (@, u)| < CV/E.
(11,72)ET XT (x,u)€(Sr (€)USr, (€))xU PEP

Using similar arguments, we also find that for some C' > 0

sup sup sup [A? L (z,u)| < CVE
(11,72)ETXT (w,u)€(Sry (€)USr, (¢)) XU PEP

Therefore, there exist C; > 0 and C5 > 0 such that from some large n on

sup‘anAA/ -(Bn’B ) nAA’(B”7B,>‘

< Cl\/_/// /wThBn L)Wy, g (x + uh)dudxdr dr,.

Since the last multiple integral is finite, we obtain the first statement of Step 2

We turn to the second statement of Step 2. Similarly as before, we write

|JnAA”BmB/) nAA’(BmB,)‘

/ / / / AT (@ w) | way g, (€)W, g (z + uh)dudzdT drs
/ / / / |A] L (@ u)| we B, (2)Wny, 5y (€ + uh)dudzdrdr,

where
A717 ,T1,7T2 (CU, U) = EAA:p<W£L )1'1 T2 ('r7 u))EAA/, (ng, 3’1 T2 (.’,U u))
—EA (W), (@, ) EA (W), (2, 0)),
and

Ag,ﬂ'l ,T2 (m7 u)

EA (W (2, 0) A (WP (2, u))
—EA 4 ,(W)

71,72, €<:U u))AA’,;D WTL ,T1,7T2,E ( u))
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Now, observe that for C' > 0 that does not depend on &, we have by Lemma B1(i),

1/2
Yinm (z,0) Yinm,m (z,u)
n,T1,72,E

(,1)€(Sr, (£)USry (£)) xU PEP Y (T, 1) By (1 + uh)

< CvE.

sup sup ||SY/? (x,u) —

Using this, recalling the definitions of W,g,)nm (z,u) and Wg)nm (z,u) in (B.17), and following

the previous arguments in the proof of Step 1, we obtain the second statement of Step 2. n

Lemma B7. Suppose that for some small vy > 0, n=2h=%"1 — 0, as n — oo and the
conditions of Lemma B6 hold. Then there exists C' > 0 such that for any sequence of Borel

|

Remark 4. The result is in the same spirit as Lemma 6.2 of Giné, Mason, and Zaitsev (2003).
(Also see Lemma A8 of Lee, Song and Whang (2013).) However, unlike these results, the
location normalization here involves E[A4,(Vnhizy ,(x))] instead of E[A4,(Vnhiz, -(z))].
We can obtain the same result with E[A 4,,(vVnhizy - (z))] replaced by E[A 4, (Vnhiz, -(z))],

but with a stronger bandwidth condition.

sets B, C S, and A C Ny, from some large n on,

sup E Hh—d/2 / n {AA,p(\/Wzn,T(x)) _E [AA@(\/WZNJ(QC))} } dQ(z,7)

pep

CvQ(By).

IN

Like Lemma B6, the result of Lemma B7 does not require that the quantities vnhiz,, . (z)

and vVnhizy -(z) have a (pointwise in z) nondegenerate limit distribution.

Proof of Lemma B7. As in the proof of Lemma A8 of Lee, Song, and Whang (2013), it
suffices to show that there exists C' > 0 such that C' does not depend on n and for any Borel
set B, C R,

Step 1:
sup E ’hd/z / {AAJ,(\/ nhiz, . (x)) — Aap(V nhdzN,T(x))} dQ(x,T)
per | Bn

Step 2:

sup E [ pdr2 / n {AA,p(\/WzN,T(x)) —E [AA,,,(WZN,T@;))} } dQ(z, 7)

Pep

1 < CQ(B,), and

}gc\/m.

By chaining Steps 1 and 2, we obtain the desired result.
Proof of Step 1: Similarly as in (2.13) of Horvéath (1991), we first write

(B.25) Znr(T) = 2N (2) + Vi (@) + 5. (),
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where, for 3, , - (Y, (X; — x)/h) defined prior to Lemma B5,

virte) = () (120 | ana
sur@) = i 3 {uar (5 557) =B [ (50

and we write 1"\, =0if N=n,and 77" | = — ZiN:nH if N > n.
Using (B.25), we deduce that for some C7,Cs > 0 that depend only on p,

(B.26) / My (Zr (2)) — Ay (22 (2))] dQ (2, )

n

< 01/3 Var (@) (120 (@) 17" + Iz (2)[77) dQ(z, 7)

e /B 18 (@)1 ([20r @) [P~ + s (2)]) dQ(, 7)
= Dy, + Doy, say.

To deal with Dy, and Dy, we first show the following:
CLAIM 1: $Up(y 15 50D pep Ef| [V (2)[[2] = O(n 1), and

CLAIM 2: Sup(, )5 SUppep Blllsnr (2)[[2] = O(n~*/271).

Xi—.f[)
hd |:an7( zaT):|

Since E[n"'/2(n — N)|? does not depend on the joint distribution of (Y;, X;), E|n"'/%(n
N)|?> < O(1) uniformly over P € P. Combining this with the second statement of (B.12),
the product on the right hand side becomes O(n~!) uniformly over P € P.

PROOF OF CLAIM 2: Let 1, € R’ be the random vector defined prior to Lemma B6, and
define

ProOOF or CLAIM 1: First, note that
2

- sup
(z,7)ES

n—N 2

sup B [[Ivar ()] < E
(z,7)ES

. _ (N—n)m
S, (1) = 8nr(2) + =55
Note that
(B.27) E s, ()] < 2B s, (aim) [ + o H

As for the last term, since N and 7, are independent, it is bounded by

N Ce 9 —dev
th ( ‘— ) E||771H2 < n2hd :O(TL *h I 1)7




A-47

from some large n on.
As for the leading expectation on the right hand side of (B.27), we write

n 2

1 i
% Z q7(1)71(x)

=N+1

J n (@) 2
1 — qn,T,l,‘(J:>
- I3 3 )
=1

i1 T (2)

2

E H\/Wsnﬁ(a:;m) = E

(4)

where g, (z)’s (i = 1,2,...) are i.i.d. copies of g, (z) +n and qff)ﬂj(x) is the j-th entry

of qﬁfy)ﬂl(x), and 62 _ (1) = Var(q(i) (x)). Recall that ¢, ,(z) was defined prior to Lemma

n,7,j n,7,1,j

B5. Now we apply Lemma 1(i) of Horvéath (1991) to deduce that

n () 2
(x
sup supE( g —qf’f’l’j( )>

(z,7)eS PEP N1 O'nmj(l’)
(@) 3
(x
(@r)es PeP | Onrj(T)
(@) 4
AT
+C sup supE —qf”’“( ) ,
(z,7)€S PEP On,rj (ZE)

for some C' > 0, where Z; ~ N(0,1).

First, observe that sup(, ;)es SUppep On.rj(2) < 00 by Lemma B5, and

(B.28) (xgl)fes ]grelgj On,rj(x) > >0,

due to the additive term 7, in g, ,(x) +n;. Let n;; be the j-th entry of ;. We apply Lemma
B5 to deduce that for some C' > 0, from some large n on,

B.29 sup sup E|(qy,i(2) +m:) /5, :(2)]? < Ch~#D=t1/2) anq
( p p q TsJ 77 J sTsJ

(z,7)€S PEP

sup sup E|(gnrj(2) + 1) /Fnr (0)]t < Ch™7,

(z,7)€S PEP

Since E|N — n| = O(n'/2) and E|N — n|"* = O(n**) (e.g. (2.21) and (2.22) of Horvéth
(1991)), there exists C' > 0 such that

(B.30) sup sup E Z rnbiv ) < = {n1/2 + /AR (d2)=0n/2) 4 .
(z,7)eS PEP =N 11 On,r,j (QZ) €
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This implies that for some C' > 0, (with € > 0 fixed while n — 00)

2
(B.31) sup sup E H Vnhis, ()
(z,7)eS PEP

— O ')+ 0 V) = 0(n 1),

< O (n—lh—m) +0 (n—1/2 + n—3/4h—(d/2)—(1/1/2) + n—lh—d—ul)

since n~1/2h=4"1 — 0. Hence, we obtain Claim 2.

Using Claim 1 and the second statement of Lemma B5, we deduce that

sup E [np/th(p—l)/QDln} < C1Q(B,) sup sup \/E H\/ﬁvnT(zE)H2

PeP (z,T)ES PEP
2p—2 2p—2
x1/E H Vnhiz, ,(z) +E H Vnhizy . (x)
S C2Q(Bn)7

for C,Cy > 0. Similarly, we can see that

sup E [npﬂhd(p’l)ﬁD%] = O(n Y24 = o(1),
PeP
using Claim 2 and the second statement of Lemma B5. Thus, we obtain Step 1.

