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APPENDIX F. ADDITIONAL SIMULATION RESULTS

TABLE 4. Simulation results for static logit (columns 3-6) and static probit (columns

7-10) with n = 100 using the design in Schumann, Severini, and Tripathi (2021a).

T | Estimator Bias STD MSE Coverage Bias STD MSE Coverage
3 61 0.6256 0.3100 0.4874 0.2583 || 0.76563 0.2961 0.6733 0.0261
Oavg | 0.2738 0.2428 0.1339 0.7422 || 0.6545 0.2905 0.5127 0.0782

Ocup | 0.1714 0.2106 0.0737 0.8685 || 0.2607 0.1996 0.1078 0.6106

0| 01062 0.2220 0.0606 0.8982 || 0.0606 0.1468 0.0252 0.9228

Ocvre || 0.0189 0.1804 0.0329 0.9680 - - - -

4 6 0.4272 0.2360 0.2382 0.3989 | 0.5448 0.2194 0.3449 0.0729
Oavg | 0.1655 0.1900 0.0634 0.8400 || 0.4029 0.2087 0.2059 0.2542

Ocep || 0.1025 0.1725 0.0403 0.9090 | 0.1621 0.1497 0.0487 0.7590

0| 0.0463 0.1681 0.0304 0.9331 | 0.0371 0.1253 0.0171 0.9256

éggj —0.2704 0.3646 0.2060 0.4965 | —0.1548 0.4697 0.2444 0.4284

Ocnre | 0.0127 0.1548 0.0241 0.9520 - - - —

5 61 0.3159 0.1875 0.1349 0.5045 || 0.5448 0.2194 0.3449 0.0729
Oavg | 0.1070 0.1547 0.0354 0.8960 || 0.4029 0.2087 0.2059 0.2542

Oeep || 0.0661 0.1445 0.0252 0.9355 || 0.1621 0.1497 0.0487 0.7590

0| 0.0251 0.1388 0.0199 0.9505 | 0.0371 0.1253 0.0171 0.9256

éggj —0.2061 0.2343 0.0974 0.5720 || —0.1548 0.4697 0.2444 0.4284

Ocnpe | 0.0087 0.1340 0.0180 0.9565 - - - -

6 61 0.2457 0.1597 0.0859 0.5820 || 0.3185 0.1409 0.1213 0.2135
Oavg | 0.0714 0.1342 0.0231 0.9240 | 0.1799 0.1258 0.0482 0.6143

Ocp | 0.0435 0.1284 0.0184 0.9445 | 0.0761 0.1048 0.0168 0.8854

0| 0.0139 0.1240 0.0156 0.9565 || 0.0119 0.0940 0.0090 0.9485

95% —0.1578 0.1785 0.0567 0.6470 || —0.2168 0.2429 0.1060 0.4013

HEJODJ —0.0669 0.4796 0.2344 0.4145 || —0.3317 0.7500 0.6722 0.2135

Ocrvre || 0.0042 0.1216 0.0148 0.9600 - - - -

10 61 0.1317 0.1094 0.0293 0.7455 || 0.1650 0.0864 0.0347 0.4647
Oavg | 0.0255 0.0974 0.0101 0.9405 || 0.0651 0.0772 0.0102 0.8679

Ocap | 0.0155 0.0960 0.0095 0.9465 | 0.0280 0.0720 0.0060 0.9340

0| 0.0046 0.0946 0.0090 0.9515 | 0.0045 0.0692 0.0048 0.9510

égl% —0.0528 0.1046 0.0137 0.8705 || —0.0719 0.0905 0.0134 0.7199

égl% 0.0129 0.1890 0.0359 0.9515 || 0.0225 0.2255 0.0514 0.4997

Ocrre || 0.0020 0.0941 0.0089 0.9525 - - - -




APPENDIX (G. DERIVATION OF THE DERIVATIVES IN APPENDIX A

First, we display the derivatives of the FOB of the profile likelihood that are necessary to
find an approximation of the FOB that is unbiased up to an error of order O,(7?). First,

recall that i . 2
B(l)(a@) _ K, (15,0, a5 7)] _ T >t En [litOI(Q,a,T)]‘
i 2T Xio2(0, cvi; ;) 27157 B, [tz (0, )]
We start by taking the derivative w.r.t. a and evaluating at ;y to obtain
_ _Eq [lio1(0)lio2(0)] | Ery [0 (6)] Nioa (0)
T The(0) 272, (0)

Similarly for the derivative w.r.t. -,

aaBz(l) (97 ﬂz)

VTE ., [13;(0)l10] n B, (17, (0)]Er, [li02(9)li10].

B (0, 5:)5,=p0 = —
87 i ( 76)51*610 2T)\102(9) 2TA1202(9>

Next, we compute (93 B () ( , Bi) and evaluate the resulting expression at f;y to obtain

_ 2203(0)Ery [Lion (0)li2(0)]  Er[[30(0)] By [Lio1 (0)1i03(0)]

P = TN (9) C The(d) T Nio2(0)
B [ (0N (0) | By (151 (0)] Nioa(0)
TN, 0) TN

In the next step, we need to take derivatives with respect to ¢;. First, we compute

—Za@ zt02 9 y O T |/31 =Bi0 — ZETO zt02 ztOl]

and
™ Za@ Z)\'Lt02(0 @ Ti)|gi=0 = 7 ZETO it02(0) liroz] + Er [gitOZ(e)E?tol]v
t=1
so that by centering terms and using the fact that E., [¢it01] = 0 so that €301 = liy01, we obtain
Dy Nio2(0, i i) | g,=10 = By [li02(6) Lion] (G.1)
and
02 Xio2 (0, i 73) 5,810 = B [lio2 (0)li02] + VT Eqy [lioa(0) 5y ). (G.2)
Moreover,

_E al a; ZtOQealﬂTl

which after centering ylelds

Bi=Bio — ZETO it03(0) Liron],

5’3”% Aioz2(0, cvi; 7;)

Bi=Bio — IE‘I'o [12'03(9)[1'01] .
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Taking the derivative w.r.t. ¢; of E. [I2,(0,a;;7;)] is more involved since ljn(6, ;) =
Cio1 (0, ;) — E.. [lio1(0, ;)]. Therefore, ¢; appears twice in E,.[1%0,(0, a;; 7;)] whereas 6 and

« appear only once. First, using E, [l;01] = 0,

P —Z( o By ()] — 2By [Lion (0)lison [ By [l

— E ]E’T() 101 ztOl)

