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Appendix F. Additional simulation results

Table 4. Simulation results for static logit (columns 3–6) and static probit (columns
7–10) with n = 100 using the design in Schumann, Severini, and Tripathi (2021a).

T Estimator Bias STD MSE Coverage Bias STD MSE Coverage

3 θ̃ 0.6256 0.3100 0.4874 0.2583 0.7653 0.2961 0.6733 0.0261
θ̌avg 0.2738 0.2428 0.1339 0.7422 0.6545 0.2905 0.5127 0.0782
θ̌exp 0.1714 0.2106 0.0737 0.8685 0.2607 0.1996 0.1078 0.6106

θ̂ 0.1062 0.2220 0.0606 0.8982 0.0606 0.1468 0.0252 0.9228

θ̃CMLE 0.0189 0.1804 0.0329 0.9680 – – – –

4 θ̃ 0.4272 0.2360 0.2382 0.3989 0.5448 0.2194 0.3449 0.0729
θ̌avg 0.1655 0.1900 0.0634 0.8400 0.4029 0.2087 0.2059 0.2542
θ̌exp 0.1025 0.1725 0.0403 0.9090 0.1621 0.1497 0.0487 0.7590

θ̂ 0.0463 0.1681 0.0304 0.9331 0.0371 0.1253 0.0171 0.9256

θ̂FOSPJ −0.2704 0.3646 0.2060 0.4965 −0.1548 0.4697 0.2444 0.4284

θ̃CMLE 0.0127 0.1548 0.0241 0.9520 – – – –

5 θ̃ 0.3159 0.1875 0.1349 0.5045 0.5448 0.2194 0.3449 0.0729
θ̌avg 0.1070 0.1547 0.0354 0.8960 0.4029 0.2087 0.2059 0.2542
θ̌exp 0.0661 0.1445 0.0252 0.9355 0.1621 0.1497 0.0487 0.7590

θ̂ 0.0251 0.1388 0.0199 0.9505 0.0371 0.1253 0.0171 0.9256

θ̂FOSPJ −0.2061 0.2343 0.0974 0.5720 −0.1548 0.4697 0.2444 0.4284

θ̃CMLE 0.0087 0.1340 0.0180 0.9565 – – – –

6 θ̃ 0.2457 0.1597 0.0859 0.5820 0.3185 0.1409 0.1213 0.2135
θ̌avg 0.0714 0.1342 0.0231 0.9240 0.1799 0.1258 0.0482 0.6143
θ̌exp 0.0435 0.1284 0.0184 0.9445 0.0761 0.1048 0.0168 0.8854

θ̂ 0.0139 0.1240 0.0156 0.9565 0.0119 0.0940 0.0090 0.9485

θ̂FOSPJ −0.1578 0.1785 0.0567 0.6470 −0.2168 0.2429 0.1060 0.4013

θ̂SOSPJ −0.0669 0.4796 0.2344 0.4145 −0.3317 0.7500 0.6722 0.2135

θ̃CMLE 0.0042 0.1216 0.0148 0.9600 – – – –

10 θ̃ 0.1317 0.1094 0.0293 0.7455 0.1650 0.0864 0.0347 0.4647
θ̌avg 0.0255 0.0974 0.0101 0.9405 0.0651 0.0772 0.0102 0.8679
θ̌exp 0.0155 0.0960 0.0095 0.9465 0.0280 0.0720 0.0060 0.9340

θ̂ 0.0046 0.0946 0.0090 0.9515 0.0045 0.0692 0.0048 0.9510

θ̂FOSPJ −0.0528 0.1046 0.0137 0.8705 −0.0719 0.0905 0.0134 0.7199

θ̂SOSPJ 0.0129 0.1890 0.0359 0.9515 0.0225 0.2255 0.0514 0.4997

θ̃CMLE 0.0020 0.0941 0.0089 0.9525 – – – –
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Appendix G. Derivation of the derivatives in Appendix A

First, we display the derivatives of the FOB of the profile likelihood that are necessary to

find an approximation of the FOB that is unbiased up to an error of order Op(T
−3). First,

recall that

B
(1)
i (θ, βi) = −Eτi [l2i01(θ, αi; τ)]

2Tλi02(θ, αi; τi)
= −T

−1
∑T

t=1 Eτi [l2it01(θ, α, τ)]
2T−1

∑T
t=1 Eτi [ℓit02(θ, αi)]

.

We start by taking the derivative w.r.t. α and evaluating at βi0 to obtain

∂αB
(1)
i (θ, βi)|βi=βi0 = −Eτ0 [li01(θ)li02(θ)]

Tλi02(θ)
+

Eτ0 [l2i01(θ)]λi03(θ)
2Tλ2i02(θ)

.

Similarly for the derivative w.r.t. γ,

∂γB
(1)
i (θ, βi)|βi=βi0 = −

√
TEτ0 [l2i01(θ)li10]
2Tλi02(θ)

+
Eτ0 [l2i01(θ)]Eτ0 [li02(θ)li10]

2Tλ2i02(θ)
.

Next, we compute ∂2αiαiB
(1)
i (θ, βi) and evaluate the resulting expression at βi0 to obtain

∂2αiαiB
(1)
i (θ, βi)|βi=βi0 =

2λi03(θ)Eτ0 [li01(θ)li02(θ)]
Tλ2i02(θ)

− Eτ0 [l2i02(θ)]
Tλi02(θ)

− Eτ0 [li01(θ)li03(θ)]
Tλi02(θ)

−Eτ0 [l2i01(θ)]λ2i03(θ)
Tλ3i02(θ)

+
Eτ0 [l2i01(θ)]λi04(θ)

2Tλ2i02(θ)
.

In the next step, we need to take derivatives with respect to ϕi. First, we compute

1

T

T∑
t=1

∂ϕiλit02(θ, αi; τi)|βi=βi0 =
1

T

T∑
t=1

Eτ0 [ℓit02(θ)ℓit01]

and
1

T

T∑
t=1

∂2ϕiϕiλit02(θ, αi; τi)|βi=βi0 =
1

T

T∑
t=1

Eτ0 [ℓit02(θ)ℓit02] + Eτ0 [ℓit02(θ)ℓ2it01],

so that by centering terms and using the fact that Eτ0 [ℓit01] = 0 so that ℓit01 = lit01, we obtain

∂ϕiλi02(θ, αi; τi)|βi=βi0 = Eτ0 [li02(θ)li01] (G.1)

and

∂2ϕiλi02(θ, αi; τi)|βi=βi0 = Eτ0 [li02(θ)li02] +
√
TEτ0 [li02(θ)l2i01]. (G.2)

Moreover,

1

T

T∑
t=1

∂2ϕiαiλit02(θ, αi; τi)|βi=βi0 =
1

T

T∑
t=1

Eτ0 [ℓit03(θ)ℓit01],

which after centering yields

∂2ϕiαiλi02(θ, αi; τi)|βi=βi0 = Eτ0 [li03(θ)li01].
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Taking the derivative w.r.t. ϕi of Eτi [l2it01(θ, αi; τi)] is more involved since lit01(θ, αi) =

ℓit01(θ, αi) − Eτi [ℓit01(θ, αi)]. Therefore, ϕi appears twice in Eτi [l2it01(θ, αi; τi)] whereas θ and

α appear only once. First, using Eτ0 [lit01] = 0,

1

T

T∑
t=1

∂ϕiEτi [l2it01(θ, αi)]|βi=βi0 =
1

T

T∑
t=1

(
Eτ0 [l2i01(θ)lit01]− 2Eτ0 [lit01(θ)lit01]Eτ0 [lit01]

=
1

T

T∑
t=1

Eτ0 [l2i01(θ)lit01]
)

and

1

T

T∑
t=1

∂2ϕiEτi [l
2
it01(θ, αi)]|βi=βi0 =

1

T

T∑
t=1

(
Eτ0 [l2i01(θ)l2i01] + Eτ0 [l2i01(θ)lit02]

− 2Eτ0 [l2it01(θ)lit01]2 − Eτ0 [l2it01(θ)]Eτ0 [l2it01]
)
. (G.3)

By centering terms and using time independence together with Eτ0 [lit01(θ)] = 0 for every θ ∈ Θ,

we therefore have

∂ϕiEτi [l2i01(θ, αi)]|βi=βi0 =
√
TEτ0 [l2i01(θ)li01]. (G.4)

Moreover, after some algebra,

(∂2ϕiEτi [l
2
i01(θ, αi)])|βi=βi0 =

√
TEτ0 [l2i01(θ)li02]− TEτ0 [l2i01(θ)]Eτ0 [l2it01]

+ TEτ0 [l2i01(θ)l2i01]− 2TEτ0 [li01(θ)li01]2. (G.5)

To see this, notice that

TEτ0 [l2i01(θ)l2i01] =
1

T

T∑
t=1

Eτ0 [l2it01(θ)l2it01] + 2T

(
1

T

T∑
t=1

Eτ0 [lit01(θ)lit01]

)2

− 2

T

T∑
t=1

Eτ0 [lit01(θ)lit01]2

+ T

(
1

T

T∑
t=1

Eτ0 [l2it01(θ)]

)(
1

T

T∑
t=1

Eτ0 [l2it01]

)
− 1

T

T∑
t=1

Eτ0 [l2it01(θ)]Eτ0 [l2it01].