Proof of Step 2: We can follow the proof of Lemma B6 to show that

E:PrWQA;(AAAV%E%NJ@»——E[AAAv%E%NJ@»ﬂ)dQ@aﬂ]Q

= /// /Cnﬂ-l,m’A,A/(.f,u)dudllﬁd’ﬁdTg—|—0(1),
TJT JBnryNBury Ju

where B, ; is the 7-section of B, defined at the beginning of the proof of Lemma B6,
Chr a4 (x,u) is defined in (B.14), and the last o(1) term is o(1) uniform over P € P.
Now, observe that

sup  supsup sup |Cyry mp.a.4/ (T, u)|
(11,72)ET XT u€U z€X PEP

< sup  supsupsup \E[W o (2, w)|[ 7B W o (2, ) 2 < oo,
(11,m2)ET XT ueld zeX PP
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Therefore,
E th/Q/ (AA,p(\/WZN,T(x)) —E [AA,p(\/WZN,T<x>):|> dQ(;Ij,T) :|
By
< / / / / Cn,Tl,TQ,A,A/ (JJ, U)dIdudTldTQ + 0(1)
TJTJU B"lemBn,q—z
<

C //// drdudrdr + o(1),
T JT JU J Bp,ryNBn,ry

for some C' > 0. Now, observe that

/// dxdridr < / dry - (// dxd7‘1> < CQ(B),
7 JT J By NBu,ry T T Bn,z

because T is a bounded set. Thus the proof of Step 2 is completed. 1

The next lemma shows the joint asymptotic normality of a Poissonized version of a nor-
malized test statistic and a Poisson random variable. Using this result, we can apply the
de-Poissonization lemma in Lemma B3. To define a Poissonized version of a normalized test
statistic, we introduce some notation.

Let C C R? be a compact set such that C does not depend on P € P and ap = P{X €
RY\C} satisfies that 0 < infpep ap < suppep ap < 1. Existence of such C is assumed in
Assumption A6(ii). For ¢,, — oo, we let B, a(cn;C) = By a(c,)N(C < T), where we recall the
definition of B, a(¢,) = By a(cp, cn). (Recall the definition of By, a(¢p 1, ¢n2) before Lemma
1.) Define

Co / A p(Vithz,, (2))dQ(x, 7), and
Bn,A(C’ﬂ5C)

(na = / Aoy (Vihizy 1 (2))dQ(z, 7).
B, a(cniC)
Let p14’s be real numbers indexed by A € N, and define

0—7% (C) = Z Z ,UA,UA/O—n,A,A/(Bn,A(Cn; C), Bn,A’(Cn; C));
AeNj A'eNy
where we recall the definition of ¢, 4 a/(-, ) prior to Lemma B6. Define

S, = I Z pa{lna— ECN,A} .

AeN;
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Also define

=
i

{il{Xi €C} —nP{X; € C}}, and

i=1

S-Sl

{Z 1{X; e R\C} —nP{X, € Rd\C}} .

i=1

Let

= [ ]

" L€)' VI —ap
The following lemma establishes the joint convergence of H,. In doing so, we need to be
careful in dealing with uniformity in P € P, and potential degeneracy of the normalized test
statistic .S,,.

Lemma BS8. Suppose that the conditions of Lemma B7 hold and that ¢, — oo as n — oo.
(i) If liminf, . infpep 02(C) > 0, then

sup sup |P{H, <t} — P{Z <t}| =0,
PeP teR?

where Z ~ N (0, I5).

(ii) If limsup,, .. 02(C) = 0, then for each (ti,t;) € R?,

n

Uy,
P{Sn <t and 1— < tg} — 1{0 < tl}P{Zl < tg} — O,
ap

where Zy ~ N(0,1).

Remark 5. The joint convergence result in Lemma B8 is divided into two separate results.
The first case is a situation where S,, is asymptotically nondegenerate uniformly in P € P.

The second case deals with a situation where S, is asymptotically degenerate for some P € P.
Proof of Lemma BS8. (i) Choose any small £ > 0 and let

Sn,a_ Un !
O'n75<C)’ RV 1-— ap ’

where S, 7 is equal to .S, except that (x 4 is replaced by

H,:= [

CN,A,E = / AA,p( \% nhdZN,T($; ﬂl))dQ(x, 7')7
BmA(Cn;C)

and zy - (z; 1) is as defined prior to Lemma B6, and o, =(C) is 0,,(C) except that %, ;, -, (2, u)
is replaced by %, 1, m.(x,u). Also let
C,=EH,H, and C,:=EH,:H, ..

First, we show the following statements.
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Step 1: For some C > 0, suppep |Cov(S, s — Sn, U,)| < CV/Z, for each fixed £ > 0.
Step 2: suppep |Cov(S, .z Up,)| = o(h/?), as n — oo.

Step 3: There exists ¢ > 0 such that from some large n on,
inf Apin(Cr) > c.
PeP

Step 4: As n — oo,

sup sup |P {C’;l/QHn <t} = P{Z <t} —0.
PeP teR?

From Steps 1-3, we find that suppep [|Cr, — L2]] = 0, as n — oo and as € — 0. By Step 4,

we obtain (i) of Lemma BS.

Proof of Step 1: Observe that from an inequality similar to (B.26) in the proof of Lemma
B,

p—1

[Cwae = Cval < Clim| |Vatizy @) aqea. 7).

Bn,A(Crﬁc)
Using the fact that S is compact and does not depend on P € P, for some constants

C1,Cy, C5 > 0 that do not depend on P € P or n,

Blcvas ~ ol < GBI [

Bn,A(Cn;

S 028_'/ E VnhdZN,T(I)
Bn,A(Cn§C)

by the independence between 7, and {zy .(z) : (z,7) € S}, and by the second statement of
Lemma B5. From the fact that

2p—2

E H V nhdzN,T(JE) dQ(ﬂ?, 7—)
)

2p—2

dQ(ﬁ,T) S 0357

sup BUZ < sup(1 — ap) <1,
PeP pPeP

we obtain the desired result.

Proof of Step 2: Let Xy, ,: be the covariance matrix of [(g,,(x) + nl)T,Un]T, where
U, = U,//P{X € C} and ¢, ,(x) was defined prior to Lemma B5. We can write X, ;- as

Srr (@.0) 4 £, El(gur (@) + m) 0]
E[(qn(x) + nl)TUn] 1

E')’L,T,T('r7 0) ~ v 1 - &?E[an(ﬁ)Un]
| VIZERlL )0 1-c

OT 5_ + An,T(x)7

I, 0
+[€J
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where

. 0 (1= VI =) Elgu(z)0,]
nr = TR Bl ()] 0

The first matrix on the right hand side is certainly positive semidefinite. Note that
7\ 4 IS (k) I 7 (k)
Guri(@).0n) £ (=D a0, (@), —= Y0 ).

(), U,E’“))’s with k = 1,...,n are i.i.d. copies of (g, ;(x),U,), where

U, \/ﬁ{ Z 1{XiEC}—P{Xi€C}},

where N; is the Poisson random variable with mean 1 that is involved in the definition of
qn.rj(x). Hence as for A, ;(x), note that for Cy,Cy > 0,

(k)

n,T,

where (g

(B.32) sup sup |E |:Qn,7,j(x)[]ni| < sup sup |E [Qflklj(ff)ﬁr(zk)”
(¢,7)€S PEP (x,7)ES PEP .
s sy Blnns@)]
(z,r)es PeP / P{X; € C}
d .
< sup sup M Fnrin(@) oy

(@mes pep h¥? (1 —ap)

where k,, - ;1(z) was defined prior to Lemma B4. We conclude that

sup sup || A, -(2)[| = O(h"?).

(z,7)€S PEP

Therefore, from some large n on,

. . . _ N> 2/
(B 33) (I}gfes Igrelg? Amin (2271,7',5) = 5/2
Let
w12 | @er(@)+m
Wn,v@% 771) = EQn,/T,é ljn .

Similarly as in (B.22), we find that for some C' > 0, from some large n on,

sup sup E ||W,, . (z;m)]

(z,7)eS PEP
< C sup sup A2 (350,2) sup sup {E (g, (z) +m|’] + E [\Unlg] }
(z,7)€S PEP (z,7)€S PEP

Z\ —3/2 ; .
< c(5)  sw_suwp {E[llgns () + ml] + E[10.F) }
(z,7)€S PEP
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where the last inequality uses (B.33). As for the last expectation, note that by Rosenthal’s
inequality, we have

sup sup E [\Un|3] <C
(z,7)€S PEP

for some C' > 0. We apply the first statement of Lemma B5 to conclude that

sup sup E ||[W,,(z;m)|* < C&73/2p/2
(z,7)€S PEP

for some C' > 0. For any vector v = [v{,v5]T € R7*!, we define

Dyrp(v) = Aay <[E;7/12T év] > [257/127 év] )
7 1 7 2

where [a]; of a vector a € R’ indicates the vector of the first J entries of a, and [a]y the
last entry of a. By Theorem 1 of Sweeting (1977), we find that (with £ > 0 fixed)

nTp(\/—Z nlff771>

where Zji1 ~ N(0,1;41) and anT(x; m)’s are i.i.d. copies of W, ;(z;m;). The last equality
follows because n~/2h=42 = o(h%/?) (by the condition that n~/2h=4="1 — ( for some small

vy >0asn— o0) and E[D,, ., (Z;4+1)] = 0. Since
1 Z” ;
nTp \/ﬁ Wn Z; 771 )

sup sup |Cov (AAJ, (\/WZN’T(JI; 7]1)> ,Un>

(z,7)eS PEP

=E [Dn,f,p (ZJ—H)] + O(n_l/zh_d/z) = O(nd/2>7

Cov (AAJ, (WZNJ—(:C; 771)> ,Un> =

we conclude that

= o(hd/2).