_Zadn Ti zt01<9 ;)]

and

1 T

T

1

T Z 835iETi [lz‘27501(9a ;)] |8i=610 = T Z <]Em [lz‘201(9)li201] + Er [li201 (0)lito2]
t=1

t=1
= 2B (201 (O)lin* — By [y (D) Ery o] ) (G-3)

By centering terms and using time independence together with E, [l;01(0)] = 0 for every 6 € ©,
we therefore have

a¢iETz‘ [11'201(9’ al)] Bi=Bio — \/TETO [lz'201 (9)1201] (G4)

Moreover, after some algebra,

Bi=Bio — \/TETO [liZ01 (0)l102] - TETO [li201 (9)]ET0 [liQtDl]
+ TEr, 13, (0)15,] — 2TEq, [Lio1 (0)lion]*.  (G.5)

(0, B, 1 (6, :)])

To see this, notice that

T 2 T
1 2
TEr, 161 (0) 1] = ZETO [Gior (0) 1] + 2T (TZETO ito1 zt01]> —fZEminl(@)Zz‘wﬂz
t=1 t=1
1« 1« 1 «
(T > B0 (33 Eallnd) - 33 Bl O1Enfol
t=1 t=1 t=1
Now,
1 T
(7 D By litor (O)licn]))* = 2T Eor Lion (0) i )
t:1
and

T
1
T (f ZETO [l5e01 (0) > ( Z]ETO [lion] ) = TEr, [l ()] Eq, [15,]-
t=1

Therefore,



T T
1 2
TEr[150,(0)101] = T D B [Gon (0)i1] + 2TEx, [lior (0)lion]* — T D By lliton ()l )
t=1 t=1
1 T
+ Ty Loy (0)] By [lia] — > En[Got (OIEn o] (C.6)
t=1

Finally plugging (G.6) into (G.5) again yields (G.3). Next, we consider

0 s B 1151 (0, )] 3i=10 = 2B [Li01 (0)Lito2(0) Lion ],

so that

02 o Er[1201(0, )] |5.= 10 = 2VTE o [Lio1 (6)lio2(6) Lion -

Using (G.1) and (G.4),

_ E, [7,01( )]ad) 202(0 alaTZ) Bi=Bio a¢iETi [lz‘201(0’ai>] Bi=Bio

e 2T N3 (0) 2T A\io2(6)
VTR 13,0 lior] | Ery [, (0)Exy [Lio2 (0) Lion]
3T hion (0) 272 (9) '

a¢>iBz('1) (07 ﬁl)

Similarly, for 83, o we get

|B =Bio
ETO [11'201 (9)] (8@- >‘i02(9> Qi Ti)
TN}y(0)

Bi= Ban¢z Tz[llol(e OCZ)]

TN (0)
4 ETO [ZEOI(Q)]Q%Z /\i02(07 &, Ti) Bi=PBio 8351E7—z [lz‘201 (97 al)] Bi=Bio
3TN (0) STBYN0) :

hence using (G.1), (G.2), (G.4), and (G.5),
g (131 (0)]Ery [lio2 (0)lion)? \/_ TEry [131 (0)lio1 ] Ex, [Lio2(6) Lio: ]

Bi=Bio )2

a{iBEl)(Q’ ﬁi)|6izﬁi0 ==
a@)\zOQ(e (078 Tz)

Bi=Bio

837@'31('1) (97 ﬁl) Bi=B

e TN (0) TA2(0)
o By (1501 ()] (Bry [Lio2 (0) ive] + VT By [lio2(0) 12,1])
2T\ (0)
 VTE (13, (0)lioa] + TBer, [, ()] Nioz + TEx, [13, (0)13,] — 2TExr, [Lior (0)lion]*
2T N\ip2(0) '

Finally, the mixed derivative 92 , _B(”(e, ﬁi)|5:30 is

7,03( )\/_E'ro[ ( )1101] \/TET() [liOQ (e)lml (9)l201]

2 B(l) 0. B, _
Oais,Bi (0, B ‘Bizﬁio 2T \2,(0) T'Aio2(0)
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By [1701 (0) By [Li03(6) Lion
2T N (0)

n Ery [lio1(0)lioa ()] Exy [Lio2(0)lior]  Eay[13: (0)] Nio3 (0)Ery [lio2(0) o1

APPENDIX H. EXPLICIT TERMS FOR SECTION C.1

Here we collect complex algebraic terms resulting from the derivation of the first and second
order profile likelihood bias.

(1)
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APPENDIX I. PROOFS FOR SECTION 4.2

In this subsection we collect the proofs for the results in 4.2.

Proof of (4.2). Let M denote the open ball centered at f;y specified in Assumption 4.3. For
ki,ke € {1,...,p+2}, let derivatives of 2352)(9, B;) with respect to components of 3; be denoted
by

B9, 5, = OB (0.5

Ok
9*B(8, 5;
B, 4, (0.6) = T2
. a/Bkl aﬁkg
Using an expansion (ignoring constants),
p+2

N

B0, 8:)|5,z = B (0, Bio) + % BEO, B:)l6,=p0 (B: — Bio)

1

>
Il

p+2 p+2

+ Z Z 35;2131,192(97 Bi)l g5, (Bi = Bio)in (B; — Bio)s»

k1=1ko=1

where 3; lies between ﬂAZ and ;0. We now show that partial derivatives of Bz@) (0, B;) are bounded
in probability. To do so, we note that the derivatives of BEQ)(H, B;) consist of fractions with
(powers of) E,.[li2(6, ;)] evaluated at 5; = Bi or 5; = ; in the denominator. Since 3; lies
in M with probability approaching one as T" — oo, the denominators are bounded away from
zero by Assumption 4.3(ii). To bound the numerator, we need to consider the first and second

derivatives of

VTE (13, (0, 0 7:)lioa (0, cuis 73), (1)
(2)
(3)
[0 (0, sy 7)1y (0, as; 7)), (4)
(5)
(6)
(7)

7

Here, (1) and (2) are products of three centered likelihood terms. In order to illustrate how

these terms can be bounded, we note that using time-independence together with the mean-zero



property of centered likelihood terms of individual 7 in time period ¢, we can write
L I
(1) = \/TETZ- [li201(‘97ai§Ti)li02(‘97ai§Ti)] -7 ZEn [li2t01(87ai;7—i)lit02(97 ;7).
t=1