Now,

2T (
1

T

T∑
t=1

Eτ0 [lit01(θ)lit01])2 = 2TEτ0 [li01(θ)li01]2

and

T

(
1

T

T∑
t=1

Eτ0 [l2it01(θ)]

)(
1

T

T∑
t=1

Eτ0 [l2it01]

)
= TEτ0 [l2i01(θ)]Eτ0 [l2i01].

Therefore,
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TEτ0 [l2i01(θ)l2i01] =
1

T

T∑
t=1

Eτ0 [l2it01(θ)l2it01] + 2TEτ0 [li01(θ)li01]2 −
2

T

T∑
t=1

Eτ0 [lit01(θ)lit01]2

+ TEτ0 [l2i01(θ)]Eτ0 [l2i01]−
1

T

T∑
t=1

Eτ0 [l2it01(θ)]Eτ0 [l2it01]. (G.6)

Finally plugging (G.6) into (G.5) again yields (G.3). Next, we consider

∂2ϕiαiEτi [l
2
i01(θ, αi)]|βi=βi0 = 2Eτ0 [lit01(θ)lit02(θ)li01],

so that

∂2ϕiαiEτi [l
2
it01(θ, αi)]|βi=βi0 = 2

√
TEτ0 [li01(θ)li02(θ)li01].

Using (G.1) and (G.4),

∂ϕiB
(1)
i (θ, βi)|βi=βi0 =

Eτ0 [l2i01(θ)]∂ϕiλi02(θ, αi; τi)|βi=βi0
2Tλ2i02(θ)

− ∂ϕiEτi [l2i01(θ, αi)]|βi=βi0
2Tλi02(θ)

= −
√
TEτ0 [l2i01(θ)li01]
2Tλi02(θ)

+
Eτ0 [l2i01(θ)]Eτ0 [li02(θ)li01]

2Tλ2i02(θ)
.

Similarly, for ∂2ϕiB
(1)
i (θ, αi)

∣∣
βi=βi0

we get

∂2ϕiB
(1)
i (θ, βi)|βi=βi0 = −Eτ0 [l2i01(θ)](∂ϕiλi02(θ, αi; τi)|βi=βi0)2

Tλ3i02(θ)

+
∂ϕiλi02(θ, αi; τi)|βi=βi0∂ϕiEτi [l2i01(θ, αi)]|βi=βi0

Tλ2i02(θ)

+
Eτ0 [l2i01(θ)]∂2ϕiλi02(θ, αi; τi)|βi=βi0

2Tλ2i02(θ)
−
∂2ϕiEτi [l

2
i01(θ, αi)]|βi=βi0
2Tλi02(θ)

,

hence using (G.1), (G.2), (G.4), and (G.5),

∂2ϕiB
(1)
i (θ, βi)|βi=βi0 =

Eτ0 [l2i01(θ)]Eτ0 [li02(θ)li01]2

Tλ3i02(θ)
+

√
TEτ0 [l2i01(θ)li01]Eτ0 [li02(θ)li01]

Tλ2i02(θ)

+
Eτ0 [l2i01(θ)](Eτ0 [li02(θ)li02] +

√
TEτ0 [li02(θ)l2i01])

2Tλ2i02(θ)

−
√
TEτ0 [l2i01(θ)li02] + TEτ0 [l2i01(θ)]λi02 + TEτ0 [l2i01(θ)l2i01]− 2TEτ0 [li01(θ)li01]2

2Tλi02(θ)
.

Finally, the mixed derivative ∂2αiϕiB
(1)
i (θ, βi)

∣∣
βi=βi0

is

∂2αiϕiB
(1)
i (θ, βi)

∣∣
βi=βi0

=
λi03(θ)

√
TEτ0 [l2i01(θ)li01]

2Tλ2i02(θ)
−

√
TEτ0 [li02(θ)li01(θ)li01]

Tλi02(θ)
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+
Eτ0 [li01(θ)li02(θ)]Eτ0 [li02(θ)li01]

Tλ2i02(θ)
− Eτ0 [l2i01(θ)]λi03(θ)Eτ0 [li02(θ)li01]

Tλ3i02(θ)

+
Eτ0 [l2i01(θ)]Eτ0 [li03(θ)li01]

2Tλ2i02(θ)
.

Appendix H. Explicit terms for Section C.1

Here we collect complex algebraic terms resulting from the derivation of the first and second

order profile likelihood bias.

(1)

a−3/2 = − l
3
i01(θ)λ

2
i03(θ)

2λ5i02(θ)
+
l3i01(θ)λi04(θ)

6λ4i02(θ)
+

3l2i01(θ)λi03(θ)li02(θ)

2λ4i02(θ)

− li01(θ)l
2
i02(θ)

λ3i02(θ)
− l2i01(θ)li03(θ)

2λ3i02(θ)

(2)

a−2 =
li01(θ)l

3
i02(θ)

λ4i02(θ)
+

3l2i01(θ)li02(θ)li03(θ)

2λ4i02(θ)
+
l3i01(θ)li04(θ)

6λ4i02(θ)
− 3l2i01(θ)l

2
i02(θ)λi03(θ)

λ52(θ)

− l3i01(θ)li03(θ)λi03(θ)

λ5i02(θ)
+

5l3i01(θ)li02(θ)λ
2
i03(θ)

2λ6i02(θ)
− 5l4i01(θ)λ

3
i03(θ)

8λ7i02(θ)

− 2l3i01(θ)li02(θ)λi04(θ)

3λ5i02(θ)
+

5l4i01(θ)λi03(θ)λi04(θ)

12λ6i02(θ)
− l4i01(θ)λi05(θ)

24λ5i02(θ)
,

(3)

a−3 = − li01(θ)l
4
i02(θ)

λ5i02(θ)
− 3l2i01(θ)l

2
i02(θ)li03(θ)

λ5i02(θ)
− l3i01(θ)l

2
i03(θ)

2λ5i02(θ)
− 2l3i01(θ)li02(θ)li04(θ)

3λ5i02(θ)

− l4i01(θ)li05(θ)

24λ5i02(θ)
+

5l2i01(θ)l
3
i02(θ)λi03(θ)

λ6i02(θ)
+

5l3i01(θ)li02(θ)li03(θ)λi03(θ)

λ6i02(θ)

+
5l4i01(θ)li04(θ)λi03(θ)

12λ6i02(θ)
− 15l3i01(θ)l

2
i02(θ)λ

2
i03(θ)

2λ7i02(θ)
− 15l4i01(θ)li03(θ)λ

2
i03(θ)

8λ7i02(θ)

+
35l4i01(θ)li02(θ)λ

3
i03(θ)

8λ8i02(θ)
− 7l5i01(θ)λ

4
i03(θ)

8λ9i02(θ)
+

5l3i01(θ)l
2
i02(θ)λi04(θ)

3λ6i02(θ)

+
5l4i01(θ)li03(θ)λi04(θ)

12λ6i02(θ)
− 5l4i01(θ)li02(θ)λi03(θ)λi04(θ)

2λ7i02(θ)
+

7l5i01(θ)λ
2
i03(θ)λi04(θ)

8λ8i02(θ)

− l5i01(θ)λ
2
i04(θ)

12λ7i02(θ)
+

5l4i01(θ)li02(θ)λi05(θ)

24λ6i02(θ)
− l5i01(θ)λi03(θ)λi05(θ)

8λ7i02(θ)
+
l5i01(θ)λi06(θ)

120λ6i02(θ)
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Appendix I. Proofs for Section 4.2

In this subsection we collect the proofs for the results in 4.2.

Proof of (4.2). Let M denote the open ball centered at βi0 specified in Assumption 4.3. For

k1, k2 ∈ {1, . . . , p+2}, let derivatives of B(2)
i (θ, βi) with respect to components of βi be denoted

by

B
(2)
i;k (θ, βi) :=

∂B
(2)
i (θ, βi)

∂βk

B
(2)
i;k1,k2

(θ, βi) :=
∂2B

(2)
i (θ, βi)

∂βk1∂βk2
.

Using an expansion (ignoring constants),

B
(2)
i (θ, βi)|βi=β̂i = B

(2)
i (θ, βi0) +

p+2∑
k=1

B
(2)
i;k (θ, βi)|βi=βi0(β̂i − βi0)k

+

p+2∑
k1=1

p+2∑
k2=1

B
(2)
i;k1,k2

(θ, βi)|βi=β̄i(β̂i − βi0)k1(β̂i − βi0)k2 ,

where β̄i lies between β̂i and βi0. We now show that partial derivatives of B
(2)
i (θ, βi) are bounded

in probability. To do so, we note that the derivatives of B
(2)
i (θ, βi) consist of fractions with

(powers of) Eτi [ℓi02(θ, αi)] evaluated at βi = βi0 or βi = β̄i in the denominator. Since β̄i lies

in M with probability approaching one as T → ∞, the denominators are bounded away from

zero by Assumption 4.3(ii). To bound the numerator, we need to consider the first and second

derivatives of
√
TEτi [l2i01(θ, αi; τi)li02(θ, αi; τi)], (1)

√
TEτi [l3i01(θ, αi; τi)], (2)

Eτi [ℓi03(θ, αi; τi)], (3)

Eτi [l2i01(θ, αi; τi)l2i02(θ, αi; τi)], (4)

Eτi [l3i01(θ(αi; τi)li03(θ, αi; τi)], (5)

Eτi [l3i01(θ, αi; τi)li02(θ, αi; τi)] (6)

Eτi [l4i01(θ, αi; τi)]. (7)

Here, (1) and (2) are products of three centered likelihood terms. In order to illustrate how

these terms can be bounded, we note that using time-independence together with the mean-zero



7

property of centered likelihood terms of individual i in time period t, we can write

(1) =
√
TEτi [l2i01(θ, αi; τi)li02(θ, αi; τi)] =

1

T

T∑
t=1

Eτi [l2it01(θ, αi; τi)lit02(θ, αi; τi)].

