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S1 Auxiliary Results

S1.1 Asymptotic Variance of Two-Stage Rank Estimator

This section states the asymptotic variance of the two-stage rank estimator (described

in Section 2.4.1) and compares it to our two-stage isotonic estimator. It complements

Remark 3.2. Recall that X “ pX1, X
1
´1q

1 and denote β0 “ p1, β
1
0´q

1 (the first element of β0

is normalized to 1). Let β̂R´ and α̂R be the two-stage rank estimators for the coefficients

β0´ and threshold α0 of the ordered response model (1.1). In addition, let g0 denote the

density function of X 1β0, and F0 and f0 denote the distribution and density functions of

the error term ε. The asymptotic variances of β̂R´ and α̂R are given in Theorem S1.1,

whose proof is presented at the end of this section.

Condition S1. The density of X1, conditional on X´1 and Y , has bounded derivatives up

to the third order.

Condition S1, adapted from Sherman (1993) [p.137], is sufficient for Assumption 7(i) to

(iv) of Cavanagh and Sherman (1998).

Theorem S1.1. Under Conditions 1 to 9 and Condition S1, we have

?
npβ̂R´ ´ β0´q ñ N

`

0, H´1
β0,R

Jβ0,RH
´1
β0,R

˘

,
?
n pα̂R ´ α0q ñ N

`

0, V ´1
α0,R

Jα0,RV
´1
α0,R

˘

,
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where

Hβ0,R “ ´E
”

tX´1 ´ ErX´1|X
1β0su

b2
g0pX

1β0q pf0pX
1β0q ` f0pX

1β0 ` α0qq

ı

,

Jβ0,R “ E
”

tX´1 ´ ErX´1|X
1β0su

b2
g0pX

1β0q
2
pY ` F0pX

1β0q ` F0pX
1β0 ` α0q ´ 3q2

ı

,

Vα0,R “ ´E rf0pX
1β0qg0pX

1β0 ´ α0q ` fpX
1β0 ` α0qg0pX

1β0 ` α0qs ,

Jα0,R “ E
”

rpF0pX
1β0q ´∆1q g0pX

1β0 ´ α0q ` p1´∆3 ´ F0pX
1β0 ` α0qq g0pX

1β0 ` α0qs
2
ı

.

Despite that the asymptotic variance formulae of the isotonic two-stage estimator (The-

orem 3.1) and the two-stage rank estimator (Theorem S1.1) have a few comparable terms,

there is no definite ranking between them. We conjecture that the isotonic two-stage estima-

tor may have smaller asymptotic variances in some circumstances as it is likelihood-based,

and also uses the information of the distribution function F p; , βq and moment conditions.

We present a numerical example to illustrate the relationship between the asymptotic

variances of the isotonic and rank estimators. Let β0´ contain two elements β0´ “ pβ02, β03q
1

and X „ Np0, I3q so that X´1 „ Np0, I2q and K “ 3. Define the linear index U “ X 1β0. It

follows that U „ Np0, σ2
Uq, where σ2

U “ β10β0. We observe that the conditional distribution

of covariates X given the linear index U “ X 1β0 is

X´1|U „ Npβ0´U{σ
2
U , IpK´1qˆpK´1q ´ β0´β

1
0´{σ

2
Uq.

Therefore,

X´1 ´ ErX´1|U s “ X´1 ´ β0´U{σ
2
U , and E

“

pX´1 ´ ErX´1|U sq
b2
|U
‰

“ I2 ´ β0´β
1
0´{σ

2
U .

The Hessian matrices Hβ0 (in Theorem 3.1) and Hβ0,R (in Theorem S1.1) simplify to

Hβ0 “ Erf0pUqs ˆ rI2 ´ β0´β
1
0´{σ

2
U s,

Hβ0,R “ E rpf0pUq ` f0pU ` α0qq g0pUqs ˆ rI2 ´ β0´β
1
0´{σ

2
U s.

For this example, Figure S1.1 plots the ratio of asymptotic standard errors (ASE)

between the isotonic and the rank estimators for β02, β03, and α0, when F0 and f0 are the

normal CDF and PDF with the mean equal to 0 and the variance equal to 2. Panel (a)

depicts the ratio ASEpβ̂2q{ASEpβ̂2,Rq (black solid line) and ASEpβ̂3q{ASEpβ̂3,Rq (red dash-

dotted line) as the true value β02 “ β03 “ b0 is running over r0.1, 2s. Panel (b) plots the

ratio ASEpα̂q{ASEpα̂Rq (black solid line) as the true value α0 is running over r0.1, 2.5s and