Similarly, (3) can be expressed as

T
1
K., [57;03(97041';%‘)] = T ;En[&tos(e,%;ﬂ)].
As can be seen from (L.6), we can also express expectations of products of four centered

likelihood terms as scaled sums. For example, we can express (7) as

1
ET’L [l?wl (97 Qs Tl)]

ETz [1101 (8 Qi Tl)] TQ

T 3 T

1
+ 3(? ZEn [lz'QtOI(@’ Qi Tz‘)])Q T 72 ZEn— [ZZ'QL‘OI(Q’ Qi Ti)]Q-
t=1 t=1
As in the proof of Lemma E.2; we can therefore bound each derivative (uniformly across ;)
by repetitive use of the Jensen inequality and the Cauchy-Schwarz inequality together with
Assumption 4.3(i). Next, since derivatives of first order of 352)(0, B;) do not depend on the

outcome data when evaluated at ; = S, (C.14) and (C.13) together with (C.16) imply

B, [B3) (0, 51) 5= (Bi — Bio)] = B (0, B:) 5= B [(Bi — Bio)i] = Op(T7Y)

for every k € {1,...,p+2}. Since the second derivatives of BEQ)(H, B;) are bounded in probability
uniformly across f3; and since (5; — Bio)i, (B: — Bio )k, is of order O, (T~1) or lower by (C.1), (L.4)

E, [1%55317@( B)li=3,(Bi = Bl (Bi = Bilwa] = Op(T).
In total we thus have E,, [BEQ (0,815,251 = 352)(6) + Op(T™1) for every 6 € ©.

Proof of (C.12). Consider the t-th component of 8@351)(9,@) where v € {1,...,p + 2}
denoted as BS&(Q, B;) == 85¢B§1)(9, Bi). As in the proof of (C.9), we denote further derivatives
with respect to components of 3; by additional indices. We can write Remgp )(0) = Remgp ’a)(9)+
Reml(p ’b)(Q), where, ignoring constants,

P42

ZB“M 0, B:) =510 (B: — Bio)



and
p+2 p+2

Z Z Bgld); k1 (0, 85,2 (Bi—Bio )i, (Bi—Bio kaZ B“pk , B ,=5, (Bi— B0k

k1=1 ko=1
where 5; lies between 3; and Bj. The rest of the proof now closely follows the arguments
used in the proof of (C.9). Since B; & By, the first and second derivatives of BZ(»;)(G, B;) with
respect to the respective component of 3; are of order O, (1) when evaluated at 3; by Lemma
E.2. Thus, as (6 — i)k = Op(T~?) for k € {1,...,p + 2} by Assumption 4. 4(11 iii), (C.1)
and (L4), Rem!” (6) = O,(T~/2). Next, we notice again that derivatives of fBip (0, B;) do not
depend on outcome data when evaluated at 8; = S;0, so that

p+2

lm%wwn=2@m@m

5i:BiO]ETO[(Bi - Bzo)k] = OP(T_I)

by (C.8), (I.4) and (C.16). Again by Assumption 4.4(ii,iii), we further see that

p+1

Z]ETO upk 52)

Thus, it is left to show that (3; — Bio)s, (8; — @0)@ = O,(T~1), which follows from (C.1), (I.4)
and Assumption 4.4(ii,iii). Therefore, E, [Rem,; (p:b) ( ] = O,(T™1), which finishes the proof. [

1=, (B = Bio)i] = Op(T7Y).

Proof of (C.13). Score unbiasedness implies E,, [¢;:01(6o, io)] = 0, which combined with first
order condition of af(#) evaluated at 8 = 6, and Assumption 4.2(ii) shows that «;(6y) = ao.
Next,

so that B, [4:(0) — cuo) = E[0:(0)] + E, [ (A) — ao]. By a Taylor expansion,

o} (0) = cvio + 0y} ()=, (8 — 60) + (8 — 60) oo} (6)|o=3, (6 — 6o) (I.2)
where 6, lies between § and 6. By (D.5) dyaf(8) = Op(1), which does not depend upon the

outcome data when evaluated at 6 = #,. Moreover,

ooy 21 (0)Aina(0)  Aiaa (0) Ny (0) Aios(0) A2 (0)
WEO=T00 T A dw®) '

which is component-wise of order O, (1) uniformly across § by Assumption 4.3(i,ii) for 7" large
enough. Hence, a(0) — ;o = O,(T~') by Assumption 4.4(ii,iii). Therefore, from (I.1) and
(C.1), we get

&i(0) — i = 6:(0) + O, (T™Y) = O, (T~ Y?). (1.4)



Next,
Er, [30'04*(9”9:00(9 — 00)] = 09t} (0)]9=g,Ery [0 — O] = OL(T)

IETO[(G~ — 00) Opor i} (0)g—5(0 — 60)] = Op(T7?).
In total, E,[o(0) — ] = Op(T~1). Next, we expand
8:(0) = 6:(60) + 99r6:(0) o0, (6 — bo) + (0 — 60) Doer 6:(6) |95, (0 — 6o), (1.5)
where 6, lies between 6 and 6. Using (C.4),
E.[000:(0)] = T~20pa;(8, Bio) + Op(T™), (1.6)
where
Lio1 (0) (N2 (6) + Ao (0)9p i (0)) 1311 (0) + Lio2(0)Ipr i (6)

Oy ai(0, Bio) =
alf oo Na(0) N (0)
Using E., [0y a;(6, Bio)] = 0, (L.11), independence across individuals and the fact that

ZEM@M Mocs,) ™ = 0p(1)

we see that the stochastic order of E, [9y:6;(6)]o—s, (0 — 60)] is, up to a term of order O, (T~2),
determined by

Er, [00rai(0, Bio)0als(0, 0i(0))] |9:90-
OB [lio1 (0, )]/ (2Xi02(0, @))

1
/T
Now, 9pl;(0,&;(0)) = 0pli(0) + T~ Rem(6), where Rem() =
with @ lies between &;(6) and (). Thus, since supy Rem(f) = O,(1) by Assumption 4.3,
Dpl;(0, 4 (0)) = 0l (0)+0,(T~1). Since further 9g4;(0) = Ni1o(0)+(Lino(0)+1io1 (0)Dsci (0)) /VT,
noting that Er, [0y a: (6, Bio) Air0(0)] = Er[0pai(6, Bio)]Airo(f) = 0 yields

1 N
mEm [09rai(0, Bio)Opli(0, i (0))] ‘9:90
1 . 1 _ -
= e (6, ) haol8) + Lo 8)000; B))],_y, + Oul i) = Op((nT) ™) = 0T,
where the second equation follows from the form of dpa;(0, i) together with (E.3) and the
third equation follows from Assumption 4.4(iii). Since E, [0y a;(0, )] = 0 for every 6 € O,
the same arguments yield

E.o[005:(6)(6 — )] = Op(T2). (L7)
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Using again (C.4),
Lio1 (0)0p Nio2(0)Op Nio2(0)  Dalio: (8)Jgr Nio2(0)

NG SERT] VThan(6)
liOl (9)899’ )\iOQ (6) aeli()l (9)89’ )\102(0> 899'1101 (9) -1
VT Aig2(6) i VTA2,(0) VT hn(0) %1 (L8)

When evaluated at § = 0,, where 05 = 0, the denominators of the terms on the right hand
side can be bounded away from zero by Assumption 4.3(ii). Moreover, the numerators can
be uniformly bounded over © using Assumption 4.3(i). Therefore, dgg:0;(0)|g—g, = Op(T1/?).
Hence, (C.1) together with Assumption 4.4(ii,iii) implies that

Er[(6 = 60)' 000 0:(6)10=5,(6 — 60)] = Op(T /2.
Summing up, we therefore obtain
Er,[0:(0)] = Er [0:(60)] + Op(T72).