Similarly, (3) can be expressed as

Eτi [ℓi03(θ, αi; τi)] =
1

T

T∑
t=1

Eτi [ℓit03(θ, αi; τi)].

As can be seen from (L.6), we can also express expectations of products of four centered

likelihood terms as scaled sums. For example, we can express (7) as

Eτi [l4i01(θ, αi; τi)] =
1

T 2
Eτi [l4it01(θ, αi; τi)]

+ 3(
1

T

T∑
t=1

Eτi [l2it01(θ, αi; τi)])2 −
3

T 2

T∑
t=1

Eτi [l2it01(θ, αi; τi)]2.

As in the proof of Lemma E.2, we can therefore bound each derivative (uniformly across βi)

by repetitive use of the Jensen inequality and the Cauchy-Schwarz inequality together with

Assumption 4.3(i). Next, since derivatives of first order of B
(2)
i (θ, βi) do not depend on the

outcome data when evaluated at βi = βi0, (C.14) and (C.13) together with (C.16) imply

Eτ0 [B
(2)
i;k (θ, βi)|βi=βi0(β̂i − βi0)k] = B

(2)
i;k (θ, βi)|βi=βi0Eτ0 [(β̂i − βi0)k] = Op(T

−1)

for every k ∈ {1, . . . , p+2}. Since the second derivatives ofB
(2)
i (θ, βi) are bounded in probability

uniformly across βi and since (β̂i−βi0)k1(β̂i−βi0)k2 is of order Op(T
−1) or lower by (C.1), (I.4)

and Assumption 4.4(ii,iii), we further see that

Eτ0 [B
(2)
i;k1,k2

(θ, βi)|βi=β̄i(β̂i − βi0)k1(β̂i − βi0)k2 ] = Op(T
−1).

In total we thus have Eτ0 [B
(2)
i (θ, βi)|βi=β̂i ] = B

(2)
i (θ) +Op(T

−1) for every θ ∈ Θ.

□

Proof of (C.12). Consider the ψ-th component of ∂βiB
(1)
i (θ, βi) where ψ ∈ {1, ..., p + 2}

denoted as B
(1)
i;ψ(θ, βi) := ∂βψB

(1)
i (θ, βi). As in the proof of (C.9), we denote further derivatives

with respect to components of βi by additional indices. We can write Rem
(ρ)
i (θ) := Rem

(ρ,a)
i (θ)+

Rem
(ρ,b)
i (θ), where, ignoring constants,

Rem
(ψ,a)
i (θ) :=

p+2∑
k=1

B
(1)
i;ψ,k(θ, βi)|βi=βi0(β̂i − βi0)k
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and

Rem
(ψ,b)
i (θ) :=

p+2∑
k1=1

p+2∑
k2=1

B
(1)
i;ψ,k1,k2

(θ, βi)|βi=β̄i(β̂i−βi0)k1(β̂i−βi0)k2+
p∑

k=1

B
(1)
i,ψ,k(θ, βi)|βi=β̄i(β̂i−βi0)k,

where β̄i lies between β̂i and βi0. The rest of the proof now closely follows the arguments

used in the proof of (C.9). Since β̄i
p→ βi0, the first and second derivatives of B

(1)
iρ (θ, βi) with

respect to the respective component of βi are of order Op(1) when evaluated at β̄i by Lemma

E.2. Thus, as (β̂i − βi0)k = Op(T
−1/2) for k ∈ {1, . . . , p + 2} by Assumption 4.4(ii,iii), (C.1)

and (I.4), Rem
(ρ)
i (θ) = Op(T

−1/2). Next, we notice again that derivatives of B
(1)
iρ (θ, βi) do not

depend on outcome data when evaluated at βi = βi0, so that

Eτ0 [Rem
(ρ,a)
i (θ)] =

p+2∑
k=1

B
(1)
i;ψ,k(θ, βi)|βi=βi0Eτ0 [(β̂i − βi0)k] = Op(T

−1)

by (C.8), (I.4) and (C.16). Again by Assumption 4.4(ii,iii), we further see that

p+1∑
k=2

Eτ0 [B
(1)
i;ψ,k(θ, βi)|βi=β̄i(β̂i − βi0)k] = Op(T

−1).

Thus, it is left to show that (β̂i − βi0)k1(β̂i − βi0)k2 = Op(T
−1), which follows from (C.1), (I.4)

and Assumption 4.4(ii,iii). Therefore, Eτ0 [Rem
(ρ,b)
i (θ)] = Op(T

−1), which finishes the proof. □

Proof of (C.13). Score unbiasedness implies Eτ0 [ℓit01(θ0, αi0)] = 0, which combined with first

order condition of α∗
i (θ) evaluated at θ = θ0 and Assumption 4.2(ii) shows that α∗

i (θ0) = αi0.

Next,

α̂i(θ̃)− αi0 = δi(θ̃) + α∗
i (θ̃)− αi0 (I.1)

so that Eτ0 [α̂i(θ̃)− αi0] = E[δi(θ̃)] + Eτ0 [α∗
i (θ̃)− αi0]. By a Taylor expansion,

α∗
i (θ̃) = αi0 + ∂θ′α

∗
i (θ)|θ=θ0(θ̃ − θ0) + (θ̃ − θ0)

′∂θθ′α
∗
i (θ)|θ=θ̄1(θ̃ − θ0), (I.2)

where θ̄1 lies between θ̃ and θ0. By (D.5) ∂θ′α
∗
i (θ) = Op(1), which does not depend upon the

outcome data when evaluated at θ = θ0. Moreover,

∂θθ′α
∗
i (θ) =

2λi11(θ)λi12(θ)

λ2i02(θ)
− λi11(θ)λ

′
i11(θ)λi03(θ)

λ3i02(θ)
− λi21(θ)

λi02(θ)
, (I.3)

which is component-wise of order Op(1) uniformly across θ by Assumption 4.3(i,ii) for T large

enough. Hence, α∗
i (θ̃) − αi0 = Op(T

−1) by Assumption 4.4(ii,iii). Therefore, from (I.1) and

(C.1), we get

α̂i(θ̃)− αi0 = δi(θ̃) +Op(T
−1) = Op(T

−1/2). (I.4)



9

Next,

Eτ0 [∂θ′α∗
i (θ)|θ=θ0(θ̃ − θ0)] = ∂θ′α

∗
i (θ)|θ=θ0Eτ0 [θ̃ − θ0] = Op(T

−1)

by (C.16). By Assumption 4.4(ii,iii), we further have

Eτ0 [(θ̃ − θ0)
′∂θθ′α

∗
i (θ)|θ=θ̄(θ̃ − θ0)] = Op(T

−2).

In total, Eτ0 [α∗
i (θ̃)− αi0] = Op(T

−1). Next, we expand

δi(θ̃) = δi(θ0) + ∂θ′δi(θ)|θ=θ0(θ̃ − θ0) + (θ̃ − θ0)
′∂θθ′δi(θ)|θ=θ̄2(θ̃ − θ0), (I.5)

where θ̄2 lies between θ̃ and θ0. Using (C.4),

Eτ0 [∂θ′δi(θ)] = T−1/2∂θ′ai(θ, βi0) +Op(T
−1), (I.6)

where

∂θ′ai(θ, βi0) =
li01(θ)(λ

′
i12(θ) + λi03(θ)∂θ′α

∗
i (θ))

λi02(θ)
− l′i11(θ) + li02(θ)∂θ′α

∗
i (θ)

λi02(θ)
.

Using Eτ0 [∂θ′ai(θ, βi0)] = 0, (I.11), independence across individuals and the fact that

(
1

n

n∑
i=1

Eτ0 [∂θθ′ℓi(θ)]
∣∣
θ=θ0

)−1 = Op(1),

we see that the stochastic order of Eτ0 [∂θ′δi(θ)|θ=θ0(θ̃ − θ0)] is, up to a term of order Op(T
−2),

determined by
1

n
√
T
Eτ0 [∂θ′ai(θ, βi0)∂θℓi(θ, α̂i(θ))]

∣∣
θ=θ0

.