By applying the Dominated Convergence Theorem, we obtain Step 2.

Proof of Step 3: First, we show that
(B.34) Var (S,) = 02(C) + o(1),
where o(1) is an asymptotically negligible term uniformly over P € P. Note that

Var (S Z Z prapar Cov(Pn 4, P ar),

AeN; A’eN;

where 1, 4 = h™¥%({y 4 — E(y.). By Lemma B6, we find that for A, A’ € Nj,

COU(%,A, @Z)n,A’) = UN,AA’(BH,A(CTL; C), Bn,A’(Cn; C)) + O<1)’

uniformly in P € P, yielding the desired result.
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Combining Steps 1 and 2, we deduce that

(B.35) sup |Cov(Sy, Un)| < CVE + o(h%?).
Pep

Let 7 = infpep 02(C) and 75 = infpep(1 — ap). Note that for some C; > 0,
=29
(B.36) 152% a105 > Ch,

by the condition of the lemma. A simple calculation gives us

(B.37) Aan(Ch) = 2 - % _ - (\/(U% 162 — 4{6253 — Cov(Sn,U )2})
> % { (57 +73)° — (\/(5% +53)° — 45—%53)} — |Cov(S,,, Uy)]

> 5253 — |Cov(S,, Uy)| = Cy — CVE + o(h/?),

where the last inequality follows by (B.35) and (B.36). Taking & small enough, we obtain

the desired result.

Proof of Step 4: Suppose that liminf, .. infpep 02(C) > 0. Let x be the diameter of
the compact set Iy introduced in Assumption A2. Let C be given as in the lemma. Let
Z% be the set of d-tuples of integers, and let {R,; : i € Z%} be the collection of rectangles
in R? such that R,; = [aniy,bni,] X - X [Gniy, bni,], where i; is the j-th entry of i, and
ht < bps;, — ang; < 2hk, for all j =1,...,d, and two different rectangles R,,; and R, ; do not
have intersection with nonempty interior, and the union of the rectangles R, ;, i € Z%, cover
X from some sufficiently large n. Here, Z¢ is the set of d-tuples of integers whose absolute

values are less than or equal to n.
We let

Bpaz(cn) = {7€T:(x,7) € Balcn)},
Bn,i = aniﬂC,

and Z,, = {i € Z¢ : B,; # @}. Then B, ; has Lebesgue measure m(B, ;) bounded by C;h?
and the cardinality of the set Z, is bounded by Cyh~? for some positive constants C; and
C5. Now let us define

Apai=h" d/2/ / AAp Vnhizy (x)) —E |Aap(V nhdzN,T(x))] } drdzx.
nAa:(cn
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And also define B, 4i(¢,) = (Bni X T) N By a(cy),

ZAENJ /’LAAnyAJ
i = and

Un(c)

N
1
Uni = % {; 1 {Xz S Bn,i} — TLP{XZ S Bn,i}} .

Then, we can write

Zam and U, —Zum

leIn IGZn
By the definition of Ky in Assumptlon A2, by the definition of R, ; and by the properties

of Poisson processes, one can see that the array {(a,.i, un;) }iez, is an array of 1-dependent
random field. (See Mason and Polonik (2009) for details.) For any ¢i,¢q2 € R, let y,; =
Q104 + q2up ;. The focus is on the convergence in distribution of Zign Yn,i uniform over
P € P. Without loss of generality, we choose ¢1, ¢ € R\{0}. Define

Varp (Z yn> = qi + (1 — ap) + 2014260

ez,
uniformly over P € P, where ¢, p = Cov(S,, U,). On the other hand, using Lemma B4 and
following the proof of Lemma A8 of Lee, Song, and Whang (2013), we deduce that

(B.38) sup Y By, = o(1)

pPcP ieT,,

as n — oo, for any r € (2,(2p + 2)/p]. By Theorem 1 of Shergin (1993), we have

sup sup
PeP teR

)
1
P
V@i + (1 —ap) + 2q1¢20n,p 1€Z

C
< sup — T/Q{ZE\%J} =o(1),

PeP {q} + ¢5(1 — ap) + 2q1Ga2cn P} i€,
for some C' > 0, by (B.38). Therefore, by Lemma B2(i), we have for each t € R, and each

q € R*\{0}, as n — o0,
t2
—exp(—2 )| >0
exp ( 2) N

sup |P{C,;"?H, <t} — P{Z < t}| - 0.
PeP

sup |E

pPepP

. q'H,
exp | tt———
Vq'Cng

Thus by Lemma B2(ii), for each ¢ € R?, we have
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Since the limit distribution of C, */ °H, is continuous, the convergence above is uniform in
t € R%.

(i) We fix P € P such that limsup,,_..,c2(C) = 0. Then by (B.34) above,
Var(S,) = a2(C) +o(1) = o(1).

Hence, we find that S,, = op(1). The desired result follows by applying Theorem 1 of Shergin
(1993) to the sum U, = ) ;.7 Un;, and then applying Lemma B2(ii). n

Lemma B9. Let C be the Borel set in Lemma BS.
(i) Suppose that the conditions of Lemma B8(i) are satisfied. Then as n — oo,

. {h—d/2 > aen, Ba{Coa — ECn a} < t} — o)

— 0.

sup sup
PcP teR

on(C)

(i1) Suppose that the conditions of Lemma B8(ii) are satisfied. Then as n — oo,

W2 " pa{Gua — By a} 5 0.
AGNJ

Note that in both statements, the location normalization has E(y 4 instead of E(, 4.

Proof of Lemma BY9. (i) The conditional distribution of S,,/0,(C) given N = n is equal to
that of

ZAENJ HA an’A(cn;C)ﬂC {AAap( Vnhiz, - (z)) — BA,(v nhdszT(x))} dQ(x, )
h/2q,(C) '
Using Lemmas B3(i) and B8(i), we find that

h—d/2 > aen, 1a{Cua —ECvat 4
@) — N(0,1).

Since the limit distribution N(0,1) is continuous and the convergence is uniform in P € P,

we obtain the desired result.
(ii) Similarly as before, the result follows from Lemmas B3(ii), B2(ii), and B8(ii). n

APPENDIX C. PROOFS OF AUXILIARY RESULTS FOR LEMMAS A2(11), LEMMA A4(11),
AND THEOREM 1

The auxiliary results in this section are mostly bootstrap versions of the results in Appen-
dix B. To facilitate comparison, we name the first lemma to be Lemma C3, which is used
to control the discrepancy between the sample version of the scale normalizer o,, and its
population version. Then we proceed to prove Lemmas C4-C9 which run in parallel with

Lemmas B4-B9 as their bootstrap counterparts. We finish this subsection with Lemmas
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C10-C12 which are crucial for dealing with the bootstrap test statistic’s location normal-
ization. More specifically, Lemmas C10 and C11 are auxiliary moment bound results that
are used for proving Lemma C12. Lemma C12 essentially delivers the result of Lemma Al
in Appendix A. This lemma is used to deal with the discrepancy between the population
location normalizer and the sample location normalizer. Controlling this discrepancy to the
rate op(h%/?) is crucial for our purpose, because the bootstrap test statistic that is proposed
here does not involve the sample version of the location normalizer a,, for the sake of com-
putational expediency. Lemmas C10 and C11 provide necessary moment bounds to achieve
this convergence rate.

Let the random variables N and N, represent Poisson random variables with mean n and 1
respectively. These random variables are taken to be independent of ((Y;*, X/)2,, (i, Xi)2,).
Let 7, and 7y be centered normal random vectors that are independent of each other and
independent of

(Y5, X0)E, (Y, Xa) 20, N, Ny

We will specify their covariance matrices in the proofs below. Throughout the proofs, the

bootstrap distribution P* and expectations E* are viewed as the distribution of

((Y*7X?k)?:17 N? N1777177]2) )

3 3

conditional on (Y;, X;) .
Define

. 1. L X - L X —uw
pn7717727j7k($7u) = WE |:ﬁn,x7717j (Y;]?T) 6n,:c,7’2,1€ ( ik h +u>:| and
/Bn,az,ﬂj (Yz‘jv h ) :| .

Note that py, 1 k(2 u) and l%n”m(x) are bootstrap versions of py, r, -, jx(x,u) and l%nmj,m ().

~ 1 .
kn,’nj,m (ZE) WE |:

The lemma below establishes that the bootstrap version gy - -, jk(%,u) is consistent for

pn,‘r1,7'2,j,k(x> u).