To show the second part of (C.13), notice that by (1.2),

0:(6)(6(8) — cvio) = 6:(8)6:(8) — Do} (8)lo=a, (6 — 60):(6)
— (0 = 00) Do} (0) |93, (0 — 00)6:(0),
where 0, lies between § and 6,. Now, we note that by (1.7)
B, [0t} (0)lo=00 (0 — 00)3: (0)] = B () o0, By [( — 00)5:(6)] = Op(T2),

since Oy af(6)]g=g, does not depend upon outcome data. Moreover, since the second derivative

of o (#) is uniformly bounded by (I.3) and the discussion following it,
Er,[(0 — 00)'Ooor i} () lg=g, (6 — 60)5:(6)] = Op(T~°7%)

Er,[0:(0)(4:(6) — o)) = Ex[6:(8)0,(6)] + Op(T72).
Next, using (1.5),
= Er, [6:(8)90:0i(6) o=0, (6 — 60)] + B [0:(8) (6 — 60)' Do 0:(6) o5, (6 — 60)].

the first term on the right hand side is of order O,(T~?). Following the argument after (1.8),
Do 0:(0)]9—g, = Op(T~1/%). Thus, using (C.1) together with Assumption 4.4(ii,iii) implies that
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the second term on the right hand side is of order O,(T~3). Hence, in total,
E.,[0:(8)6:(0)] — Eq[6:(6)0:(60)] = Op(T ).
To show the third part of (C.13), notice that by (I.2) and the discussion following it,
(@i(0) — i) = (87(8) + B} (0) o=, (8 — 6o) + Op(T2))%.

Since Jgaf(#) = Op(1) in each component by (D.5) and Assumption 4.3(i,ii), we see that

Er[(6i(0) — io)’] = Eqy [67(8)] + 209} (8)]0-0,Er, [3:(8) (8 — b0)] + Op(T2).

The second term on the right hand side can be handled with arguments similar to those leading
to (L.7), as a;(6, Bip) and its derivative have mean zero and are of order O,(T~'/2) uniformly
across 6. Thus,

209 0} ()68, Ery [0:(0) (6 — 60)] = Op(T 7).
Further notice that this together with (C.8) implies

Er[(4:(6) — ai0)?] = Op(T71).

Next, using an expansion,

07(8) = 67(6o) + 26:(83)30:(6) 95,0 — o),
where again 03 lies between 0 and . Since both &;(6) and 9y8;(0)|o_g, are of order O,(T/?),
Assumption 4.4(ii,iii) implies

Er, [26:(03)00:0:(8) |97, (0 — 60)] = Op(T2),

which finishes the proof of the third part. U

Proof of the second equation in (4.4). As in (C.15), we use an expansion (ignoring con-

stants) to obtain

A0, B) g g, = A00: Bio) + Ao (0o, Bio)' (0 — 0) + Aa, (B0, Bi0)6:(0) + A, (00, Bio)' (0 — o)
+ Ay, (00, Bi0) (4i(0) — tio) + Ania, (0, Bi)lo—s.,—5,0; (0) + Agus,(0, Bi)lo—s,,—5,(2(0) — cvio)”
+ Aoy (0, 5 lo=5,5,-5,(0 = 00)8:(0) + Agir (0, 5:)'lo—5,5,—,(0 — 00)(c:(0) — cvi)
+ Ao (0, 51 lo—d.6,-5,(0 — 00)0:(0) + Agi0(0, 5:)'lo—s,5,—5,(0 — 00)(6(0) — cvio)-

The rest of the argument can be carried out as in the proof of (4.4), using that derivatives
of A(0, ;) are of order O,(T~1) together with (C.13), (C.14), (C.8), (C.1), (I4), (C.16) and
Assumption 4.4. m
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Proof of (4.5). The arguments used here closely resemble those in the proof of (4.4). For
brevity, we only show the first part of (4.5), as the arguments for the second part are analogous.

Using an expansion (ignoring constants),

V0, 8)lg—s 5.—5, = V (00, Bio) + Va (B0, Bio)' (0 — 00) + Ve, (00, Bi0)3:(0) + V5 (6o, Bio)' (6 — bo)

+ Vs, (6o, ﬁi0)<&i(é) — o) + Vo (0, 51)’9:(5,51-:52-51'2(5) + Vius: (0, 51)’9:5,51-:51-(5%(@) — )’

+ Vair (0, 8:)'lo=5,,25.(8 — 00)8(8) + Vi (8, B)'lo=3 5,5, (6 — 00)(6(8) — cvo)

+ Vo (0, i) lo—5,5,—5,(0 — 00)6:(0) + Vis,0(6, i)' lo—5,5,—5,(0 — 00)(4:(0) — o). (1.9)
First, we determine the order of derivatives of V' (0, 5;). Recall that by definition

E, [li201 (0, as)]
TE,, [lio2(0, ;)]

V(97 Bz) =

so besides the factor T, derivatives of V (6, ;) consist of fractions with (powers of ) E[¢;02(0, o]
in the denominator. When evaluated at By or /3; with f3; 2 Bio, the latter terms are bounded
away from zero by Assumption 4.3 for T large enough. The numerator of the derivatives of
V (6, B;) consist of derivatives of E[li2(0, ;)] and E[l%, (0, a;)]. As in the proof of Lemma E.2,
these derivatives can be uniformly bounded across 6 and f; using Assumption 4.3(i) together

with the Cauchy-Schwarz inequality and the Jensen inequality. Taking into account (C.1), (1.4)

we again use that derivatives of V' (6, 3;) do not depend on outcome data when evaluated at
(Ao, Bio) so that they act as constants with respect to E,,. Hence, expectations of terms in (I1.9)
that involve derivatives of V (6, 3;) of first order can be shown to be of order O,(T %) using
(C.8), (I.4) and (C.16). Terms in (1.9) that involve derivatives of V' (0, /3;) of second order are of