Now, ∂θℓi(θ, α̂i(θ)) = ∂θℓi(θ) + T−1Rem(θ), where Rem(θ) = ∂θEτ0 [li01(θ, ᾱ)]/(2λi02(θ, ᾱ))
with ᾱ lies between α̂i(θ) and α∗

i (θ). Thus, since supθ Rem(θ) = Op(1) by Assumption 4.3,

∂θℓi(θ, α̂i(θ)) = ∂θℓi(θ)+Op(T
−1). Since further ∂θℓi(θ) = λi10(θ)+(li10(θ)+li01(θ)∂θα

∗
i (θ))/

√
T ,

noting that Eτ0 [∂θ′ai(θ, βi0)λi10(θ)] = Eτ0 [∂θ′ai(θ, βi0)]λi10(θ) = 0 yields

1

n
√
T
Eτ0 [∂θ′ai(θ, βi0)∂θℓi(θ, α̂i(θ))]

∣∣
θ=θ0

=
1

nT
Eτ0 [∂θ′ai(θ, βi0)(li10(θ) + li02(θ)∂θα

∗
i (θ))]

∣∣
θ=θ0

+Op(
1

nT 3/2
) = Op((nT )

−1) = Op(T
−2),

where the second equation follows from the form of ∂θ′ai(θ, βi0) together with (E.3) and the

third equation follows from Assumption 4.4(iii). Since Eτ0 [∂θ′ai(θ, βi0)] = 0 for every θ ∈ Θ,

the same arguments yield

Eτ0 [∂θ′δi(θ)(θ̃ − θ0)] = Op(T
−2). (I.7)
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Using again (C.4),

∂θθ′δi(θ) = − li01(θ)∂θλi02(θ)∂θ′λi02(θ)√
Tλ2i02(θ)

+
∂θli01(θ)∂θ′λi02(θ)√

Tλi02(θ)

+
li01(θ)∂θθ′λi02(θ)√

Tλi02(θ)
+
∂θli01(θ)∂θ′λi02(θ)√

Tλ2i02(θ)
− ∂θθ′li01(θ)√

Tλi02(θ)
+Op(T

−1). (I.8)

When evaluated at θ = θ̄2, where θ̄2
p→ θ0, the denominators of the terms on the right hand

side can be bounded away from zero by Assumption 4.3(ii). Moreover, the numerators can

be uniformly bounded over Θ using Assumption 4.3(i). Therefore, ∂θθ′δi(θ)|θ=θ̄2 = Op(T
−1/2).

Hence, (C.1) together with Assumption 4.4(ii,iii) implies that

Eτ0 [(θ̃ − θ0)
′∂θθ′δi(θ)|θ=θ̄2(θ̃ − θ0)] = Op(T

−5/2).

Summing up, we therefore obtain

Eτ0 [δi(θ̃)] = Eτ0 [δi(θ0)] +Op(T
−2).

To show the second part of (C.13), notice that by (I.2),

δi(θ)(α̂i(θ̃)− αi0) = δi(θ)δi(θ̃)− ∂θ′α
∗
i (θ)|θ=θ0(θ̃ − θ0)δi(θ)

− (θ̃ − θ0)
′∂θθ′α

∗
i (θ)|θ=θ̄1(θ̃ − θ0)δi(θ),

where θ̄1 lies between θ̃ and θ0. Now, we note that by (I.7)

Eτ0 [∂θ′α∗
i (θ)|θ=θ0(θ̃ − θ0)δi(θ)] = ∂θ′α

∗
i (θ)|θ=θ0Eτ0 [(θ̃ − θ0)δi(θ)] = Op(T

−2),

since ∂θ′α
∗
i (θ)|θ=θ0 does not depend upon outcome data. Moreover, since the second derivative

of α∗
i (θ) is uniformly bounded by (I.3) and the discussion following it,

Eτ0 [(θ̃ − θ0)
′∂θθ′α

∗
i (θ)|θ=θ̄1(θ̃ − θ0)δi(θ)] = Op(T

−5/2)

by (C.1) and Assumption 4.4(ii,iii). Thus,

Eτ0 [δi(θ)(α̂i(θ̃)− αi0)] = Eτ0 [δi(θ)δi(θ̃)] +Op(T
−2).

Next, using (I.5),

Eτ0 [δi(θ)δi(θ̃)]− Eτ0 [δi(θ)δi(θ0)]

= Eτ0 [δi(θ)∂θ′δi(θ)|θ=θ0(θ̃ − θ0)] + Eτ0 [δi(θ)(θ̃ − θ0)
′∂θθ′δi(θ)|θ=θ̄2(θ̃ − θ0)],

where θ̄2 lies between θ̃ and θ0. By (I.6), ∂θδi(θ) = Op(T
−1/2), so that by Assumption 4.4(ii,iii),

the first term on the right hand side is of order Op(T
−2). Following the argument after (I.8),

∂θθ′δi(θ)|θ=θ̄2 = Op(T
−1/2). Thus, using (C.1) together with Assumption 4.4(ii,iii) implies that
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the second term on the right hand side is of order Op(T
−3). Hence, in total,

Eτ0 [δi(θ)δi(θ̃)]− Eτ0 [δi(θ)δi(θ0)] = Op(T
−2).

To show the third part of (C.13), notice that by (I.2) and the discussion following it,

(α̂i(θ̃)− αi0)
2 = (δ2i (θ̃) + ∂θ′α

∗
i (θ)|θ=θ0(θ̃ − θ0) +Op(T

−2))2.

Since ∂θ′α
∗
i (θ) = Op(1) in each component by (D.5) and Assumption 4.3(i,ii), we see that

(∂θ′α
∗
i (θ)|θ=θ0(θ̃ − θ0))

2 = Op(T
−2) by Assumption 4.4(ii,iii). Hence,

Eτ0 [(α̂i(θ̃)− αi0)
2] = Eτ0 [δ2i (θ̃)] + 2∂θ′α

∗
i (θ)|θ=θ0Eτ0 [δi(θ̃)(θ̃ − θ0)] +Op(T

−2).

The second term on the right hand side can be handled with arguments similar to those leading

to (I.7), as ai(θ, βi0) and its derivative have mean zero and are of order Op(T
−1/2) uniformly

across θ. Thus,

2∂θ′α
∗
i (θ)|θ=θ0Eτ0 [δi(θ̃)(θ̃ − θ0)] = Op(T

−2).

Further notice that this together with (C.8) implies

Eτ0 [(α̂i(θ̃)− αi0)
2] = Op(T

−1).

Next, using an expansion,

δ2i (θ̃) = δ2i (θ0) + 2δi(θ̄3)∂θ′δi(θ)|θ=θ̄3(θ̃ − θ0),

where again θ̄3 lies between θ̃ and θ0. Since both δi(θ) and ∂θ′δi(θ)|θ=θ̄3 are of order Op(T
−1/2),

Assumption 4.4(ii,iii) implies

Eτ0 [2δi(θ̄3)∂θ′δi(θ)|θ=θ̄3(θ̃ − θ0)] = Op(T
−2),

which finishes the proof of the third part. □

Proof of the second equation in (4.4). As in (C.15), we use an expansion (ignoring con-

stants) to obtain

A(θ, βi)|θ=θ̃,βi=β̂i = A(θ0, βi0) + Aθ(θ0, βi0)
′(θ̃ − θ0) + Aαi(θ0, βi0)δi(θ̃) + Aγ(θ0, βi0)

′(θ̃ − θ0)

+ Aϕi(θ0, βi0)(α̂i(θ̃)− αi0) + Aαiαi(θ, βi)|θ=θ̄,βi=β̄iδ
2
i (θ̃) + Aϕiϕi(θ, βi)|θ=θ̄,βi=β̄i(α̂i(θ̃)− αi0)

2

+ Aαiγ(θ, βi)
′|θ=θ̄,βi=β̄i(θ̃ − θ0)δi(θ̃) + Aϕiγ(θ, βi)

′|θ=θ̄,βi=β̄i(θ̃ − θ0)(α̂i(θ̃)− αi0)

+ Aαiθ(θ, βi)
′|θ=θ̄,βi=β̄i(θ̃ − θ0)δi(θ̃) + Aϕiθ(θ, βi)

′|θ=θ̄,βi=β̄i(θ̃ − θ0)(α̂i(θ̃)− αi0).

The rest of the argument can be carried out as in the proof of (4.4), using that derivatives

of A(θ, βi) are of order Op(T
−1) together with (C.13), (C.14), (C.8), (C.1), (I.4), (C.16) and

Assumption 4.4. □
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Proof of (4.5). The arguments used here closely resemble those in the proof of (4.4). For

brevity, we only show the first part of (4.5), as the arguments for the second part are analogous.