Lemma C3. Suppose that Assumption A6(i) holds and that n=*/?h=%? — 0, as n — oco.
Then for each € € (0,e1), with &1 > 0 as in Assumption A6(i), as n — oo,

sup sup SUp E (| 0,717, (%, 1) = prry o ik (2, u)|2) — 0.
(11,72)ETXT (2,u)€(Sr, (€)USr, (e))xU PEP

Proof of Lemma C3. Define mp, y uri .m0 (Ys 2) = Bz j(Yi, (2—2) /R) Brgry e (Uk, (2 — )[R +00)
for y = (y1,...,ys)" € R7, and write

_ 1 O
pn,n,‘rg,j,k (3:7 'LL) - pn,n,w,j,k(il;a u) = W Z {Wn,:p,u,n,m (Y:u Xz) - E [ﬂ-n,x,u,n,‘rg (}/za Xz)]} .
i=1
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First, we note that

2
1 n
E (% Z {ﬂ-n?w7u’7—177—2 (S/;’ XZ) - E |:7TTL,{L‘,’U,77'17T2 (}/;7 XZ)]}) S E |: n YLy UyT1,T2 (S/j“ XZ)] °
i=1

By change of variables and Assumption A6(i), we have E [x N 0 X;)] = O(h?) uni-
formly over (1, m2) € T x T, (z,u) € (S5,,(¢) US,,(g)) x U and over P € P. Hence

E (|ﬁn,7-1,7—2,j,k(377 u) - pn,Tl,Tzd}k(x’ u)|2) =0 (nilhid) )

uniformly over (1, 7) € T x T, (z,u) € (S;,(¢) US,,(¢)) x U and over P € P. Since we

—d/2

have assumed that n=/2h — 0 as n — oo, we obtain the desired result. n

Lemma C4. Suppose that Assumption A6(i) holds and that for some C > 0,

lim sup n~V2pm2 < O,

n—00
Then for all m € [2, M] and all € € (0,e1), with M > 2 and €1 > 0 being the constants that
appear in Assumption A6(i)), there ezists C; € (0,00) that does not depend on n such that
for each j € Ny,
sup supE [k2 (x )] < (.

n,T,J,m
T€T 2€S- () PEP

Proof of Lemma C4. Since E*[|Bp 07 (Yi5, (X7 —x)/R)|™] = L 370 |Bneri (Vi (Xi—z)/B)[™,
we find that

7.2 2 2
knTj m( ) < 2kn7’jm( ) + 2€n,r,j,m(x>7

ﬁn,z,‘r,j (Y;ja T) - EE ( ﬁn:prj ( 77 T)
=1

1 n
i 2
Similarly as in the proof of Lemma C3, we note that

where

enﬂ-’j’m (l’) =

)|
sup  supE[|e} .. (2)]]

TET x€S- () PEP
X,L' — X
ﬁn.Z‘Tj ( ij T)

Hence the desired statement follows from Lemma B4. &

2m

1
< sup  sup =0 'h™) =o(1), as n — oo.

rET 28, (c) PEP nth
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Let

N
3 *
3
~—~
&
Il
‘H
(]
)
3
]

\]
7N
=
\‘*

>

3

|

)
|

| —
=
*

1
)
3
&

3
VR
=
\'*

ke
|
)
_ 1
&)
=]
o,

N
. 1 L X - 1., L X -
ZN,T(‘/L‘) = W § Bn,m,T ()/z ) h ) - WE [ﬁn,rn‘ <Y; ) h ):| :

We also let

ﬁ > {Buar (Y (X] — ) /h) = B*By0 (Y7, (X] — 2)/h)} and

i<N1
1
q;,r(x) = W {Bn,:cﬂ'(Y;*? (X;—x)/h) — E*ﬁn,wﬁ(y@'*a (Xi —z)/h)}.

Lemma C5. Suppose that Assumption A6(i) holds and that for some C > 0,

G ()

limsup,,_,..n~Y*h~4* < C.

Then for any m € [2, M| (with M being the constant M in Assumption A6(i)),

(C.1) sup sup \/E (B [l @1])°] < Cupta=2), and
(z,7)ES PEP ’
sup_sip JE (B Iz @)I"])*] < Cono=tm/),
(z,7)€S PEP ’

where Cy,Cy > 0 are constants that depend only on m. If furthermore,

lim sup n~ (/2 HpdA=m/2)

n—oo

for some constant C' > 0, then

(C2) sup sup E [E [HWZ}Z,T(@H’”H

(z,7)eS PEP

( Lom ) max {Ch, 26,0}, and

logm

sup supE [E* [||Wz;‘”(x)||mﬂ < < Lom )mmaX{C_'g,ZC_'QC},

(z,r)€X=/2xT PEP logm
where C1,Cy > 0 are the constants that appear in (C.1).

Proof of Lemma C5. Let g, . ;(x) be the j-th entry of g, (). For the first statement of the
lemma, it suffices to observe that for each e € (0,¢;), there exist C; > 0 and (] > 0 such
that
* * m1)2
s E[(E [lg.,@)"])’]
TET €S- (¢)

J ~
Clh2d Zj:l SUPreT zes- () SUPPep E [k’?zﬁ,j,m (IL’)]

- < @, 2d0—(m/2)
hdm =

<

I
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where the last inequality uses Lemma C4. The second inequality in (C.1) follows similarly.
Let us consider (C.2). Let zy , .(x) be the j-th entry of z}, (7). Then using Rosenthal’s
inequality (e.g. (2.3) of Giné, Mason, and Zaitsev (2003)), for some constant C > 0,

sup sup B [E'|Vahiz,, (o)"]

T€T,x€S8- () PEP

15m am * *2 m/2 —(m/2)+1p*| % m
(o) o s (B8 o)™ B ™ B ]

The first expectation is bounded by C; by (C.1).
The second expectation is bounded by Cyn~(m/2+1pd(1=(m/2) " Thig gives the first bound
in (C.2). The second bound in (C.2) can be obtained similarly. n

For any Borel sets B, B' C S and A, A’ C Ny, let

Gran(B,B) = / / / / A (T, v)drdudT dTy,
/ Br,

where B, = {x € X : (z,7) € B},
(CS) Ch T2, A,A/<x7 U) = hCov* (AA,P< v nhdZ*N,n (‘7;))7 AA’,P< v nhdZ*N,Tz (U))) )

n,71,

and C'ov* represents covariance under P*. We also define
(C4) ~§A(B) = 55,A,A<B7 B),

for brevity. Also, let X
P gk (T, w). Fix € > 0 and define

u) be the J x J matrix whose (7, k)-th entry is given by

7’LT17'2( )

n,71,T1 n,T1,72

¥r o (x,u) X o (x,0) 4+l

n,71,72

> (x,u)

n,T1,72,€

n,72,72

[ X (x,0)+ £l X ()

We also define

N ) = VRIS Ailrim)
§N,7—1,Tz( m 7]2) 1,72, ( ) [ Z*N77-2<‘/r —|—uh;772)
where 17 € R’ and 7, € R’ are random vectors that are independent, and independent of
(Y7, X))y, (Y, X4)2,, N, N1), each following N(0,£1;), and define z}y (v;m) =z} . (z) +

(2

771/\/W.

Lemma C6. Suppose that Assumption A6(i) holds and that nh® — oo, and

lim sup n~(M/2H1pd0=m/2) ¢

n—oo

for some C' > 0 and some m € [2(p+ 1), M].
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Then for any sequences of Borel sets B, B!, C S and for any A, A" C Ny,

sup E ‘O-nAA/ Bn, B O'n,A,A’(Bna B;)‘) — 07
PeP

where 0y, 4.4/ (By, B),) is as defined in (B.15).

Proof of Lemma C6. The proof is very similar to that of Lemma B6. For brevity, we sketch
the proof here. Define for € > 0,

nAA, A(Bn,B)) = /T//B /M§1n,71,7275($,u)le,Bn(x)sz,B;L(m—i—uh)dudmdﬁdTQ,

/// /g}gn,ﬁﬂﬁ(:c,u)le,Bn(x)me;I(:v—l—uh)dudxdnda,
7J7 B0 Ju

Ginmme(z,u) = h™Cov* (Aa,(Vnhizy . (z;m)), A p(Vnhizy , (x + uh; 1)), and
§2n,71,7'2,5(x7 u) = COU*(AA,ID(ZH,TLTL&_(I))? AACP(ZH,TLW,E_('T + U’h»)v

T z(Bn, B))

where

and [Zl 2 (T), Z;n e(2)]" 1s a centered normal R*/-valued random vector with the same
covariance matrix as the covariance matrix of [\/Wz}“{n (x3m), \/WZ”[VTT2 (2;m2)] " under the
product measure of the bootstrap distribution P* and the distribution of (n],7,)". As in
the proof of Lemma B6, it suffices for the lemma to show the following two statements.
(Step 1): As n — oo,

Sup E (|5-§,A,A’,5(Bm B;L) - 7~—n,xﬁl,A’,é(Bna B’:L)D — 0, and
PeP

sup E (|7~—n,A,A’,a‘(Bna B;) — O'nVA’A/ﬂg(Brm B:Z)D — 0.
pPepP

(Step 2): For some C' > 0 that does not depend on ¢ or n,

sup |UnAA’ (Bn, B,) — 65,A,A’<Bna B,)| < CVE.

PeP
Then the desired result follows by sending n — oo and € | 0, while chaining Steps 1 and 2
and the second convergence in Step 2 in the proof of Lemma B6.