β02 “ β03 “ 0.5. Both figures also include a curve representing PrrY “ 3s (black dotted
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line) to show that values of β0 and α0 are varying within a reasonable range.1

Figure S1: Asymptotic standard error (ASE) ratios between the isotonic and the rank
estimators, the error term ε „ Np0, 2q, the black dotted line denotes PrrY “ 3s. Panel (a):
ASE ratios for β02 (black, solid) and β03 (red, dashed), β02 “ β03 “ b0 P r0.1, 2s, α0 “ 1.
Panel (b): ASE ratio for α0 (black, solid), β02 “ β03 “ 0.5, α0 P r0.1, 2.5s.
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(a). ASE ratios for β0
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(b). ASE ratio for α0

Panel (a) shows that the ASEs of the isotonic estimator for the coefficients β01 and β02

are about one half of those of the rank estimator, with the ratio varying from 0.52 to 0.56.

Panel (b), on the other hand, shows that the ASE for the threshold α0 is comparable be-

tween these two estimators, as the ratio varies from 0.94 to 1.14. Overall, in this numerical

example, the isotonic two-stage estimator tends to have a smaller asymptotic variance for

estimating β0 while the relative magnitude of two variances depends more on the case for

the estimation of α0. From a heuristic perspective, the first stage of the rank estimator

(Han, 1987; Cavanagh and Sherman, 1998) only uses the monotonicity of ErY |Xs with

respect to X 1β0. Its second stage, on the other hand, uses more structural information

from the ordered response, because it compares conditional probabilities across different

categories.

Proof of Theorem S1.1. A quick inspection confirms that all the regularity conditions from

Cavanagh and Sherman (1998) and Chen (2002) are imposed. Therefore, our main task is

to derive explicit forms for the rank scores and Hessian matrices. Consider the first-stage

rank estimator β̂R´. Applying Theorems 2 and 3 of Cavanagh and Sherman (1998) with

M being the identity function leads to

1Note that in this example, PrrY “ 1s “ 0.5 regardless of the values of β0 and α0.
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?
npβ̂R´ ´ β0´q ñ N

`

0, H´1
β0,R

Jβ0,RH
´1
β0,R

˘

,

where

Hβ0,R “ E
”

tX´1 ´ ErX´1|X
1β0su

b2
g0pX

1β0qρ
1
pX 1β0q

ı

, (S.1)

Jβ0,R “ E
”

tX´1 ´ ErX|X 1β0su
b2
g0pX

1β0q
2SpY,X 1β0q

2
ı

, (S.2)

Spy, tq “ Y ´ ErY |X 1β0 “ ts, (S.3)

ρptq “ ErY |X 1β0 “ ts. (S.4)

In the ordered response model (1.1),

Y “ It´X 1
iβ0 ` εi ď 0u ` 2It0 ă ´X 1

iβ0 ` εi ď α0u ` 3It´X 1
iβ0 ` εi ě α0u,

and hence

SpY,X 1β0q “ Y ` F0pX
1β0q ` F0pX

1β0 ` α0q ´ 3,

ρ1pX 1β0q “ ´f0pX
1β0q ´ f0pX

1β0 ` α0q.