Using an expansion (ignoring constants),

V (θ, βi)|θ=θ̃,βi=β̂i = V (θ0, βi0) + Vθ(θ0, βi0)
′(θ̃ − θ0) + Vαi(θ0, βi0)δi(θ̃) + Vγ(θ0, βi0)

′(θ̃ − θ0)

+ Vϕi(θ0, βi0)(α̂i(θ̃)− αi0) + Vαiαi(θ, βi)|θ=θ̄,βi=β̄iδ
2
i (θ̃) + Vϕiϕi(θ, βi)|θ=θ̄,βi=β̄i(α̂i(θ̃)− αi0)

2

+ Vαiγ(θ, βi)
′|θ=θ̄,βi=β̄i(θ̃ − θ0)δi(θ̃) + Vϕiγ(θ, βi)

′|θ=θ̄,βi=β̄i(θ̃ − θ0)(α̂i(θ̃)− αi0)

+ Vαiθ(θ, βi)
′|θ=θ̄,βi=β̄i(θ̃ − θ0)δi(θ̃) + Vϕiθ(θ, βi)

′|θ=θ̄,βi=β̄i(θ̃ − θ0)(α̂i(θ̃)− αi0). (I.9)

First, we determine the order of derivatives of V (θ, βi). Recall that by definition

V (θ, βi) =
Eτi [l2i01(θ, αi)]
TEτi [ℓi02(θ, αi)]2

,

so besides the factor T−1, derivatives of V (θ, βi) consist of fractions with (powers of) E[ℓi02(θ, α]
in the denominator. When evaluated at βi0 or β̄i with β̄i

p→ βi0, the latter terms are bounded

away from zero by Assumption 4.3 for T large enough. The numerator of the derivatives of

V (θ, βi) consist of derivatives of E[ℓi02(θ, αi)] and E[l2i01(θ, αi)]. As in the proof of Lemma E.2,

these derivatives can be uniformly bounded across θ and βi using Assumption 4.3(i) together

with the Cauchy-Schwarz inequality and the Jensen inequality. Taking into account (C.1), (I.4)

and Assumption 4.4(ii,iii), we see that V (θ, βi)|θ=θ̃,βi=β̂i = V (θ0, βi0) + Op(T
−3/2). Moreover,

we again use that derivatives of V (θ, βi) do not depend on outcome data when evaluated at

(θ0, βi0) so that they act as constants with respect to Eτ0 . Hence, expectations of terms in (I.9)

that involve derivatives of V (θ, βi) of first order can be shown to be of order Op(T
−2) using

(C.8), (I.4) and (C.16). Terms in (I.9) that involve derivatives of V (θ, βi) of second order are of

order Op(T
−2) or lower by (C.1) (I.4) and Assumption 4.4(ii,iii), so that Eτ0 [V (θ, βi)|θ=θ̃,βi=β̂i ] =

V (θ0, βi0) +Op(T
−2). □

Deriving the first order term in Eτ0 [θ̃]− θ0. To simplify notation, let dim(θ) = 1 and

ℓpnT (θ) :=
1
n

∑n
i=1 ℓi(θ, α̂i(θ)) denote the average profile likelihood. Using the first order condi-

tion of the MLE θ̃ together with an expansion, we obtain

0 = ∂θℓ
p
nT (θ)|θ=θ̃ = ∂θℓ

p
nT (θ)|θ=θ0 + ∂2θℓ

p
nT (θ)|θ=θ0(θ̃ − θ0) + (θ̃ − θ0)

2∂3θℓ
p
nT (θ)|θ=θ̄, (I.10)

where θ̄ lies between θ̃ and θ0. Under Assumptions 4.1(iii) and 4.3(i, iii) the third derivative

of each individual profile likelihood ℓi(θ, α̂i(θ)) is bounded in probability uniformly across θ.

Since also ∂3θℓ
p
nT (θ)|θ=θ̄ = Op(1), this implies that the stochastic properties of the last term on

the right hand side are determined by (θ̃ − θ0)
2 = Op(T

−2), where we have used Assumption
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4.4(ii, iii). Next, we consider

∂2θℓ
p
nT (θ)|θ=θ0(θ̃ − θ0) =

1

n

n∑
i=1

∂2θℓi(θ, α̂i(θ))(θ̃ − θ0).

Using an expansion,

∂2θℓi(θ, α̂i(θ)) = ∂2θℓi(θ) + ∂2θℓi01(θ)δi(θ) +
1

2
∂2θℓi02(θ, ᾱ(θ))δ

2
i (θ),

where ᾱ(θ) lies between α̂i(θ) and α
∗
i (θ). Since δi(θ) = Op(T

−1/2) and ∂2θℓi02(θ, ᾱ(θ)) is bounded

by Assumption 4.3(i), the last term is of order Op(T
−1). Further writing

∂2θℓi01(θ)δi(θ) = ∂2θEτ0 [ℓi01(θ)]δi(θ) +
1√
T
∂2θ li01(θ)δi(θ) = Op(T

−1),

where we have used that by the definition of the target value Eτ0 [ℓi01(θ)] = 0 for every θ, so

that ∂2θEτ0 [ℓi01(θ)] = 0. In total, since stochastic orders that hold for each individual also hold

for the average over all individuals by Assumption 4.1(iii),

∂2θℓ
p
nT (θ)|θ=θ0 =

1

n

n∑
i=1

∂2θℓi(θ) +Op(T
−1).

Since (θ̃ − θ0) = Op(
1√
nT

) +Op(T
−1) = Op(T

−1) by Assumption 4.4(ii,iii),

∂2θℓ
p
nT (θ)|θ=θ0(θ̃ − θ0) =

1

n
∂2θℓi(θ)(θ̃ − θ0) +Op(T

−2).

Next, we centralize the second derivative of the target likelihood to obtain

∂2θℓi(θ) = Eτ0 [∂2θℓi(θ)] +
1√
T
∂2θ li(θ)

and notice that since Eτ0 [∂2θ li(θ)] = 0 by definition, independence over individuals and time

together with Assumption 4.3(i,ii) implies

Eτ0 [(
1

n

n∑
i=1

1√
T
∂2θ li(θ))

2] =
1

n2T

n∑
i=1

Eτ0 [(∂2θ li(θ))2] = Op(
1

nT
),

which shows that
1

n

n∑
i=1

1√
T
∂2θ li(θ) = Op(

1√
nT

).

Therefore,

1

n

n∑
i=1

∂2θℓi(θ)|θ=θ0(θ̃ − θ0) =
1

n

n∑
i=1

Eτ0 [∂2θℓi(θ)]|θ=θ0(θ̃ − θ0) +Op(T
−2),
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so that in (I.10) we get

θ̃ − θ0 = (− 1

n

n∑
i=1

Eτ0 [∂2θℓi(θ)|θ=θ0)−1 1

n

n∑
i=1

∂θℓi(θ, α̂i(θ)))|θ=θ0 +Op(T
−2). (I.11)

Taking expectations while noting that Eτ0 [ℓi(θ, α̂i(θ))] = T−1B
(1)
i (θ) +Op(T

−2), we get

Eτ0 [θ̃]− θ0 = (− 1

n

n∑
i=1

Eτ0 [∂2θℓi(θ)]|θ=θ0)−1 1

nT

n∑
i=1

∂θB
(1)
i (θ) +Op(T

−2).

Since limn→∞
1
n

∑n
i=1 Eτ0 [∂2θℓi(θ)]|θ=θ0 is bounded away from zero by Assumption 4.3(v) and

(D.2) while ∂θB
(1)
i (θ) = Op(1) by Lemma E.2, this further shows that Eτ0 [θ̃]−θ0 = Op(T

−1). □

Appendix J. Bartlett identities

For this section, let τ0 := (θ′, αi)
′ so that expectations are taken with respect to the condi-

tional density that is evaluated at the same parameter values as the likelihood. Since integration

and differentiation is interchangeable,

Eτ0 [ℓit01(θ, αi)] =
∫
supp(Yit)

∂αifYit|Xi,θ,αi
fYit|Xi,θ,αi

fYit|Xi,θ,αi = ∂αi

∫
supp(Yit)

fYit|Xi,θ,αi = 0

for every i and t. Thus,

Eτ0 [ℓi01(θ, αi)] = 0 ∀ θ, α.

Taking derivatives with respect to αi while noting that ∂
∂αi
fYi|Xi,θ,αi = Tℓi01(θ, αi)fYi|Xi,αi;θ and

rearranging terms, the second Bartlett identity is

TEτ0 [ℓ2i01(θ, αi)] = −Eτ0 [ℓi02(θ, αi)], (J.1)

which can be equivalently written as

Eτ0 [l2i01(θ, αi)] = −Eτ0 [ℓi02(θ, αi)]. (J.2)

Repeating this procedure yields the third Bartlett identity

T 2Eτ0 [ℓ3i01(θ, αi)] = −Eτ0 [ℓi03(θ, αi)]− 3TEτ0 [ℓi02(θ, αi)ℓi01(θ, αi)],

which, noting that Eτ0 [lij(θ, αi)] = 0 for all i, j ∈ N by definition, can be written as

Eτ0 [l3i01(θ, αi))] = −T−1/2Eτ0 [ℓi03(θ, αi)]− 3T−1/2Eτ0 [li02(θ, αi)li01(θ, αi)].

One further repetition yields the fourth Bartlett identity

T 3Eτ0 [ℓ4i01(θ, αi)] = −Eτ0 [ℓi04(θ, αi)]− 4TEτ0 [ℓi03(θ, αi)ℓi01(θ, αi)]

− 3TEτ0 [ℓ2i02(θ, αi)]− 6T 2Eτ0 [ℓi02(θ, αi)ℓ2i01(θ, αi)],
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which can be written as

Eτ0 [l4i01(θ, αi)] = −T−1Eτ0 [ℓi04(θ, αi)]− 4T−1Eτ0 [li03(θ, αi)li01(θ, αi)]

− 3T−1Eτ0 [l2i02(θ, αi)]− 6T−1/2Eτ0 [li02(θ, αi)l2i01(θ, αi)] + 3(Eτ0 [ℓi02(θ, αi)])2, (J.3)

where we have used (J.1) in order to show that

6T 2Eτ0 [ℓi02(θ, αi)ℓ2i01(θ, αi)] = 6
√
TEτ0 [li02(θ, αi)l2i01(θ, αi)]− 6T (Eτ0 [ℓi02(θ, αi)])2.