V(eo, BZ(]> + Op(T_2). ]

Deriving the first order term in E, [0] — 6,. To simplify notation, let dim(f) = 1 and
®r(0) == L3 £;(6,6;(0)) denote the average profile likelihood. Using the first order condi-

tion of the MLE 6 together with an expansion, we obtain
0 = 8glr(0)log = Dol () lo=ay + O3l (8)lo=a (9 — 60) + (6 = 60)° 036 (D)|o—z,  (1.10)

where 6 lies between # and 6y. Under Assumptions 4.1(iii) and 4.3(i, iii) the third derivative
of each individual profile likelihood ¢;(6,&;(6)) is bounded in probability uniformly across 6.
Since also 9% +(0)]g—g = O,(1), this implies that the stochastic properties of the last term on
the right hand side are determined by (6 — 6y)? = O,(T~2), where we have used Assumption
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00 (8)|o=o, (6 — 60) = Zae )(6 — 6p).
Using an expansion,
1
050:(0,65(0)) = 054;(0) + 03 i01(0)6:(0) + 583&02(9, a(0))62(0),

where a(6) lies between &;() and o (6). Since 6;(0) = O,(TY/%) and 924;02(0, @(6)) is bounded
by Assumption 4.3(i), the last term is of order O,(7!). Further writing

1
VT
where we have used that by the definition of the target value E. [¢;01(0)] = 0 for every 6, so
that 93E,,[¢i01(6)] = 0. In total, since stochastic orders that hold for each individual also hold

for the average over all individuals by Assumption 4.1(iii),

03lio1(0)6:(0) = 3 Er, [Ci01(0)]0:(0) + —=0;Lio1 (0)6:(0) = O (T ),

gl (0)lo=a, = Zae .
Since (A — 6p) = Op(\/%) + Ou(T™) = O,(T") by Assumption 4.4(ii,iii),
. 1 . -
O3 lr(0)]o=0,(0 — 00) = ﬁagfi(e)(e —00) + Op(T7?).
Next, we centralize the second derivative of the target likelihood to obtain

1
ﬁéwe)

and notice that since E, [05;(6)] = 0 by definition, independence over individuals and time

950:(0) = Er, [054:(0)] +

together with Assumption 4.3(i,ii) implies

Bnl(r S0 <= 080)7] = =5 3 Enl(0560))] = Opl=).

which shows that

T
E;ﬁ%liw)_op<\/ﬁ)'

Therefore,

—Z%fb%G&D;EI&%UWMG%HO(>
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so that in (1.10) we get

. 1 &

=1

Taking expectations while noting that E.,[¢;(0, &;(9))] = T‘lBZ-(l)(G) + O, (T7?), we get

1 < _
E,,[0] — 00 = ——ZETO 3O lo=ao) 5 D 0BT 6) + Op(T7)
Since limy, o = >0, [ 020;(0)]|g=p, is bounded away from zero by Assumption 4.3(v) and
(D.2) while 0, B, M (6 ) O, (1) by Lemma E.2, this further shows that E,,[f]—6, = O,(T!). O

APPENDIX J. BARTLETT IDENTITIES

For this section, let 75 := (¢, ;)’ so that expectations are taken with respect to the condi-
tional density that is evaluated at the same parameter values as the likelihood. Since integration

and differentiation is interchangeable,

Oov; JYia]X:.0,0
ETO [git()l(e’ai)] = / Mfﬁﬂxiﬁ,%‘ - aﬁ!i/ ( int\xi,e,az‘ =0
supp(Yiz

supp(Yie)  J Vit X000

for every ¢ and ¢. Thus,
E‘rg [&01(9, CYZ)] =0 Vv 9, Q.

Taking derivatives with respect to a; while noting that a%ifyﬂxi,e,ai = Tlio1(0, ) fy, 2,0, and

rearranging terms, the second Bartlett identity is
TEq, [61 (0, i) = —Er, [lioa(6, i), (J.1)
which can be equivalently written as
Eqro [0 (0, 0i)] = —Ery [Ciga (0, ;)] (J.2)
Repeating this procedure yields the third Bartlett identity
T?Er, (601 (0, 0i)] = —Er[Lioa (0, ai)] — 3TEr, [lioa (0, i) lion (6, i),
which, noting that E, [l;;(0, ;)] = 0 for all 4, j € N by definition, can be written as
Er (15,0, )] = =T B, [Ci03(0, 05)] — 3T~/ *Eory [Lioa (6, ) Lion (0, )]
One further repetition yields the fourth Bartlett identity

T°Ery [Ci01 (0, )] = =By [Ci0a (0, )] — AT B [Ci03(8, i) Lo (0, ;)]
— 3TE, [(7,(0, )] — 6T7Ery [Cio(0, i) 03, (6, )],
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which can be written as
Erollio (0, )] = =T "By [lioa(0, )] — 4T Eqy [lioa (0, cvi)lion (6, )]
= 3T By [1305(60, )] — 6T By [Liga (6, ) 1 (0, )] + 3(Bry [Lioa (6, 4)])?, (J.3)
where we have used (J.1) in order to show that
6T Rr, [Lioa (0, )1 (0, )] = 6V Ty [Liga (6, i)l (6, 0)] — 6T (Bry [ (6, cv3)])*.
Taking the derivative with respect to 6 in (J.1) further yields
T2Em [&201(‘9, ai)&m(@ Oéi)] = —Em[[ﬁﬂz(@, Oéi)] - TETO [&02(9, Oéi)fz'lo(@, Oéi)]
—2TE,, [&11(9, Oéi)gilo (9, 041')]:
which can be equivalently written as
\/TETO [11'201(97 Oéi)lilo(@, Oéz')] =-E, [&12(9, ai)] - E, [li02(97 Oéi)lnow, ai)]
—2E,, [lm(e, ai)lilo(ea Oéz‘)]-

APPENDIX K. CONSISTENCY OF 6

This section provides an explicit proof of consistency of é, i.e. we show the following theorem.

Theorem K.1. Let Assumptions 4.1-4.4 hold. Then,
[N 0o as n,T — oo.

Proof. Let Q%(6) == n~" Y27, (6, aip(A)) denote the target loglikelihood of # for the entire
sample, and Q* (0) := E[Q*(0)]. By (2.5), we further have
G0, 85,5, = ti(0,04(0)) + Ri(0),

where R;(0) := —T‘lBgl)(ﬁ,BmBizﬁi — T_23§2)(0’Bi>|6i:3i‘22 Notice that by Lemma E.2 in
Appendix C, there exists an open ball B centered at the true value Sy such that Bgl)(e, Bi)
is uniformly bounded on © x B. Since consistency of BZ implies that Bl € B with probability

approaching one as T" — 00, Supgeg T‘1|B§1)(9, i) = 0p(1). A similar argument shows
that suppee T’2|BE2)(0,@-) B
n~tYT  supgpee |Ri(0)| = 0p(1) as n, T — oo. Moreover, the profile likelihood approximates

the target likelihood, i.e.