Then we consider the second stage rank estimator α̂R. Theorem 1 of Chen (2002) gives

?
n pα̂R ´ α0q ñ N

`

0, V ´1
α0,R

Jα0,RV
´1
α0,R

˘

,

where

Vα0,R “ E
„

B2τpY,X, β0, α0q

Bα2



, Jα0,R “ E

«

ˆ

BτpY,X, β0, α0q

Bα

˙2
ff

, (S.5)

and

τpy, x, α, βq ” E rpIty “ 1u ´ ItY ď 2uq Itx1β ´X 1β ě αus

`E rpItY “ 1u ´ Ity ď 2uq ItX 1β ´ x1β ě αus . (S.6)

In the following, we provide an explicit expression for τpy, x, α, βq by computing the con-

ditional expectation given X and then applying the law of iterated expectation. The first
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term of (S.6) becomes

ż

pX´xq1βď´α

pIty “ 1u ´ F0pX
1β0 ` α0qq dFXpXq,

and the second term of (S.6) reduces to

ż

pX´xq1βěα

pF0pX
1β0q ´ Ity ď 2uq dFXpXq.

We calculate the partial derivative with respect to α. Let g0p¨|rq be the conditional density

function of X 1β0 given X´1 “ r and g0p¨q be the marginal density of X 1β0. Notice that

τpy, x, α, βq “

ż x1β0´α`px´Xq1pβ´β0q

S1py, tqg0pt|rqdtdFX´1prq

`

ż

x1β0`α`px´Xq1pβ´β0q

S2py, tqg0pt|rqdtdFX´1prq, (S.7)

where

S1py, tq ” E rIty “ 1u ´ ItY ď 2u|X 1β0 “ ts “ Ity “ 1u ´ F0pt` α0q, (S.8)

S2py, tq ” E rItY “ 1u ´ Ity ď 2u|X 1β0 “ ts “ F0ptq ´ Ity ď 2u. (S.9)

Therefore, for ν Ñ 0,

τpy, x, α ` ν, β0q ´ τpy, x, α, β0q

“ ´

ż x1β0´α

x1β0´pα`νq

S1py, tqg0ptqdt´

ż x1β0`α`ν

x1β0`α

S2py, tqg0ptqdt

“ ´νS1py, x
1β0 ´ αqg0px

1β0 ´ αq ´ νS2py, x
1β0 ` αqg0px

1β0 ` αq. (S.10)

Combining equations (S.8), (S.9), and (S.10) yields

BτpY,X, α, β0q

Bα
“ rF0pX

1β0 ´ α ` α0q ´∆1s g0pX
1β0 ´ αq

` r1´∆3 ´ F0pX
1β0 ` αqs g0pX

1β0 ` αq, (S.11)

and thus

BτpY,X, α0, β0q

Bα
“ rF0pX

1β0q ´∆1s g0pX
1β0´α0q`r1´∆3 ´ F0pX

1β0 ` α0qs g0pX
1β0`α0q.

(S.12)
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Furthermore, observe that

E rS1pY,X
1β0 ´ α0q|X

1β0s “ 0, (S.13)

E rS2pY,X
1β0 ` α0q|X

1β0s “ 0. (S.14)

Using (S.11), (S.13), and (S.14), we have

Vα0,R “ ´E rf0pX
1β0qg0pX

1β0 ´ α0q ` fpX
1β0 ` α0qg0pX

1β0 ` α0qs , (S.15)

which is negative and thus satisfies Assumption 5 of Chen (2002).

Note that even for the binary choice data, there is no general ranking of the asymptotic

variances between our Stage 1 estimator in Section 2.2 and the maximum rank estimator.

(The estimators of Sherman (1993) and Cavanagh and Sherman (1998) coincide in this

case.) They deviate from the efficient estimator (Klein and Spady, 1993) in different ways.

Our Stage 1 estimator is not efficient because it uses a simple moment condition rather

than the efficient score function, in order to avoid tuning parameters. The efficiency loss

in the maximum rank estimator, on the other hand, lies in its ignorance of the information

contained in the distribution function. Write the asymptotic variance of both estimators

for β´1 in the sandwich form H´1
d ΣdH

´1
d , for d P tnpmle, ranku, we have (see e.g. Table 2

of Groeneboom and Hendrickx (2019))

Hnpmle “ E
”

tX´1 ´ ErX´1|X
1β0su

b2
f0pX

1β0q

ı

,

Jnpmle “ E
”

tX´1 ´ ErX´1|X
1β0su

b2
pF0pX

1β0q ´∆1q
2
ı

,

Hrank “ E
”

tX´1 ´ ErX´1|X
1β0su

b2
g0pX

1β0qf0pX
1β0q

ı

,

Jrank “ E
”

tX´1 ´ ErX´1|X
1β0su

b2
g0pX

1β0q
2
pF0pX

1β0q ´∆1q
2
ı

.