Taking the derivative with respect to θ in (J.1) further yields

T 2Eτ0 [ℓ2i01(θ, αi)ℓi10(θ, αi)] = −Eτ0 [[ℓi12(θ, αi)]− TEτ0 [ℓi02(θ, αi)ℓi10(θ, αi)]

− 2TEτ0 [ℓi11(θ, αi)ℓi10(θ, αi)],

which can be equivalently written as

√
TEτ0 [l2i01(θ, αi)li10(θ, αi)] = −Eτ0 [ℓi12(θ, αi)]− Eτ0 [li02(θ, αi)li10(θ, αi)]

− 2Eτ0 [li11(θ, αi)li10(θ, αi)].

Appendix K. Consistency of θ̂

This section provides an explicit proof of consistency of θ̂, i.e. we show the following theorem.

Theorem K.1. Let Assumptions 4.1–4.4 hold. Then,

θ̂
p→ θ0 as n, T → ∞.

Proof . Let Q̂∗
n(θ) := n−1

∑n
i=1 ℓi(θ, α

∗
iT (θ)) denote the target loglikelihood of θ for the entire

sample, and Q̄∗
n(θ) := E[Q̂∗

n(θ)]. By (2.5), we further have

ℓ∗i (θ, βi)|βi=β̂i = ℓi(θ, α̂i(θ)) +Ri(θ),

where Ri(θ) := −T−1B
(1)
i (θ, βi)|βi=β̂i − T−2B

(2)
i (θ, βi)|βi=β̂i .

22 Notice that by Lemma E.2 in

Appendix C, there exists an open ball B centered at the true value βi0 such that B
(1)
i (θ, βi)

is uniformly bounded on Θ × B. Since consistency of β̂i implies that β̂i ∈ B with probability

approaching one as T → ∞, supθ∈Θ T
−1|B(1)

i (θ, βi)|βi=β̂i | = op(1). A similar argument shows

that supθ∈Θ T
−2|B(2)

i (θ, βi)|βi=β̂i | = op(1). Therefore, using Assumption 4.1(iii) shows that

n−1
∑n

i=1 supθ∈Θ |Ri(θ)| = op(1) as n, T → ∞. Moreover, the profile likelihood approximates

the target likelihood, i.e.

ℓi(θ, α̂i(θ)) = ℓi(θ, α
∗
i (θ)) + R̃i(θ),

22Notice the abuse of notation as the remainder term here is different from the one in (4.7).
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where

R̃i(θ) := ℓi(θ, ᾱ(θ))δi(θ)

and ᾱ(θ) lies between α̂i(θ) and α∗
i (θ). Assumption 4.3(i,ii) and similar arguments as those

leading to (C.1) imply that E[supθ |R̃i(θ)|] = o(1) as n, T → ∞. Thus, by Assumption 4.1(iii),

n−1
∑n

i=1 supθ∈Θ |R̃i(θ)| = op(1). In the next step, we show uniform convergence, i.e.

sup
θ∈Θ

|Q̂∗
n(θ)− E[Q̂∗

n(θ)]| = op(1). (K.1)

Following Newey (1991, Corollary 2.2), a sufficient condition for (K.1) to hold is that: (a) for

each θ ∈ Θ, Q̂∗
n(θ)−E[Q̂∗

n(θ)] = op(1), and (b) for θ1, θ2 ∈ Θ, |Q̂∗
n(θ2)−Q̂∗

n(θ1)| ≤ Bnq(∥θ2−θ1∥),
where (Bn)n∈N is a sequence of nonnegative random variables such that E[Bn] = O(1), and q :

[0,∞) → [0,∞) is a function such that q is continuous at 0 and q(0) = 0. A sufficient condition

for (b) is that Q̂∗
n be continuously differentiable with the derivative dominated by a random se-

quence that is bounded in probability. Thus, (a) follows immediately from Assumptions 4.1(iii)

and 4.3(i) and the law of large numbers. Moreover, as E[∂θℓi(θ)] = E[ℓiθ(θ)] + E[ℓiα(θ)∂θα∗
i (θ)]

where ∂θα
∗
i (θ) = −λi11(θ)/λi02(θ) is bounded by Assumption 4.3, the sufficient condition for

(b) is satisfied as well. First, we note that the preceding discussion implies

sup
θ∈Θ

|ℓ∗n(θ, βi)|βi=β̂i − Q̂∗
n(θ)| ≤ sup

θ∈Θ
|ℓ∗n(θ, βi)|βi=β̂i −

1

n

n∑
i=1

ℓi(θ, α̂i(θ))|

+ sup
θ∈Θ

| 1
n

n∑
i=1

ℓi(θ, α̂i(θ))− Q̂∗
n(θ)| = op(1).

In addition, by (K.1),

sup
θ∈Θ

|ℓ∗n(θ, βi)|βi=β̂i − Q̄∗
n(θ)| = op(1). (K.2)

Now, let B ⊂ Θ be an open ball around θ0. By Assumption 4.3(iv), there exists some δ > 0

such that

δ < Q̄∗
n(θ0)− sup

θ∈Θ\B
Q̄∗
n(θ).

Therefore,

θ̂ ∈ Θ \B ⇒ Q̄∗
n(θ̂) ≤ sup

θ∈Θ\B
Q̄∗
n(θ) < Q̄∗

n(θ0)− δ

for all n large enough. Thus, θ̂ ∈ Θ \B implies

δ < Q̄∗
n(θ0)− Q̄∗

n(θ̂) = Q̄∗
n(θ0)− ℓ∗n(θ, βi)|θ=θ̃,βi=β̂i + ℓ∗n(θ, βi)|θ=θ̃,βi=β̂i − Q̄∗

n(θ̂)

= Q̄∗
n(θ0)− ℓ∗n(θ, βi)|θ=θ̃,βi=β̂i + op(1)
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by (K.2). Since by definition ℓ∗n(θ, βi)|θ=θ̃,βi=β̂i ≥ ℓ∗n(θ0, βi)|βi=β̂i ,

δ < Q̄∗
n(θ0)− ℓ∗n(θ0, βi)|βi=β̂i + op(1).

Again using (K.2), we finally see that θ̂ /∈ B =⇒ δ < op(1), i.e. Pr(θ̂ /∈ B) → 0. Since B can

be chosen arbitrarily small, plimn,T→∞ θ̂ = θ0.

□

Appendix L. Feasible approximation of FOB and SOB

In this section, we provide the details on the derivation of the feasible approximations of the

FOB and SOB in static panel logit and probit which have been used to generate the simulation

results. Henceforth, Λ(u) := eu/(1 + eu), u ∈ R, is the logistic cdf and Φ(u) denotes the

standard normal cdf.

L.1. Estimation in the static logit model. Let Yit = 1(X ′
itθ0 + αi0 + Uit > 0), where

Ui1, . . . , UiT
∣∣Xi, αi0

d
= LogisticIID. Since the observations are independent across t, the scaled

loglikelihood for the i-th individual is ℓi(θ, αi) = T−1
∑T

t=1 Yit log Λ(X
′
itθ+αi)+(1−Yit) log(1−

Λ(X ′
itθ+αi)). While implementing θ̂ may appear to be complicated due to the large number of

terms that need to be computed to approximate the FOB and SOB with a bias of order Op(T
−3),

substantial simplification arise due to the form of the loglikelihood. Let Λ(k)(·) denote the k-th
derivative of Λ(·). Implementing θ̂ requires calculating Λ(1)(·) = Λ(0)(·)(1 − Λ(0)(·)), Λ(2)(·) =
Λ(1)(·)(1−2Λ(0)(·)) and Λ(3)(·) = Λ(2)(·)(1−2Λ(0)(·))−2(Λ(1)(·))2. Now, taking derivatives of the
loglikelihood with respect to αi yields ℓi01(θ, αi) = T−1

∑T
t=1(Yit−Λ(X ′

itθ+αi)) and ℓi02(θ, αi) =

−T−1
∑T

t=1 Λ
(1)(X ′

itθ + αi). The latter expression does not depend on the outcome variables,

which implies that derivatives of at least second order are not affected by taking expectations

conditional on explanatory variables. Therefore, λi0k(θ, αi) = −T−1
∑T

t=1 Λ
(k−1)(X ′

itθ + αi).

This in turn also implies li0k = 0 for k ≥ 2. Moreover, by definition of α∗
i (θ),

0 = Eτ0 [ℓi01(θ)] ⇔
1

T

T∑
t=1

Λ(X ′
itθ0 + αi0) =

1

T

T∑
t=1

Λ(X ′
itθ + α∗

i (θ)),

which implies that ℓi01(θ) = ℓi01(θ0, αi0). Hence, moments of ℓi01(θ) coincide with moments

of ℓi01. Since the likelihood evaluated at the true values satisfies the Bartlett identities, it is

possible to find simplified expressions for moments of li01(θ). Using the fact that li01(θ) = li01

together with (J.2) for example yields

Eτ0 [l2i01(θ)] = Eτ0 [l2i01] = −λi02, (L.1)
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while with (J.3) together with li02 = Eτ0 [li01(θ)] = 0 in the second equation, we get

Eτ0 [l3i01(θ)] = Eτ0 [l3i01] = −T−1/2λi03. (L.2)

Further using (J.3) and li02 = li03 = 0

Eτ0 [l4i01(θ)] = Eτ0 [l4i01] = −T−1λi04 + 3λ2i02. (L.3)

It is therefore not necessary to compute higher moments of li01(θ) in the static logit example.23

Consequently, (4.1) simplifies to

Eτ0 [ℓi(θ, α̂i(θ))− ℓi(θ, α
∗
i (θ))] = − 1

T

Eτ0 [l2i01(θ)]
2λi02(θ)

− 1

T 3/2

Eτ0 [l3i01(θ)]λi03(θ)
6λ3i02(θ)

+
1

T 2

(Eτ0 [l4i01(θ)]λi04(θ)
24λ4i02(θ)

− Eτ0 [l4i01(θ)]λ2i03(θ)
8λ5i02(θ)

)
+Op(T

−3).