Bi=PBi
= 0,(1). Therefore, using Assumption 4.1(iii) shows that

22Notice the abuse of notation as the remainder term here is different from the one in (4.7).
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where

Ri(6) = €,(0,a(0))3:(0)
and a(f) lies between &;(0) and o (). Assumption 4.3(i,ii) and similar arguments as those
leading to (C.1) imply that E[sup, |R;(0)|] = o(1) as n, T — oo. Thus, by Assumption 4.1(iii),
n~ 3" supgeg | Ri(0)] = 0p(1). In the next step, we show uniform convergence, i.e.

sup [0;,(6) — E[Q;(0)]] = o,(1). (K.1)

90
Following Newey (1991, Corollary 2.2), a sufficient condition for (K.1) to hold is that: (a) for
each 6 € ©, Q% (0)—E[Q% ()] = 0p(1), and (b) for 61,0, € O, |Q%(62)—Q%(61)| < Bng(||62—061]),
where (B,,)nen is a sequence of nonnegative random variables such that E[B,] = O(1), and ¢ :
[0,00) — [0, 00) is a function such that ¢ is continuous at 0 and ¢(0) = 0. A sufficient condition
for (b) is that Q* be continuously differentiable with the derivative dominated by a random se-
quence that is bounded in probability. Thus, (a) follows immediately from Assumptions 4.1(iii)
and 4.3(i) and the law of large numbers. Moreover, as E[0pl;(6)] = E[l;s(0)] + E[l;o(0)0pcr} (6)]
where Jgaf(0) = —Ai11(0)/Nio2(0) is bounded by Assumption 4.3, the sufficient condition for

(b) is satisfied as well. First, we note that the preceding discussion implies

sup MZ(@aﬂiﬂﬁi:Bi - Q:L(HN < 3115 1€5.(0, Bi) ‘,8 =5~ Zﬁ
€

0cO

+sup|—Z€ Q(0)] = 0,(1).

pco N

In addition, by (K.1),

Sup 1600, 81) 5,5, — Qu(0)] = 0p(1). (K.2)

Now, let B C © be an open ball around . By Assumption 4.3(iv), there exists some § > 0
such that

6 < QZ(QO) — sup QZ(Q)

0cO\B
Therefore,

0O\ B= Q.0 < sup QL(0) < Qi(6y) — 6

0cO\B

for all n large enough. Thus, 6 € © \ B implies
§ < Qi(00) — Q5(0) = Qr(6) — £:(0, i) 6.p,=5 T 0n(0, Bi)lo—s 5,=5, —Q;(0)

Q1 (60) — €,.(9, B:)lg—g,,—5, + 0p(1)



17

by (K.2). Since by definition £;,(6, 8:)ly_5 5.3, = €1 (00, Bi)l 5,4,

0 < Q(60) = 6,00, B:)1 5,5, + 0p(1).
Again using (K.2), we finally see that § ¢ B = § < 0p(1), i.e. Pr(d ¢ B) — 0. Since B can

be chosen arbitrarily small, plim,, - L0 =10,
O

APPENDIX L. FEASIBLE APPROXIMATION OF FOB AND SOB

In this section, we provide the details on the derivation of the feasible approximations of the
FOB and SOB in static panel logit and probit which have been used to generate the simulation
results. Henceforth, A(u) := e*/(1 + ¢e*), u € R, is the logistic cdf and ®(u) denotes the

standard normal cdf.

L.1. Estimation in the static logit model. Let Y;; = 1(X/,0y + a0 + Uy > 0), where
Ui, ..., UiT‘f)Ci, Q0 4 LogisticlID. Since the observations are independent across t, the scaled
loglikelihood for the i-th individual is £;(8, a;) = T~ 327, Yy log A(X},0+ ;) + (1 —Yy,) log(1 —
A(X],0+ «;)). While implementing 6 may appear to be complicated due to the large number of
terms that need to be computed to approximate the FOB and SOB with a bias of order O, (T~?),
substantial simplification arise due to the form of the loglikelihood. Let A®)(.) denote the k-th
derivative of A(+). Implementing  requires calculating AM(-) = A@()(1 — AQ (), A@(.) =
AW (1=2A9 () and A® () = A () (1-2A0 (1)) =2(AD(-))2. Now, taking derivatives of the
loglikelihood with respect to a; yields €01 (0, o) = TS (Yie— A(X},0+0)) and £iga(6, ;) =

T-1 Z;‘le AW(X!0 + a;). The latter expression does not depend on the outcome variables,
which implies that derivatives of at least second order are not affected by taking expectations
conditional on explanatory variables. Therefore, Ao (0, ;) = =T~ Zthl A1 (X0 + o).
This in turn also implies l;0, = 0 for & > 2. Moreover, by definition of o (),

0 =Ex[lion (0)] & = Z A(X],00 + o) Z AXL0 + al(9)),

which implies that £;01(0) = li01(0o, cvio). Hence, moments of £;;(f) coincide with moments
of l;01. Since the likelihood evaluated at the true values satisfies the Bartlett identities, it is
possible to find simplified expressions for moments of ;0;(6). Using the fact that l;01(0) = lin
together with (J.2) for example yields

ETO [11‘201(9)] = E‘Fo [11'201] = — o2, (L-l)
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while with (J.3) together with l;0o = E., [l;01(€)] = 0 in the second equation, we get
ET() [l?m(e)] = ETO [l?()l] = _T_1/2>‘z‘03~ (L-Q)

Further using (J3) and liog = ligg =0

E, [lfm(‘g)] =E, [lfm] = _T_l)‘z‘04 + 3/\2202- (L-3)
It is therefore not necessary to compute higher moments of l;5; () in the static logit example.?
Consequently, (4.1) simplifies to
1E[7u(0)] 1 Eg [53’01(9)]%03(0)

1 /B [141(0)] Nioa(0) JE o[Lio1 (0)] A\ (0) 3
ﬁ< W T )+ 0p(T ).