We first focus on the first statement of Step 1. For any vector v = [v],v,]" € R*/ we

define
(€5) Cup(¥) = Ay ([Z0E (@] ) Ay ([E00 s c@iw)v] ).

where [a]; of a vector a € R* indicates the vector of the first J entries of a, and [a], the

vector of the remaining J entries of a. Also, similarly as in (B.19),

(C.6) Ain (S () > 2
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Let qu(x; 71) be the column vector of entries T 7 (2;m1;) with j running in the set N,
and with
qzvﬂj ([E, 771]') = pz,r,j(a’;) + My,

where

p”v—h—z{ﬁ<T> B [suars (1757 |

m; is the j-th entry of 7y, and V; is a Poisson random variable with mean 1 and ((71;);e4, N1)
is independent of {(Y;", X;,", Y;*T Xx")}* . Let | nf)l( ) pn(%(x + uh)] be the i.i.d. copies
of [p;, ., (x), P} ., (¥ + uh)] conditional on the observations {(Y;, X;)},, and nf) and néi) be

i.i.d. copies of n; and ny. Define
G () = i (@) + 0t and g0 (@ + uhinf”) = pild) (z + uh) + g,
Note that

L i Qn(;')l (25 775 )) Z pn T1
vn 1 qn(;)z (2 + uh; 772 pn 7'2 (z + Uh

(2

n (2)
1 T
\/ﬁ;[né)

The last sum has the same distribution as [ ,7, ]" and the leading sum on the right-hand

side has the same bootstrap distribution as that of [z}, (), 2z}, (z+uh)]", P-a.e. Therefore,
we conclude that

. i 1 " (i i %
fN,n,m(m u; ng)’né)) \/_Z 75}1,72(95,21;77%),77&)),

where £ indicates the distributional equivalence with respect to the product measure of the

bootstrap distribution P* and the joint distribution of (77{”, néi)) P-a.e, and

@) (@)
WO (wun® i) = 572 (50 qn’ (z3m;") _
nTl,TQ( 3T 12 ) )T1, 2,6( ) qﬁl)(x + uh: 7]2 )

Following the arguments in the proof of Lemma B6, we find that for each u € U, and for
e € (0,e1) with ;1 as in Assumption A6(i),

swp s B (B, o (o, s n”)|F]
(2,u)€(Sr, USry ) xU PEP

< G s sE | (S ) B (@)l
(2,u)E(Sry (6)USry (e))xU PEP
+C sup sup B | Ny, (50272 oo, 0) ) Bl (o 4 whis )

(2,u)E(Sry (6)USry (€))xU PEP
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for some C; > 0. As for the leading term,

s swpE [\, (S (e 0) Bl ()l
(x,u)E(Sr; (6)USr, (e))xU PEP

< sup sup\/ {(E*Ilqnn(rc m)If? ) }
(2,u)E(Sr) (6)USr, (€)) xU PEP

X sup sup \/E [)\?nm (EZ 71/722 (z, u))} <
(z,u)E(Sr; (6)USry (e))xU PEP

by Lemma C5 and (C.6). Similarly, we observe that
025_3
ViE

s s E [N, (S (e 0) Bl (@4 uhinf)1P] <
(x,u)E(Sr) (6)USr,y (€)) xU PEP

Define
s [ 1 @ 0
cn771ﬂ'2(x’u) =Cnp <_Z r(qu)- T (z,uym” i my”) | -
\/ﬁ — 1,72

Let @y, 7, 7, (-2, u) be the joint CDF of the random vector (Z! . .. (), Z} . . (x +uh))".
By Theorem 1 of Sweeting (1977),

(©7) B o) = [ CoplOd0n (G
(©,u)E(Sr, (£)USry (e)) xU PEP

Ch (i) C2§_3

sup sup E [E* WST (T u; '\ ] :

NG (,u)€(Sr, (€)USr (£)) xU PEP I b o)l nhe

Hence

E

/ / {gln,ﬁ,Tz,é(xv u) - §2n771,7'2,5(1" u)} wTLB(x)wD,B’ (x + Uh>dde
B, Ju

|

é / / E |§1n,7’1,7'2,5(xa ’LL) - §2n,7'1,7'2,§(x7 U)‘ wn,B(x)wTQ,B/<x + Uh>dU,d£E
By

< / Wry B(T)Wr,, pr () d
Br,
X sup sup E |§1n,71,T2,é(xv u) — §2nm,m,5($a )|
(z,u)E(Sry (6)USr, (e))xU PEP
— 0,

as n — o0o. The last convergence is due to (C.7) and hence uniform over (11, 7) € T x T.
The proof of Step 1 is thus complete.

We turn to the second statement of Step 1. Similarly as in the proof of Step 1 in the proof
of Lemma B6, the second statement of Step 1 follows by Lemma C4.
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Now we turn to Step 2. In view of the proof of Step 2 in the proof of Lemma B6, it suffices
to show that with s = (p+1)/(p—1)ifp>1land s =2if p=1,

2s(p—1)
(C.8) sup supE [E* H\/nhdz}‘\”(as) } < (C and
T€T,2€8; () PEP ’
2s(p—1)
sup supE {E* “VnhdzfvT(x;nl) } < C,
TET,2ES- () PEP ’

for some C' > 0. First note that for any ¢ > 0,

sup supE [E* anhd{z}‘w(:ﬁ) —zy ., (v;m)}
T7€T,x€S- () PEP 7 ’

~ B|vaz|” = c=

i

where Z € R’ is a centered normal random vector with covariance matrix ;. Also, we

deduce that for some constants C,Cs > 0,

2s(p—1)
sup supE {E* H Vnhizy () }
T€T,x€S-(e) PEP ’

< sup supE {E HV nhizy . (x;m) +Ci@P N < O+ G,

T€T, €S- (e) PEP

28(17—1)}

by the third statement of Lemma C5. This leads to the first and second statements of (C.8).

Thus the proof of the lemma is complete. &

Lemma C7. Suppose that for some small vy > 0, n='2h=4"1 = 0, as n — oo and the
conditions of Lemma B6 hold. Then there exists C' > 0 such that for any sequence of Borel

)

sets B, C S, and A C Ny, from some large n on,
sup E (E [ p? / {Map(Vrbtz; (@) = B [Aa,(Vihtas, (2))] } dQ(z, 7)
PeP n
< CVQ(Bn).

Proof of Lemma C7. We follow the proof of Lemma B7 and show that for some C > 0,
Step 1: supp.p E (E* Hh_d/2 an {AAﬁp(\/nhdz;"L’T(x)) — AAﬁp(\/nhdz}kV’T(x))} dQ(x,T)H) <

CQ(B,), and
Step 2:

sup B (7| |10 [ {y (Vi (o) = g (Vi (o) } Q)

pPeP

< CVQ(By).




A-65

Proof of Step 1: Similarly as in the proof of Step 1 in the proof of Lemma B7, we first

write
z, . (v) = 2y . (z) + v, (2) + 57, (),
where
- N 1 X* —
V:L,T(x) - (n n ) : WE* [BH,I,T <Y;,*7 Zh 'I):| and
S?’L,T(x) = W Z {Bn,x,‘r (1/7, ) h ) - E |:ﬁn,x,’r (}/z ) h ):| } .

i=N+1

Similarly as in the proof of Lemma B7, we deduce that for some C7, Cs > 0,

‘ /B ) {Aay (2 ,(2)) — Aay (2. (2)) } dQ(z, 7)

< 0 [ i@l (@ + k@) dotar)
+Cy /Bn sy (2] <| z;,T(a;)prl + | z’fw(g;)HP*l) dQ(x,T)

= Dj, + D, say.

To deal with Dj, and D3, , we first show the following:
CLAIM 1+ sup(, )5 5P pep B (B[|IVi, (2)|P]) = O(n ).
CLAIM 2: sup, ;s Suppep E (E*[|[s) (2)[[°]) = O(n=32p=d).

PrOOF OF CLAIM 1: Similarly as in the proof of Lemma B7, we note that

Wil % n—N 1, L X —x
B (& (v, 017 < B (") B || [ (v 27
By the first statement of Lemma C5, we have

n
1 X* — 2\ 17
_E* Y* 7
'hd [5( . )]

Since E |(n — N)/n|> = O(n™"), we obtain Claim 1.

2

E

i

sup sup E = O(1).

(z,7)€eS PEP

Proor or CrLAIM 2: Let

Sn,T(‘T’ 771) = Sn,’r(x) + W’
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where 7, is a random vector independent of ((Y;*, X)), (Y;, X;)?,, N) and follows N (0,1;).
Note that

sup sup E (E HWSZJ(I)W)

(z,7)€S PEP

vinhts, - (x;m)

< 2 sup supE(E*

2 2 (N —n)m 2
L+ B || —
(z,7)ES PEP ) n H

NG

2 Ce?
< 2 sup supE (E* H\/nhdSZT(:B;m)H )—1——,
’ n

"~ (2,7)eS PEP

as in the proof of Lemma B7. As for the leading expectation on the right hand side of (B.27),
we let C; > 0 be as in Lemma C4 and note that

E(E 2) = Y E E*(\/_Zq,mwmj )2

JjENy 1=N+1

vnhts, - (x;m)

nowG) g (DY 2
~ qn‘r '('177771')
fd —_ E O-T?LT I‘ * % ,

o
]eN] i=N+1 T

where ;% (x; ny))’s (1 =1,2,...) are as defined in the proof of Lemma C6 and qnm(x 778)

is the j-th entry of ;¥ (x; 775 ) and &7 i (z) = Var* (qnm(x 77%})) > 0 and Var* denotes the

variance with respect to the joint distribution of ((Y;*, X)) |, 77§ j)) conditional on (Y;, X;)" ;.