By using (L.1), (L.2) and (L.3), this expression can be written as

Eτ0 [ℓi(θ, α̂i(θ))− ℓi(θ)] =
λi02

2Tλi02(θ)
+
λi03λi03(θ)

6T 2λ3i02(θ)
+
λ2i02λi04(θ)

8T 2λ4i02(θ)
− 3λ2i03(θ)λ

2
i02

8T 2λ5i02(θ)
+Op(T

−3),

which does not involve moments of li01(θ). It can easily be seen that the FOB in logit is

B
(1)
i (θ) =

λi02
2Tλi02(θ)

,

which, for βi = (γ′, ϕi, αi)
′, can be estimated by T−1B

(1)
i (θ, βi)|βi=β̂i with

T−1B
(1)
i (θ, βi) =

ℓi02(γ, ϕi)

2Tℓi02(θ, αi)
,

where we have used that ℓi0k(θ, αi) does not depend on the outcome variables and therefore

coincides with λi0k(θ, αi) for k ≥ 2. Taking derivatives for the derivation of a feasible approx-

imation of the FOB that is unbiased up to order Op(T
−3) is hence facilitated. We show this

first with ∂αiB
(1)
i (θ, βi)

∣∣
βi=βi0

, which can be written as

B
(1)
iαi

(θ, βi0) = −λi02λi03(θ)
2λ2i02(θ)

.

Similarly,

B
(1)
iγ (θ, βi0) =

λi12
2λi02(θ)

,

and

B
(1)
iϕi
(θ, βi0) = −

√
TEτ0 [l2i01(θ)li01]

2λi02(θ)
=

λi03
2Tλi02(θ)

.

23Since the approach of DS does not involve preliminary estimators of θ0 and αi0, using the Bartlett identities
is not possible in the derivation of their estimator.
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For the second derivative of B
(1)
i (θ, βi) with respect to αi we obtain

B
(1)
iαiαi

(θ, βi0) =
λi02λ

2
i03(θ)

λ3i02(θ)
− λi02λi04(θ)

2λ2i02(θ)
,

whereas for the second derivative with respect to ϕi we get

B
(1)
iϕiϕi

(θ, βi0) = −TEτ0 [l
2
i01(θ)l

2
i01]

2λi02(θ)
=

λi04
2λi02(θ)

.

Finally

B
(1)
iαiϕi

(θ, βi0) = −λi03(θ)λi03
2λ2i02(θ)

.

L.1.1. Remark on the use of “score-factors” in static logit. We show here that in general

Eτ0 [ℓit01(θ)] ̸= 0 for θ ̸= θ0 in the static logit example. This implies that the use of “score-

factors” which are crucial to the bias correction approach of DS are not permitted for the

correction of the conditional profile likelihood bias Eτ0 [ℓi(θ, α̂i(θ))− ℓi(θ, α
∗
i (θ))]. Recall that

ℓi01(θ, αi) =
1

T

T∑
t=1

Yit − Λ(X ′
itθ + αi).

Notice that by definition of the target likelihood

Eτ0 [ℓi01(θ)] =
1

T

T∑
t=1

Λ(X ′
itθ0 + αi0)− Λ(X ′

itθ + α∗
i (θ)) = 0.

If the score factor property holds with respect to Eτ0 , we further have Eτ0 [ℓit01(θ)] = 0. For

T = 2 this implies that

Λ(X ′
i1θ0 + αi0) = Λ(X ′

i1θ + α∗
i (θ)) ⇔ X ′

i1θ0 + αi0 = X ′
i1θ + α∗

i (θ)

Λ(X ′
i2θ0 + αi0) = Λ(X ′

i2θ + α∗
i (θ)) ⇔ X ′

i2θ0 + αi0 = X ′
i2θ + α∗

i (θ),

since the CDF Λ() is strictly increasing. Rewriting this statement yields

(A) X ′
i1(θ0 − θ) = α∗

i (θ)− αi0

(B) X ′
i2(θ0 − θ) = α∗

i (θ)− αi0.

Subtracting equation (B) from (A) finally yields

(Xi1 −Xi2)(θ0 − θ) = 0.

This equation can again only be satisfied if θ = θ0 or when there is no time variation in Xit,

which would imply that Xi1 = Xi2. However, the latter is not possible when the true parameter

θ0 is assumed to be identified, as this rules out any time-invariant regressors.

L.2. Estimation in the static probit model. Let Yit = 1(X ′
itθ0 + αi0 + Uit > 0), where

Ui1, . . . , UiT
∣∣Xi, αi0

d
= NIID(0, 1). By independence across t, the loglikelihood for the i-th



20

individual is

ℓi(θ, αi) =
1

T

T∑
t=1

[Yit log Φ(X
′
itθ + αi) + (1− Yit) log(1− Φ(X ′

itθ + αi))],

where Φ(·) denotes the standard normal cdf. Taking the first derivative with respect to αi

yields

ℓi01(θ, αi) =
1

T

T∑
t=1

[(Yit − Φ(X ′
itθ + αi))G(X

′
itθ + αi)],

where G(u) := φ(u)
Φ(u)Φ(−u) and φ(·) denotes the standard normal pdf. Thus,

E[ℓi01(θ, αi); γ, ϕi] =
1

T

T∑
t=1

[(Φ(X ′
itγ + ϕi)− Φ(X ′

itθ + αi))G(X
′
itθ + αi)].

Unlike in static logit, derivatives of the likelihood with respect to αi do depend on the out-

come variables because of the presence of G.24 Hence, in general ℓi0k(θ, αi) ̸= λi0k(θ, αi) and

li0k(θ, αi) ̸= 0 for k ∈ N. However, the likelihood provides some structure leading to patterns

that can be useful in finding θ̂: Notice first that G(u) = h(u) + h(−u), where h(u)/Φ(−u)
denotes the Gaussian hazard function. For k ∈ N, let further h(k)(·) denote the k-th derivative

of h. It is then easy to confirm that the necessary derivatives are

(1) h(1)(x) = h(x)(h(x)− x),

(2) h(2)(x) = h(1)(x)(h(x)− x) + h(x)(h(1)(x)− 1) and

(3) h(3)(x) = h(2)(x)(h(x)− x) + 2h(1)(x)(h(1)(x)− 1) + h(x)h(2)(x).

In order to avoid repeating the argument, let k ∈ N0 and

G
(k)
it :=

∂k

∂αki
G(X ′

itθ + αi).

Then, G
(k)
it = (−1)kh(k−1)(−X ′

itθ − αi) + h(k−1)(X ′
itθ + αi). Next, let

Φ
(k)
it :=

∂k

∂αki
Φ(X ′

itθ + αi).

Then,

(1) Φ
(1)
it = φ(X ′

itθ + αi)

(2) Φ
(2)
it = −(X ′

itθ + αi)φ(X
′
itθ + αi)

(3) Φ
(3)
it = φ(X ′

itθ + αi)[(X
′
itθ + αi)

2 − 1]

(4) Φ
(4)
it = φ(X ′

itθ + αi)[3(X
′
itθ + αi)− (X ′

itθ + αi)
3].

24The function G(·) is dubbed the “probit weight function” in Schumann and Tripathi (2018). It is further
shown there that G is convex and U -shaped on the real line.
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Moreover, we indicate evaluation at the true values with “0”, e.g. Φ
(2)
it0 := Φ

(2)
it (X

′
itθ+αi)|θ=θ0,αi=αi0 .

We then find the following:

(1)

λi02(θ, αi) =
1

T

T∑
t=1

(Φit0 − Φit)G
(1)
it − Φ

(1)
it G

(0)
it

(2)

λi03(θ, αi) =
1

T

T∑
t=1

(Φit0 − Φit)G
(2)
it − 2Φ

(1)
it G

(1)
it − Φ

(2)
it G

(0)
it

(3)

λi04(θ, αi) =
1

T

T∑
t=1

(Φit0 − Φit)G
(3)
it − 3φitG

(2)
it − 3Φ

(2)
it G

(1)
it − Φ

(3)
it G

(0)
it

(4)

λ11(θ, αi) =
1

T

T∑
t=1

Xit[(Φit0 − Φit)G
(1)
it − Φ

(1)
it G

(0)
it ]

(5)

λ12(θ, αi) =
1

T

T∑
t=1

Xit[(Φit0 − Φit)G
(2)
it − 2Φ

(1)
it G

(1)
it − Φ

(2)
it G

(0)
it ]

(6)

λ20(θ, αi) =
1

T

T∑
t=1

XitX
′
it[(Φit0 − Φit)G

(1)
it − Φ

(1)
it G

(0)
it ]

Moreover,

li10(θ, αi) =
1√
T

T∑
t=1

Xit(Yit − Φit0)G
(0)
it ,

and, for k ∈ N0,

li0k(θ, αi) =
1√
T

T∑
t=1

(Yit − Φit0)G
(k−1)
it .