By using (L.1), (L.2) and (L.3), this expression can be written as

Aio2 NiosAioa(0) | ApaAioa(0) — 3Nips(0) Aiga
2T Xio2(0) - 6T2N3p(0)  8T2Njpp(6)  8T?A%,(0)

Eo[0:(0, 6:(0)) — £:(0, a5 (0))] = —

ETO [&(97 é‘z<9)) - EZ(QH = + OP(T_3)7

which does not involve moments of l;p1 (). It can easily be seen that the FOB in logit is

(1) 0 )\202
o (0) = 2T Njp2(6)’

which, for 8; = (v, ¢;, i), can be estimated by T‘lﬂgl (0, Bi)| 5,5, With

102 (’77 ¢Z>
QTEZ()Q (9 Ozl)

where we have used that f;ox(0, ;) does not depend on the outcome variables and therefore

T80, 8,) =

coincides with Ao (0, ;) for k > 2. Taking derivatives for the derivation of a feasible approx-
imation of the FOB that is unbiased up to order O,(T?) is hence facilitated. We show this
first with 6ai351)(9, 61)‘6-:5-0’ which can be written as

iz Aios (6)
BW (9, B;y) = — 027037/
w00 = 0
Similarly,
\s
BW (9. 3,) = il
W( 750) 2)\2'02(9)7
and

VTE, oL 01(0)lion ] . Aio3

i (0, Bio) 2\i02(0) 2T Xio2(0)

23Gince the approach of DS does not involve preliminary estimators of 6y and «;p, using the Bartlett identities
is not possible in the derivation of their estimator.
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For the second derivative of 3§1)(9, B;) with respect to a; we obtain

BE;)Q (0, Bio) = )\i023>\?03(9) o >\i022\i04(9)7
o Xio2(0) 2X02(0)
whereas for the second derivative with respect to ¢; we get
TEq [l70:(0)1i01] _ Aioa
2Xi02(0) 2Xi02(0)

B, (6. Bi) = —

Finally Al
i03 i03
B (O:50) = =)
L.1.1. Remark on the use of “score-factors” in static logit. We show here that in general
E., [lir01(0)] # 0 for 8 # 6, in the static logit example. This implies that the use of “score-
factors” which are crucial to the bias correction approach of DS are not permitted for the
correction of the conditional profile likelihood bias E., [¢;(0, &;(0)) — £;(6, «;(6))]. Recall that

i1 (0, ;) = ZY;t AX[0 + ).
Notice that by definition of the target likelihood

T
1 ; .
Er, [lin(6)] = > A(X) 00 + ig) — AX[0 + o} (6)) = 0.

t=1
If the score factor property holds with respect to E, , we further have E, [¢;101(6)] = 0. For
T = 2 this implies that
A(XL 00 + o) = A(X],0 + af(0)) & X100 + o = X[10 + af(0)
A(X{ZQQ + Oéio) = A(XZ’29 + Oéj(@)) = X£290 + a0 = Xz,29 + Oéj(@),
since the CDF A() is strictly increasing. Rewriting this statement yields
(A) X1 (0o = 0) = ai(0) — o
(B) X{5(00 — 0) = o (0) — cvo.
Subtracting equation (B) from (A) finally yields

(X1 — Xi2)(0o — 0) = 0.

This equation can again only be satisfied if # = 6y or when there is no time variation in X,
which would imply that X;; = X;5. However, the latter is not possible when the true parameter

0y is assumed to be identified, as this rules out any time-invariant regressors.

L.2. Estimation in the static probit model. Let Y;; = 1(X/,0y + a0 + Uy > 0), where
Ui, .. .,UiT‘f)Ci,aio 4 NIID(0,1). By independence across ¢, the loglikelihood for the i-th
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individual is
1
((0, 1) = D [Vilog ®(X},0 + ;) + (1 — Yiy) log(1 — (X0 + o)),
t=1
where ®(-) denotes the standard normal cdf. Taking the first derivative with respect to «;
yields

T
1 / /
lin (6, i) = D (Y — (X0 + i) G(X[,0 + as)],

where G(u) == @(u“‘)’g‘()fu and ¢(-) denotes the standard normal pdf. Thus,

1
]E[Ezm(@ 051 Y ¢z -

Me

Xy + ¢i) — ®(X,0 + i) G(X,0 + ai)].

TS
Unlike in static logit, derivatives of the likelihood with respect to «; do depend on the out-
come variables because of the presence of G.?* Hence, in general l;o (6, ;) # Nior(0, ;) and
Lior(6, ;) # 0 for k € N. However, the likelihood provides some structure leading to patterns
that can be useful in finding : Notice first that G(u) = h(u) + h(—u), where h(u)/®(—u)
denotes the Gaussian hazard function. For k € N, let further h*)(-) denote the k-th derivative

of h. It is then easy to confirm that the necessary derivatives are

(1) K@) = h(z)(h() ),

(2) M (z) = KD (2)(h(x) — ) + h(z)(AD(z) — 1) and

(3) RO (z) = K (2)(h(z) — 2) + 20N (2) (KD (z) — 1) + h(x)hP(z).
In order to avoid repeating the argument, let £ € Ny and
ak
B k
Then, G\F = (—1) RV (=X,,0 — ;) + %V (X},0 + ). Next, let

Gz(f) = G(X0 + ).

. O /
dy) = W@(Xite + o).
Then,
(1) 8 = (X0 + ;)
(2) ) = —(X},0 + a;)p(X40 + o)
(3) B = (X460 + ) [(X40 + a;)* — 1]
(4) ®) = (X460 + @) [B(X40 + ) — (XL,0 + o).

24The function G(-) is dubbed the “probit weight function” in Schumann and Tripathi (2018). It is further
shown there that G is convex and U-shaped on the real line.
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Moreover, we indicate evaluation at the true values with “07, e.g. CD% = @g ) (X} 0+0i)|0=00.0i=aio -
We then find the following:

T
1
Nioa(0,00) = =3 (Big — D) G — LG
1 T
Nioa (0, 00) = = D (Bag — D) G — 20GY — PG
1
Nioa(0,0:) = =Y (Pug — D) G = 3pu Gy — 307G — oG

T
1 1 1) ~(0
A1(0, ;) =7 ;th 0 — 2t>Gz(t) - (I)z(t)Gz(t)]

T
1
Ma(f, i) = > Xul(@uo — ©)GY — 205G — 2P G

t=1

>\20 (9 Oéz = Zthlet ito — P; )Gz('tl)—q)z(tl)Gz('?)]

Moreover,
T

1
lz 0 az Xz  E G(O)a
10( \/T Z t tO) it

and, for k£ € Ny,
lz(]k 8 az - \/— Z it ztO Gz(f b .