We apply Lemma 1(i) of Horvath (1991) to deduce that

¢ (|

On,rj ()

n *(i)' . (i,) 2
GO ( S M) PR

i=Ny1  Ommi (2)

¢ (|’

+CE”
T, ()

for some C' > 0. Using this, Lemma C5, and following arguments similarly as in (B.29),
(B.30) and (B.31), we conclude that

sup sup E (E* Vnhis; (r)

(z,7)ES PEP

2> < O W) + 0 (V2 4 n AR g )

= 0 (n_lh_”l) +0 (n_1/2) ,

since n~Y/2h=%1 — (. This delivers Claim 2.
Using Claims 1 and 2, and following the arguments in the proof of Lemma B7, we obtain
Step 1.
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Proof of Step 2: We can follow the proof of Lemma B6 to show that

B 10 [ (Vi (o) - B [ ()] a0t |

= E /// / :{,Tl,m,A’A,(m,u)dudxdrldTQ
L T T Bn,‘rllﬂann—2 U

< C/ // dxdrdr +o(1) < CQ(B,),
T JT JBn,ryNBn,ry
where Cy 4 4(7,v) is as defined in (C.3). We obtain the desired result of Step 2. &

+o(1)

Let C C RY, ap = P{X € RI\C} and B, a(c,;C) be as introduced prior to Lemma BS.
Define

¢y = / Ao p(Vihiz, (2))dQ(x,7), and
Bn,A(Cmc)

CNa

[ AaplVabis ()0l 7).
By, a(cniC)

Let 114’s be real numbers indexed by A C N;. We also define B,, 4(c,;C) as prior to Lemma
B8 and let

Spo= h? Z paiCna—ECat,
AGNJ
(&
u:r = ﬁ{;l{){l eC}—nP {X; EC}}, and
pro= iux.* € RN\C} —nP* {X; € RI\C}
n - \/ﬁ (2 7 ‘

i=1

We let

O
"= o) Vizan)

The following lemma is a bootstrap counterpart of Lemma BS.

Lemma C8. Suppose that the conditions of Lemma C6 hold and that ¢, — 0o, as n — oo.
(1) If liminf, o infpep o2(C) > 0, then for all a > 0,

supP{sup |P*{H:§t}—P{Z§t}|>a} — 0,

pepP teR?2

where Z ~ N (0, I5).
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(i) If limsup,,_,. 02(C) =0, then, for each (t1,t;) € R* and a > 0,

U

— ap

sup P {
PcP

Stz}—l{oﬁtl}P{% <ty}

>a}—>0.

Proof of Lemma C8. Similarly as in the proof of Lemma C8, we fix £ > 0 and let
[ Se _u )T
O'nf(C)’ \/1—OZP ’

n,e —
where S}, - is equal to S;, except that (y 4 is replaced by

Goae= [ Map(Valiag (o)) dQe,7),
BnyA(cn'C)
and zy_(@;m) is as defined prior to Lemma C6. Also let
C,=E'H;H;" and C,- =E*H; _H..
First, we show the following statements.
Step 1: suppepP {|Cov*(S; - — Si, Uz)| > My/E} — 0, as n — 0o and M — oo.
> ah??} — 0, as n — oco.

Step 2: For any a > 0, suppep P {}C’ov Ur)

n,e’
Step 3: There exists ¢ > 0 such that from some large n on,

inf Apin(Cy) > ¢
Pep
Step 4: For any a > 0, as n — o0,

sup P { sup
Pep teR?

P* {C‘;WH;; < t} — P{Z < t}‘ > a} — 0.
Combining Steps 1-4, we obtain (i) of Lemma BS.

Proof of Step 1: Observe that

G = Gial < Clmll |

-1

( \/_dzNT @ a0, ).

n A (C'n C)

As in the proof of Step 1 in the proof of Lemma B8, we deduce that
B ([Ghae = Gual] <C2 [ B |[Vahiag (o)
Bn,A(Cn§C)

Hence for some C4,Cy > 0,
~ Gal’])

(C.10) E( [
\/_ZNT< )

< (= / (
Bn,A(C'n;C)

2p—2

dQ(z,T).

2p—2
) dQ(x,7) < Coe
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by the second statement of Lemma C5.
On the other hand, observe that E*U*? < 1. Hence

P{|Cov*(S% . — 85, U2)| > MVE} < [Ny - P {max E* [ Coae— C;*VA\Q] > M%} .
! AEN, A, !

By Markov’s inequality, the last probability is bounded by (for some C' > 0 that does not
depend on P € P)
M2t S B (B (|G~ Gral’]) < oM
AeN;

by (C.10). Hence we obtain the desired result.

Proof of Step 2: Let i;nms— be the covariance matrix of [(g;; (z) +m)", U*]" under P*,
where U* = U*/\/P{X € C}. Using Lemma C4 and following the same arguments in (B.32),
we find that

sup sup E [E* [q:;”(x)U;” < Cyh®?,
(z,7)eS PEP Y

for some C5 > 0. Therefore, using this result and following the proof of Step 3 in the proof

of Lemma B8, we deduce that (everywhere)
(C.11) Mnin (Shme) 2 8 = |45, @)
for some random matrix Ay, (x) such that

sup sup E [||A; (2)]|] = O(h?).
(z,7)€S PEP

Hence by (C.11),

(©12) L P Do () 2 €12
>t P < 272)

1-— z sup sup E [||A: (2)]|]] = 1,
€ (z,7)eS PeP ’

v

as n — 0o.
Now note that

3

~ * 1 N 1 ~
(qz,‘r,j (Z‘), U;) d: <_ q(]f)7 (.13), = UT(Lk)*> )
1

W) (1), US*)'s with k = 1,...,n are i.i.d. copies of (¢ -;(x),Uy), and

n7T’] n

ngm{ > 1{X,.*GC}—P*{X;ec}}.

where (g
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Note also that by Rosenthal’s inequality,
limsup,,_,, sup P {E* []U,(Lk)*\?’} > M} — 0,
PeP

as M — oo. Define

G (%) +
U,

Using (C.12) and Lemma C5, and following the same arguments in the proof of Step 2 in

Wi (a;m) = Spn /2

2n,T,E

the proof of Lemma B8, we deduce that

limsupn_ﬂx) Sup sup P {E* W;’T(Z‘,nl)”?) > M&_‘73/2h7d/2} — 07

(z,7)eS PEP

as M — oo. For any vector v = [v{,v5]" € R/*! we define
Dnmp(v) = A, ([i;lz/f év] ) [i;lz/f gv] 5
T A P

where [a]; of a vector a € R/T! indicates the vector of the first J entries of a, and [a], the
last entry of a. By Theorem 1 of Sweeting (1977), we find that (with £ > 0 fixed)

n‘rp( ZW(’L 1'771>

P-uniformly, where Z ;1 ~ N(0, ;1) and Wi (z;m)’s are i.i.d. copies of W _(z;7:) under
P*. The last equality follows because n~/2h=%? = o(h%/?) and E[D,, +, (Z;.1)] = 0. Since

. ] — 4
_ (i)*
Dnmp (ﬁ iZIWn,T ($)>] )

Cov” (AA’p (Wz}kv,r(xml)) 7U;)

E* =E [[)nmp (ZJH)} + Op(n*1/2h*d/2) = OP(nd/2),

Cov* (AAJ, <\/WZ>;V,T($; 771)> ,U;) =FE"

we conclude that

(C.13) sup
(z,7)ES

= op(h®?),

uniformly in P € P.
Now for some C' > 0,

P{|Cov(S} ., Uy)

Cov* (AAJ, (WZ*N,T(JJ;Ul)) 7U:Z>

n,e’

> ahd/2} < P<C sup
(z,7)ES

> ahd/Q}.

The last probability vanishes uniformly in P € P by (C.13). By applying the Dominated
Convergence Theorem, we obtain Step 2.

Proof of Step 3: First, we show that

(C.14) Var* (Sk) = o2(C) + op(1),
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where op(1) is uniform over P € P. Note that

Var (Sp) = > Y papaCov™ (¥ 4,05 ),

AGNJ A’ENJ

where ¢ , = h™2((y 4 — E*(} 4)- By Lemma C6, we find that for A, A € N,

COU*(@DZ,A, ¢Z,A’) = O-”vA»A/(Bn,A(Cn; C), Bn,A’ (Cn; C)) + OP(1)7
uniformly in P € P, yielding the desired result of (C.14).
Combining Steps 1 and 2, we deduce that for some C' > 0,

sup |Cov* (S, UN)| < VE-Op(1) 4+ op(h?).

