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This document contains supplementary results published online alongside the main paper, “A wild
bootstrap for dependent data”. All references to section numbers are references to sections in the main
paper. Note that there is no overlap between the labelling of equations below, asymptotic results as
well as equations in the main text. We organized this online appendix as follows. First, in Appendix
C1, we state an auxiliary lemma and its proof, which is useful for the proof of results in Section 2.4.
Second, in Appendix C2, we state Lemmas C2.1 and C2.2, and their proofs, which are utilized to justify
the moment conditions of examples of external random variables appearing in Section 2.5. Finally, in

Appendix C3, we provide the proofs of results in Theorems 2.1 and 2.2.

Appendix C1: Auxiliary lemma for the proofs of results in Section 2.4

Lemma C1.1. Let {Yy,,t =1,2,..., N} be a sequence of the WBDD pseudo-time series, we have that
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Proof of Lemma C1.1 part (a). Given the definition of W and equation (3), we have
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Given that wy (j) =0if j ¢ {1,2,...,¢}, we can write
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Proof of Lemma C1.1 part (b). Given part (a) of Lemma C1.1, we can write
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Appendix C2: Auxiliary lemma for the proofs of results in Section 2.5

Lemma 02.1. Let Uj = 671 Zzi(j,1)1+1

have that E (u;) = 0, (E (u?) =E (v; — E(v;))? and (E (ui’) = (7'E (v; — E(v;))>.

Vi, j=1,...,Q, where v; = v; — E(v;) with v; ~ 4.i.d, we

Proof of Lemma C2.1. Given the definition of u;, v;, the fact that v; are i.i.d and using the linearity

property of E (), we can write
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Lemma C2.2. Consider the following class of two-point distributions V,, indexed on a parameter
a > 0, such that
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Proof of Lemma C2.2. Given the definition of V,, we have
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Proof of Examples 2.3-2.7. First, note that the desired results for Examples 2.3 and 2.4, follow
directly by using Lemma C2.1 and the fact that E(v;) = 0 and E(v?) = 1. Second, for Example 2.5, we

use Lemma C2.2, where we let v; = V,, with
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Consequently, we have E(v;) = 0, E(v?) = 1 and E(v}) = ¢. Thus, the requisite result follows given
Lemma C2.1.

Next, for Example 2.6, notice that when v; ~ i.i.d.I' (e, 8), the kth moment is given by
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E(5;) =0, E(82) = % and  E(8%) = 2%.
Therefore, by letting the parameters a = Z% and 8 = %, it follows that E(u;) = 0, ﬂE(u?) =1 and

ﬂE(u}o’) = 1.
Finally, for Example 2.7, given that by definition u; = v; — E(v;), it follows that E(u;) = 0. Next,

using the property of multinomial distribution, we have
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Thus, we can deduce that
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Appendix C3: Proof of Theorems 2.1 and 2.2.

Without lost of generality, in the proofs (of Theorems 2.1 and 2.2) for simplicity we will consider { X}
to be real-valued. The results for the multivariate case follow directly by showing that the assumptions

are satisfied for linear combinations \' X n¢ for any nonzero \ € RY.

Proof of Theorem 2.1 part (a). Recall that from part (b) of Lemma Cl.1, we have o} =
(h (XN)) O'Z wBDD> hext using Theorem 3.1 of Kiinsch (1989), it follows that
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Given (C3.1), the fact that % — 1, tVar (u) — 1, and h (Xy) — h (in) £ 0, the rest of the proof
contains two steps. In (1) we show that 6%, — Var (Sx) T 0, and in (2) we show that &7 5pp —
(&]2\, +U N) £ 0, where 6]2\, is defined as follows
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For step 1, we also have two steps.
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(ii) We show that Var (6%) — 0.
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where we used the same argument like Gongalves and White (2002) to bound the terms in their

equation (A.3). Specifically it is due to the assumed size conditions on «aj and v, and because,
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|Ryg (T)| < A (5@% ) + U[T]> (see Gallant and White, 1988, pp. 109-110).
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To show that Var (6]2\,) — 0, define
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Thus, using arguments similar to that of Gongalves and White (2002) to bound the terms in their
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The rest of the proof follows closely that for Theorem 2.1 of Gongalves and White (2002), however
for completeness, we present the relevant details. We now show that X&w — flgw = Op (5‘1). Define

we(t—j+1)

il and note that ¢y (+) is uniformly Lipschitz continuous.
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Next, write X&w — i = N1 Zi\;l Yni, where Yy = &t (Zn¢) is a mean zero NED array on {V;}
of the same size as Zn; by Theorem 17.12 of Davidson (1994), satisfying the same moment conditions.
Hence, results follow by using the same argument as in Gongalves and White (2002). In particular,
by Lemma A.1 of Gongalves and White (2002) {YNt, ]-'t} is a Lo-mixingale of size —-r=2. and thus
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Arguing as in Gongalves and White (2002), {yNtT, .73} is a Lo-mixingale of size —1/2, with uniformly,

with mixingale constants ¢, < K max {||lwy|5, ,1} which are bounded uniformly in N, ¢, and 7. Thus,
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where the first inequality holds by Markov’s inequality, the second inequality holds by Jensen’s inequal-
ity, the third inequality holds by Lemma A.2 of Gongalves and White (2002) applied to {Vn¢,} for
each 7, and the last inequality holds by the uniform boundedness of c%h. The proof of Aya = 0, (1)
follows similarly.

Proof of Theorem 2.1 part (b) Immediate from the proof of part (a) of Theorem 3.1.

Proof of Theorem 2.1 part (c) Immediate from the proof of part (b) of Theorem 3.1.

Proof of Theorem 2.2. First note that the assumed conditions are sufficient to ensure that Sy is
asymptotically normal. Thus, a Taylor expansion of H around jiy confirms that Wy —¢ N (0, ago).
Therefore, to prove our result, we just need to show that the WBDD distribution is approximately
close to ® (x/04). Define Zy; = Xy — pnt and its WBDD analogue Z3, = Xx; — ;- Note that,
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which converges to zero in probability as { — oo, N — oo such that ¢ = o (Nl/Q). Hence, we may

further write
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where the first inequality follows from the C,. and the Jensen inequalities, whereas the second inequality

follows from triangular and C, inequalities, given Assumption WBDD and the Lipschitz condition on

h(-). Next, note that
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where the first inequality follows from the triangle inequality, whereas the second inequality uses the

Minkowski inequality. Under our assumptions,
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