Given these simple forms of the centralized hkehhoods, it is easy to derive the expectations of
products of centralized likelihood derivatives that are needed here. To illustrate the compu-
tation, let a,b,c,--- € N and notice that time-independence together with E. [l;(0, ;)] = 0
implies
T
1
By [lian (01, 1) lica (02, c2)] = T ZETO Litab (01, a1)litea (02, c2)]. (L.4)

t=1
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The same argument yields

T

1
ETO[lmb(ebal)lzcd(e%a2)lzef<93aa3)] T3/QZETO zmb(91,al)lztcd(92;a2)lztef(93,043)]- (L~5)

Further, the expectation of four centralized likelihood terms can be derived as

E, [lmb(eh 061)l¢cd(927 a2)lief<93a a3)ligh<94u 044)]
1 T

= ﬁ Z ETO [litab(917 al)litcd<02a 042)litef(93, 043)litgh(t94, 044)]
t=1

T T
1 1
+ (T Z ETO [limb(ela al)lz‘tcd(927 Oéz)]) (? Z ]ETO [litef(037 a3)litgh(647 044)])
t=1 t=1

T
1
- 772 Z Em [litab(ely al)litcd(92> a?)]ET() [litef(gf}a a3)litgh(94a 044)]

T
1
( Z E‘ro ztab(ela a1>lztef 637 a3 > ( Z ET@ ited 927 (6%) lztgh(elb 064)])
t=1 t=1
1 T
- 772 Z Em [litab(gh a1>litef(03u CY3)]ETO [lz‘tcd(92, aQ)litgh(94a 044)]
t=1

!

1

T
+ (% Z ET [llmb(el’ al)lltgh 94’ Qy ) < Zl IE:‘ro ztcd 92, (%) lztef(‘937 a3)])
t=

t=1

N

1

- T2 Z ]ETO [litab(eh al)litgh (94, 044)]1[1370 [litcd(‘92> a2)litef (937 043)]- (L-6)

t=1
For example, using the formula for central moments of the Bernoulli distribution together with
(L.4), (L.5) and (L.6), we now get

T
1
Ery [l (6, 00)] = 2 D Pun(1 — Puo) (G}))*,
t=1
(i)
B (6, 00)] =75 ZETO ino)’)(G)’

1
=737 Z g (1 — Pito) (1 — 2040) (G )?
t=1
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(iii) and

T

1
ETO [1?01 (9, Oél)] = ﬁ Z (I)itO(l — (I)no)(3q) 3(1)2150 -+ 1

T
Z ztO 1 - (I)ito))z

t=1 t=1

%IH

T T
1
Z ’LtO ]_ - ztO G,E?) T Z ZtO 1 - q)it()))Q + OP(T_I)‘
p— =1
As another example,
1 & 1 <
0 0
Eqro [0 (0, i)lino] = T2 > XitFory [0 (8, i)livon] = T3 > Xiu(GY)?2 Gl Diso(1—Pisg) (1-2i0).
t=1 t=1

Other expressions can be derived in a similar manner. Notice that sup ,,)coxg ¢i(¢, a:) € (0,1)
for every ¢ and T' by the compactness of © and J. In particular, the target likelihood which
we are approximating takes values in (0, 1). Since unlike in the static logit model higher order
derivatives of the likelihood depend on outcome data, the second order corrected likelihood may
take values outside (0, 1) for certain values of § and B;. We found in our simulation exercise that
also restricting the second order corrected likelihood to assume only values in (0, 1) improves
the numerical properties of the optimization problem for small values of T. Therefore, our

maximization problem in static probit is
6= 0500, 85|55 subject to £;(8, Bi)|4_s € (0,1).
argrglefg( 1( ’6>|5i:ﬁi subjec Y 1( ’6>|5i:ﬁi S ( )

Alternatively, instead of using the general formulas, one can make use of the known pro-

bit likelihood and derive the necessary derivatives of the FOB directly, i.e. we first explicitly

compute
1 T
IFCRBIES T Z (X7 + i) (1 = ©(Xpy + 60))Gae (X0 + )
t=1
and
1 T
Nioa (0, 065 ) = 7 D (P(Xipy +60) = DX} + )Gl (X3 + ) — $(XG0 + ) Gl Xy + )
t=1

before taking the derivatives with respect to a, v and ¢;. Writing Gz(f)(e) = Ggf) (X7,0+ai(9))
for k € N, we then obtain

(D
OoEr, [li201 (0, )]

=Bi0 — Zq)zto 1 - ztO Gz(t)(e)



T
1
02 B 15510, 00)][5.=5 = 75 Y _ Piro(1 — Piro) G/ (6)
=1
(111)
Op; Nio2(0, i3 T3) | gi=piy = ZsﬂztoG

(IV)

T

a; )\202(9 auTz Bi=Bi0 — Z theo + Qo SOZtUGzt (9)

(V)

| 7

06, [, (0, )]l =g = T Z(%’to — 20i0Pit0) G, (0)

=1

(VD)
T
02 Br, (151 (0, )| gi=0 = Z (X700 + cio) piro®iro — (X700 + cvio) piro — 20750 G(6)
(VII)
| T
9y Nio2 (0, i i) | g=pi0 = T Z XipinGy (0)
t=1

(VII)

T
1
87E‘Fz‘ [l?(n(@, ai)”ﬁi:ﬁio = f ZXit(SOitO - 290it0q)it0)G?t(0)'
t=1

Using (I)-(VIII) directly yields

Y GEPio(1 = Puo) N oG L (0 — 20i0Pin) G,
2T(X1 (Pio — D) Gy — 0iGir)? 2T S (Bao — i) G — G

qul( @0) =

Similarly,

T T 1
(;) ( B 0) thl Gzth)ito(l - q)it())[Zt:l SOz‘tOth)] Zt 1(90zt0 2<Pit0q>it0>G12t Z;[:l SOitothl)

(S (@io — )Gl — iuGlr)? 250 (@0 — )Gl — G
Zt L @ito — 20i0Pin0) G2, Zt (X100 + ozlo)goztoGzt
(Zt 1( it0 — (I)zt)G( %tht)
_ Yo [2(X 000 + cio) @i Pito — (X000 + cvio) o — 203G
230 (Big — )G — puG |

Moreover,
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ZtT=1 Gz?tq)it0<1 — Dyy0) Zthl XitSDitoG,(tl ) B ZtT:l Xit(wito — 2g0¢t0<I>ito)G?t

BY (Bo) = .
! 2(2?:1(@150 - @it)GEtI) - SOitGit)z 2 Z?Zl(q)ito - (I)it)Gz('tl) — G
Finally,
B (8) = St G2 Pun(1 — Do) S [(Pao — D) G — 200G + (X408 + i) paGarl ory pino Gy
to i NP T .

(Cr (®ig — Bi) G — 0uGir)?