Pep
Let 61 = Var*(S:) and 63 = 1 — ap, where ap = P* {X; € R)\C}. Observe that
57 = 0,(C) + 0p(1) > Cy + op(1), P-uniformly,

for some C; > 0 that does not depend on n or P by the assumption of the lemma. Also note
that
ap =ap+op(l) <1—Cy+ op(l), P-uniformly,

for some Cy > 0. Therefore, following the same arguments as in (B.37), we obtain the desired

result.

Proof of Step 4: We take {R,; : i € Z%}, and define

Bag(cn) = {7 €T :(2,7) € Balea)},
Bn,i = Rn,i M Cv
Bn,A,i(Cn) = (Bn,i X T) N BA<Cn),

and Z,, = {i € Z¢ : B,; # @} as in the proof of Step 4 in the proof of Lemma BS. Also,

define
nAi = h_d/2/ / {Anp(zy (@) — E* [Aa,(zy,(2))] } drdz.
Bn,i BA,m(Cn)
Also, define
.« ZAeNJ VAT
Qi = and
’ Var* (Sr)
1 N
Wy = =4 SOUX € Bug} —nPH{X; € Bug)
and write

S;: * * *
\/W = Z O'/n,i and Un = Z un,i‘

i€, i€,
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By the properties of Poisson processes, one can see that the array {(a}, ;, u), ;) }iez, is an array
of 1-dependent random field under P*. For any ¢ = (q1, ¢2) € R*\{0}, let y} ; = quas ;+qouss;
and write
Var’ <Z yi;i) = qi + ¢3(1 — ap) + 201426, p,
i€T,
uniformly over P € P, where ¢, p = Cov*(S}, U). On the other hand, following the proof
of Lemma A8 of Lee, Song, and Whang (2013) using Lemma C4, we deduce that

(C.15) Z E*|y, ;" = op(1), P-uniformly,
i€z,

as n — oo, for any r € (2,(2p + 2)/p|, uniformly over P € P. By Theorem 1 of Shergin
(1993), we have

sup
teR

1
P = = Yni St o — D(t)
{ VE+ @1l —ap) + 201260 p IEXI; 7 }
. 1/2
< ; Eynsl" =op(1),
{@@ +3(1 = ap) +2q1q26n.p} 2 {16212 7 }

for some C' > 0 uniformly in P € P, by (C.15). By Lemma B2(i), we have for each t € R
and ¢ € R*\{0} as n — oo,

TH* t2
E* |exp it n — exp (——) = op(1),

V4" Cug 2

uniformly in P € P. Thus by Lemma B2(ii), for each ¢ € R?, we have

‘P* {é;l/QH;; < t} —-P{z< t}‘ = op(1).

Since the limit distribution of Cy "/ QH,’; is continuous, the convergence above is uniform in
te R
(i) We fix P € P such that limsup,, ,-02(C) = 0. Then by (C.14) above and Lemma C6,

Var® (S:) = 02(C) + op(1) = op(1).

Hence, we find that S* = op«(1) in P. The desired result follows by applying Theorem 1 of
Shergin (1993) to the sum U} = >, wu;, and then applying Lemma B2. n

Lemma C9. Let C be the Borel set in Lemma C8.
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(i) Suppose that the conditions of Lemma C8(i) are satisfied. Then for each a > 0, as

n — 0o,
h*d/? T D)
sup P < sup |P Loaen; 1 {Cn’A gN’A} <tp—®F) >ap—0.
PeP teR Un(c)

(ii) Suppose that the conditions of Lemma C8(ii) are satisfied. Then for each a > 0, as

n — 0o,
sup P >ap — 0.
pPeP

Proof of Lemma C9. The proofs are precisely the same as those of Lemma B9, except that

hod/? Z A {C;:,A - E*C;/,A}

AcN;

we use Lemma C8 instead of Lemma B8 here. g

Lemma C10. Suppose that the conditions of Lemma B5 hold. Then for any small v > 0,
there exists a positive sequence &, = o(h?) such that for all r € [2, M/2] (with M > 4 being
as in Assumption A6(1)),

sup_sup BI|S, 12 (2)g - (wim)||7 = O (h 2G4
(z,7)ES PEP
where n, € R is distributed as N(0,e,1;) and independent of ((Y;", X,")2,, N) in the

definition of qn-(x), and
(C.16) Ynren (@) =00 (2,0) + 1y and gn . (251,) = Gnr () + My

Suppose furthermore that Ain(Xn.7.-(2,0)) > ¢ > 0 for some ¢ > 0 that does not depend on
n or P € P. Then

sup_sup B[S () (5 7| = O (0242
(z,7)€S PEP

Proof of Lemma C10. We first establish the following fact.
Fact: Suppose that W is a random vector such that E|[W||? < ¢y for some constant cy > 0.

Then, for any r > 2 and a positive integer m > 1,
r am(M1) /™)
E[||[W]['] < Cp (E [[W]|*"]) ,
where a,,(r) = 2™(r — 2) + 2, and C,,, > 0 is a constant that depends only on m and cy .
Proof of Fact: The result follows by repeated application of Cauchy-Schwarz inequality:
1/2

BI|W|" < (BIWICD)" (BIWI) " < 6 BIw(Pe),

where we replace r on the left hand side by 2(r — 1), and repeat the procedure to obtain
Fact.

Let us consider the first statement of the lemma. Using Fact, we take a small v, > 0 and
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en = h® and choose a largest integer m > 1 such that am(r) < M. Such an m exists
because 2 < r < M /2. We bound

. , . () 1/27)
E[|S, Y2 (2)gnr(@;m0)]]7 < Con (BIE, Y2 (@) g (23 7) [ ) :

n77—78n n7T787l

By Lemma B5, we find that

(C.17) sup sup E[[S, Y2 (2)gp - (z; 7))
(z,7)eS PEP Y
< sup sup A2 (200 (2) Ellgn (@5 ,)]] o)
(z,7)eS PEP

N 72 (e 1) RO (om0)/201,

By the definition of ¢, = h4¥1,

gr:am(T)/Qh(lf(am(T)/Z))d — p=am(r))d—am(r)v/2.

We conclude that

E||E;}r{52n (Sﬁ)qn,-r(x; nn)HT < C, (h(l*am(T))dfam(r)Vl/Q)1/2m

= O, (W22 =22 /2) V2

_ th(—Q_m—(r—2))d—((’r—2)+2_m+1)1/1/2.

Since a,,(r) < M, or 27™ > (r — 2) /(M — 2), the last term is bounded by

S |6 = L (N =y V)

By taking v; small enough, we obtain the desired result.

Now, let us turn to the second statement of the lemma. Since

o O B € )

the last bound in (C.17) turns out to be
(1) /2 (1= (am(r)/2))d.

Therefore, we conclude that
EI|Z /2, (@) gur (@im)[l7 < G (7m0 2R0— om0/ 12
= O, (r=2+217m/2p 27" —{(r=2)+21 7"} /2)d

— O, A2 (r-2)d)2,

Again, using the inequality 2= > (r — 2)/(M — 2), we obtain the desired result. B

Lemma C11. Suppose that the conditions of Lemma C5 hold. Then for any small v > 0,
there exists a positive sequence €, = o(h?) such that for all r € [2, M/2] (with M > 4 being
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as in Assumption A6(i)),

sup B[22 (@) () I = Op (K2 G uniformiy in P e P,
(z,7)ES

wheren, € R’ is distributed as N(0,&,1;) and independent of ((Y;*7, X 1), (V;", X,")~,, N)

in the definition of q;, .(x), and

En’T,En (.TJ) ETL,TJ'(:C’ 0) + €nIJ.

Suppose furthermore that

sup sup P {)\min(in,r,r(xa 0)) > c} — 0,
(z,7)ES PEP

for some ¢ > 0 that does not depend onn or P € P. Then

sup E¥||S7V2 (g 7)q, (z;m0)|]" = Op (h_(r_Q)d/Q) , uniformly in P € P.

n,T,e
(z,7)€S "

Proof of Lemma C11. The proof is precisely the same as that of Lemma C10, where we use

Lemma C5 instead of Lemma B5. §

We let for a sequence of Borel sets B, in S and A € {0,d/4,d/2}, A C Ny, and a fixed

bounded function § on S,

a®(B,) = / nE[AA7P(WZN7T(:E)+h’\5(:ﬂ,7))] dQ(z,7)

a*(B,) = / E* [AA,p(\/n_hdzjV’T(x)+hA6(:B,7'))] dQ(z,T), and
an(By) = / E [Aa, (W, (2,0) + £3(x, 7))] dQ(z, 7),

n

where zy, () is a random vector whose j-th entry is given by
Z}k\/',‘r]( ) nhd26n171 Z]? X*_I)/h)_—E* [/BTLIBTJ( ”7( )/h)]

Lemma C12. Suppose that the conditions of Lemmas C10 and C11 hold and that
n-L2p - (3571 d- v 40,

as n — 0o, for some small v > 0. Then for any sequence of Borel sets B, in S,

sup |a n) — an(Bn)| = o(h"?) and
PeP

sup P {|al*(B,) — an(B,)| > ahd/2} = o(1).