Given these simple forms of the centralized likelihoods, it is easy to derive the expectations of

products of centralized likelihood derivatives that are needed here. To illustrate the compu-

tation, let a, b, c, · · · ∈ N and notice that time-independence together with Eτ0 [lit(θ, αi)] = 0

implies

Eτ0 [liab(θ1, α1)licd(θ2, α2)] =
1

T

T∑
t=1

Eτ0 [litab(θ1, α1)litcd(θ2, α2)]. (L.4)
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The same argument yields

Eτ0 [liab(θ1, α1)licd(θ2, α2)lief (θ3, α3)] =
1

T 3/2

T∑
t=1

Eτ0 [litab(θ1, α1)litcd(θ2, α2)litef (θ3, α3)]. (L.5)

Further, the expectation of four centralized likelihood terms can be derived as

Eτ0 [liab(θ1, α1)licd(θ2, α2)lief (θ3, α3)ligh(θ4, α4)]

=
1

T 2

T∑
t=1

Eτ0 [litab(θ1, α1)litcd(θ2, α2)litef (θ3, α3)litgh(θ4, α4)]

+
( 1
T

T∑
t=1

Eτ0 [litab(θ1, α1)litcd(θ2, α2)]
)( 1

T

T∑
t=1

Eτ0 [litef (θ3, α3)litgh(θ4, α4)]
)

− 1

T 2

T∑
t=1

Eτ0 [litab(θ1, α1)litcd(θ2, α2)]Eτ0 [litef (θ3, α3)litgh(θ4, α4)]

+
( 1
T

T∑
t=1

Eτ0 [litab(θ1, α1)litef (θ3, α3)]
)( 1

T

T∑
t=1

Eτ0 [litcd(θ2, α2)litgh(θ4, α4)]
)

− 1

T 2

T∑
t=1

Eτ0 [litab(θ1, α1)litef (θ3, α3)]Eτ0 [litcd(θ2, α2)litgh(θ4, α4)]

+
( 1
T

T∑
t=1

Eτ0 [litab(θ1, α1)litgh(θ4, α4)]
)( 1

T

T∑
t=1

Eτ0 [litcd(θ2, α2)litef (θ3, α3)]
)

− 1

T 2

T∑
t=1

Eτ0 [litab(θ1, α1)litgh(θ4, α4)]Eτ0 [litcd(θ2, α2)litef (θ3, α3)]. (L.6)

For example, using the formula for central moments of the Bernoulli distribution together with

(L.4), (L.5) and (L.6), we now get

(i)

Eτ0 [l2i01(θ, αi)] =
1

T

T∑
t=1

Φit0(1− Φit0)(G
(0)
it )

2,

(ii)

Eτ0 [l3i01(θ, αi)] =
1

T 3/2

T∑
t=1

Eτ0 [(Yit − Φit0)
3](G

(0)
it )

3

=
1

T 3/2

T∑
t=1

Φit0(1− Φit0)(1− 2Φit0)(G
(0)
it )

3
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(iii) and

Eτ0 [l4i01(θ, αi)] =
1

T 2

T∑
t=1

Φit0(1−Φit0)(3Φ
2
it0− 3Φit0+1)(G

(0)
it )

4+(
1

T

T∑
t=1

(G
(0)
it )

2Φit0(1−Φit0))
2

− 1

T 2

T∑
t=1

(Φit0(1− Φit0)G
(0)
it )

2 = (
1

T

T∑
t=1

(G
(0)
it )

2Φit0(1− Φit0))
2 +Op(T

−1).

As another example,

Eτ0 [l2i01(θ, αi)li10] =
1

T 3/2

T∑
t=1

XitEτ0 [l2it01(θ, αi)lit01] =
1

T 3/2

T∑
t=1

Xit(G
(0)
it )

2G
(0)
it0Φit0(1−Φit0)(1−2Φit0).

Other expressions can be derived in a similar manner. Notice that sup(θ,αi)∈Θ×J ℓi(θ, αi) ∈ (0, 1)

for every i and T by the compactness of Θ and J. In particular, the target likelihood which

we are approximating takes values in (0, 1). Since unlike in the static logit model higher order

derivatives of the likelihood depend on outcome data, the second order corrected likelihood may

take values outside (0, 1) for certain values of θ and β̂i. We found in our simulation exercise that

also restricting the second order corrected likelihood to assume only values in (0, 1) improves

the numerical properties of the optimization problem for small values of T . Therefore, our

maximization problem in static probit is

θ̂ = argmax
θ∈Θ

ℓ∗i (θ, βi)|βi=β̂i subject to ℓ∗i (θ, βi)|βi=β̂i ∈ (0, 1).

Alternatively, instead of using the general formulas, one can make use of the known pro-

bit likelihood and derive the necessary derivatives of the FOB directly, i.e. we first explicitly

compute

Eτi [l2i01(θ, αi)] =
1

T

T∑
t=1

Φ(X ′
itγ + ϕi)(1− Φ(X ′

itγ + ϕi))Git(X
′
itθ + αi)

and

λi02(θ, αi; τi) =
1

T

T∑
t=1

(Φ(X ′
itγ+ϕi)−Φ(X ′

itθ+αi))G
(1)
it (X

′
itθ+αi)−ϕ(X ′

itθ+αi)Git(X
′
itθ+αi)

before taking the derivatives with respect to α, γ and ϕi. Writing G
(k)
it (θ) := G

(k)
it (X

′
itθ+α

∗
i (θ))

for k ∈ N, we then obtain

(I)

∂αEτi [l2i01(θ, αi)]|βi=βi0 =
1

T

T∑
t=1

Φit0(1− Φit0)G
(1)
it (θ)
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(II)

∂2αiEτi [l
2
i01(θ, αi)]|βi=βi0 =

1

T

T∑
t=1

Φit0(1− Φit0)G
(2)
it (θ)

(III)

∂ϕiλi02(θ, αi; τi)|βi=βi0 =
1

T

T∑
t=1

φit0G
(1)
it (θ)

(IV)

∂2ϕiλi02(θ, αi; τi)|βi=βi0 = − 1

T

T∑
t=1

(X ′
itθ0 + αi0)φit0G

(1)
it (θ)

(V)

∂ϕiEτi [l2i01(θ, αi)]|βi=βi0 =
1

T

T∑
t=1

(φit0 − 2φit0Φit0)G
2
it(θ)

(VI)

∂2ϕiEτi [l
2
i01(θ, αi)]|βi=βi0 =

1

T

T∑
t=1

[2(X ′
itθ0 + αi0)φit0Φit0 − (X ′

itθ0 + αi0)φit0 − 2φ2
it0]G

2
it(θ)

(VII)

∂γλi02(θ, αi; τi)|βi=βi0 =
1

T

T∑
t=1

Xitφit0G
(1)
it (θ)

(VIII)

∂γEτi [l2i01(θ, αi)]|βi=βi0 =
1

T

T∑
t=1

Xit(φit0 − 2φit0Φit0)G
2
it(θ).

Using (I)-(VIII) directly yields

B
(1)
iϕi
(θ, βi0) =

∑T
t=1G

2
itΦit0(1− Φit0)

∑T
t=1 φit0G

(1)
it

2T (
∑T

t=1(Φit0 − Φit)G
(1)
it − φitGit)2

−
∑T

t=1(φit0 − 2φit0Φit0)G
2
it

2T
∑T

t=1(Φit0 − Φit)G
(1)
it − φitGit

.

Similarly,

B
(1)
iϕiϕi

(θ, βi0) =−
∑T

t=1G
2
itΦit0(1− Φit0)[

∑T
t=1 φit0G

(1)
it ]

2

(
∑T

t=1(Φit0 − Φit)G
(1)
it − φitGit)3

+

∑T
t=1(φit0 − 2φit0Φit0)G

2
it

∑T
t=1 φit0G

(1)
it

2
∑T

t=1(Φit0 − Φit)G
(1)
it − φitGit

+

∑T
t=1(φit0 − 2φit0Φit0)G

2
it

∑T
t=1(X

′
itθ0 + αi0)φit0G

(1)
it

2(
∑T

t=1(Φit0 − Φit)G
(1)
it − φitGit)2

−
∑T

t=1[2(X
′
itθ0 + αi0)φit0Φit0 − (X ′

itθ0 + αi0)φit0 − 2φ2
it0]G

2
it

2
∑T

t=1(Φit0 − Φit)G
(1)
it − φitGit

.

Moreover,
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B
(1)
iγ (βi0) =

∑T
t=1G

2
itΦit0(1− Φit0)

∑T
t=1Xitφit0G

(1)
it

2(
∑T

t=1(Φit0 − Φit)G
(1)
it − φitGit)2

−
∑T

t=1Xit(φit0 − 2φit0Φit0)G
2
it

2
∑T

t=1(Φit0 − Φit)G
(1)
it − φitGit

.

Finally,

B
(1)
iαiϕi

(βi0) =

∑T
t=1G

2
itΦit0(1− Φit0)

∑T
t=1[(Φit0 − Φit)G

(2)
it − 2φitG

(1)
it + (X ′

itθ + αi)φitGit]
∑T

t=1 φit0G
(1)
it

(
∑T

t=1(Φit0 − Φit)G
(1)
it − φitGit)3

.