PeP
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Proof of Lemma C12. For the statement, it suffices to show that uniformly in P € P,

EA4 ,(Vnhizy , hAé
(C.18) sup Aap(Vn (1)ZN’ (z) + \ (z,7)) = o(h¥?), and
(z,7)ES _EAA,p<Wn,T,T<:U7 0) + h (S(l’, 7_))
sup E*AA,P( \ nhdz}k\f,f(x) + h)\(;(x7 T)) - 0 (hd/2)
mes | —BAap (Wil (x,0) + h(x, 7)) T

We prove the first statement of (C.18). The proof of the second statement of (C.18) can be
done in a similar way.

Take small v > 0. We apply Lemma C10 by choosing a positive sequence ¢, = o(h?) such
that for any r € [2, M/2],

sup_sup BI|S, 12 (2)g (@i m)||7 = O (h 2G4
(x,7)eS PEP

where ¢, -(z;1,) and 2, ; ., (x) are as in Lemma C10. We follow the arguments in the proof
of Step 2 in Lemma B6 to bound the left-hand side in the first supremum in (C.18) by

(C.19)

sup sup |EA4,(Vnhizy (z;n,) +
(z,7)€S PEP

p(z, 7)) — EA4 p(W(l

N, T,T,En

(z,0) + h*S(z, T))‘—FC\/s—n,

for some C' > 0, where
ZN (25 0) = 2N () 4 10/ VhY,
and WL . (z,0) is as defined in (B.17). Let

Ena(Tim,) = v hdzn%_/f (z) - zn-(2;7m,) and
Ly re, (2,0) = X202 (2) - W (2,0).
We rewrite the previous absolute value as
(C.20) sup sup [EAY, (Vnhiéy -(z;m,)) — BAY (ZY) . (x,0))

(z,7)eS PEP

where A%, (V) = AA7p(E,11{72,5n (x)v+h*d(x,7)). Note that the condition for M in Assumption
A6(i) that M > 2(p+2), we can choose 7 = max{p, 3}. Then r € [2, M /2] as required. Using
Theorem 1 of Sweeting (1977), we bound the above supremum by (with » = max{p, 3})

- 1/2

Ch 3
sup sup E|[X] /2 (2)gn - (2500
\/_(mespep 1 (@) Gn,r (3 1m0 ||

1/2

n,7,en

sup sup E||X

\/ (x T)eES PEP

+C5 sup sup Ew,, (an)Tmn(a: 0);
(x,7)ES PEP T

()G, (5 0) ||

Cy
—LE||®
Wi

1/2

2 @ mm)I).
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for some positive constants C, Cs, C3, and Cy, where

wop (vic) =sup {|A%, (V) =A% (¥):y e R |[v—y[| < c}.

3M—4

The proof is complete by (C.19) and by the condition n~ V2~ (Bm3)dv 0.y

APPENDIX D. PROOF OoF THEOREM AUC1

The conclusion of Theorem AUC1 follows immediately from Theorem 1, provided that
all the regularity conditions in Theorem 1 are satisfied. The following lemma shows that
Assumptions AUC1-AUC4 are sufficient conditions for that purpose. One key condition to
check the regularity condition of Theorem 1 is to establish asymptotic linear representations
in Assumptions Al and B1. We borrow the results from Lee, Song, and Whang (2015).

Lemma AUC 1. Suppose that Assumptions AUC1-AUCY hold. Then Assumptions A1-A6
and B1-B4 hold with the following definitions: J =2, r, ; = Vnhd,
) = el {rrale) = ma(@)},
Unr2(2) = b= e {2yra(w) = ra(2)},
Brari(Yis2) = ngro(Yi 2) — angrs(Yis 2), and
Brar2(Yis2) = —200072(Y,2) + e r3(Yis 2),

where I(u) =7 — 1{u <0}, Y; = {(By, L;) : £ =1,...,L;}, and

Un,T,l (ZE

Qpari(Yi, 2) = —1{L; =k} Z I (B@i — fyTTk(x) -H - c(z)) elTM;i’k(x)c(z) K (2).

Proof of Lemma AUC1. First, let us turn to Assumption Al. By Assumptions AUC2 and
AUCS, it suffices to consider 0,5(x) that uses b instead of ﬁ The asymptotic linear repre-
sentation in Assumption Al follows from Theorem 1 of Lee, Song, and Whang (2015). The
error rate OP(\/W) in Assumption Al is satisfied, because

1 1/2
(D.1) W2 ( - hdZ) = n VAR og 20 — 0,
n

by Assumption AUC2(ii) and the condition r > 3d/2 — 1. Assumption A2 follows because
both B, .-1(Y;, 2) and f,,4.-2(Yi, 2) have a multiplicative component of K(z) which has a
compact support by Assumption AUC2(i). As for Assumption A3, we use Lemma 2. First
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define

. X _
Corpii = 1{Li=k}lr <Bli - %Tk(x) -H-c < Zh x)) and

e (S5 K (557)

First observe that for each fixed o € R4, 7 € T, and A > 0,

2
Xi — Ty )(Z — T3
Sup Oén:w277—2,2 }/72, h - an,x3,73,2 }/;, h
[z —z3||+||T2—T3][<A

k
< 2) E|E
=1
k
+2) E
=1

faz,T,k,i

(D2) E

sup (emz,‘rg,k,li - ea:g,Tg,k,lz) ‘X] x2 T2,k 1]

[lze—z3]|+||T2—73||<A

2
sSup (gxzﬁzyk,i - £$3773,k,i)
[lz2—z3||+||T2—73|[<A

Using Lipschitz continuity of the conditional density of By; given L; = k and X; = z in (z,7)
and Lipschitz continuity of v, x(z) in (z,7) (Assumption AUC1), we find that the first term
is bounded by Ch™*' X for some C' > 0 and s; > 0. Since

My, 1(7) = kP{L; = k| X; = 2} f-1(0]z) f /K (t)"dt + o(1),

we find that M, ik(x) is Lipschitz continuous in (z,7) by Assumptions AUCL. Hence the
last term in (D.2) is also bounded by C'h™*2)\? for some C' > 0 and s, > 0. Therefore, if we

take ¥
bn,ij(xaT) = Onz12 ()/z, Zh_ x) )

this function satisfies the condition in Lemma 2. Also, observe that

X; —
an,z,v—,2 (Y;, h x)

because v, ;r2(-,-) is uniformly bounded. We also obtain the same result for anx73(~ ).
Thus the conditions of Lemma 2 are satisfied with b,, ;;(z, 7) taken to be 5, 5 -1(Y;, (X;—x)/h)
or Bazr2(Yi, (X;—2x)/h). Now Assumption A3 follows from Lemma 2(i). The rate condition
in Assumption A4(i) is satisfied by Assumption AUC2(ii). Assumption A4(ii) is imposed

4

E <,

directly by Assumption AUCA(i). Since we are taking o, ;(z) = 67 ;(z) = 1, it suffices to
take 0, ,;(z) = 1 in Assumption A5 and Assumption B3. Assumption A6(i) is satisfied
because 3, ;- ; is bounded. Assumption A6(ii) is imposed directly by Assumption AUCA4(ii).
Assumption B1 follows by Lemma QR2 of Lee, Song, and Whang (2015). Assumption B2

follows from Lemma 2(ii). Assumption B4 follows from the rate condition in Assumption
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AUC2(ii). In fact, when 3, , ,; is bounded, the rate condition in Assumption B4 is reduced

—1/2,—3d/2—v

ton — 0, as n — 00, for some small number v > 0. 1

APPENDIX E. POTENTIAL AREAS OF APPLICATIONS

Econometric models of games belong to a related but distinct branch of the literature,
compared to the auction models. In this literature, inference on many game theoretic models
are recently based on partial identification or functional inequalities. For example, see Tamer
(2003), Andrews, Berry, and Jia (2004), Berry and Tamer (2007), Aradillas-Lopez and Tamer
(2008), Ciliberto and Tamer (2009), Beresteanu, Molchanov, and Molinari (2011), Galichon
and Henry (2011), Chesher and Rosen (2012), and Aradillas-Lépez and Rosen (2013), among
others. See de Paula (2013) and references therein for a broad recent development in this
literature. Our general method provides researchers in this field with a new inference tool
when they have continuous covariates.

Inequality restrictions also arise in testing revealed preferences. Blundell, Browning, and
Crawford (2008) used revealed preference inequalities to provide the nonparametric bounds
on average consumer responses to price changes. In addition, Blundell, Kristensen, and
Matzkin (2014) used the same inequalities to bound quantile demand functions. It would
be possible to use our framework to test revealed preference inequalities either in average
demand functions or in quantile demand functions. See also Hoderlein and Stoye (2014) and
Kitamura and Stoye (2013) for related issues of testing revealed preference inequalities.

In addition to the literature mentioned above, many results on partial identification can
be written as functional inequalities. See, e.g., Imbens and Manski (2004), Manski (2003),
Manski (2007), Manski and Pepper (2000), Tamer (2010), Chesher and Rosen (2017), and

references therein.
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