The additional factor g0pX
1β0q in both H and J for the rank estimator prevents a definite

ranking of two asymptotic variances. Due to the explicit form of the efficient score for

the binary choice model, Groeneboom and Hendrickx (2018) show that one can smooth

the NPMLE and build the estimating equation with the additional weight f0{pF0p1´F0qq,

which leads to the efficient estimation.
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S1.2 Computation of NPMLE and Zero-crossing Points

This section provides computational details for the joint estimator proposed in Section

2.3. Recall that the NPMLE F̃np¨;α, βq can be computed by the iterative convex minorant

algorithm in Groeneboom and Wellner (1992) and Groeneboom and Jongbloed (2014).

Here we provide a more detailed description. The number of mass points, denoted by p,

is smaller than 2n, because for any i with ∆2i “ 0, either X 1
iβ ` α (if ∆1i “ 1) or X 1

iβ (if

∆3i “ 1) does not enter the log-likelihood function. Denote the remaining elements in the

set tX 1
iβ,X

1
iβ ` α : i “ 1, 2, ..., nu as U

pα,βq
j , j “ 1, 2, ..., p. Partition the observations into

the following four groups:

I1 “ t1 ď j ď p : U
pα,βq
j “ X 1

iβ for some i and ∆1i “ 1u,

I2l “ t1 ď j ď p : U
pα,βq
j “ X 1

iβ for some i and ∆2i “ 1u,

I2r “ t1 ď j ď p : U
pα,βq
j “ X 1

iβ ` α for some i and ∆2i “ 1u,

I3 “ t1 ď j ď p : U
pα,βq
j “ X 1

iβ ` α for some i and ∆3i “ 1u.

Define k as a function that maps any index from I2l to I2r for a given observation i with

∆2i “ 1: kpjq “ m if U
pα,βq
j “ X 1

iβ and U
pα,βq
m “ X 1

iβ ` α, for ∆2i “ 1. Let vptq ”

pv
ptq
1 , ..., v

ptq
p q

1 be the output from the t-th iteration, then vpt`1q is the left derivative of the

cumulative sum diagram consisting of the following points:

P0 “ p0, 0q, Pj “

˜

j
ÿ

i“1

Hjpv
ptq
q,

j
ÿ

i“1

v
ptq
i Hjpv

ptq
q ´Gjpv

ptq
q

¸

, j “ 1, ..., p,

where

Gjpvq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´v´1
j if j P I1,

pvkpjq ´ vjq
´1 if j P I2l,

´pvj ´ vk´1pjqq
´1 if j P I2r,

p1´ vjq
´1 if j P I3,
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and

Hjpvq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

v´2
j if j P I1,

pvkpjq ´ vjq
´2 if j P I2l,

pvj ´ vk´1pjqq
´2 if j P I2r,

p1´ vjq
´2 if j P I3.

The initial value can be set as vp0q “ p1{p, 2{p, ..., 1q1, which assigns the same probability

mass on each jump point.

Regarding the zero-crossing point, we adopt the modified Barzilai-Borwein method

(Varadhan and Gilbert, 2009), which does not require the differentiability of the estimating

equations. We illustrate with our joint estimator for θ̃n ” pα̃n, β̃
1
nq
1 which solves Φnp¨q in

equation (2.7). If the estimating equations were differentiable, then the Newton-Raphson

method would iterate with

θk`1 “ θk ´ 9Φ´1
n pθkqΦnpθkq, for k “ 1, 2, . . . .

Instead, we proceed with the following iteration:

θk`1 “ θk ´ lkΦnpθkq, for k “ 1, 2, . . . ,

where lk is known as the spectral step-length. One popular choice is

lk “
s1k´1sk´1

s1k´1yk´1

, (S.16)

where sk´1 “ θk ´ θk´1 and yk´1 “ Φnpθkq ´ Φnpθk´1q. The initial step-length is set as

l0 “ min
!

1, 1
‖Φnpβ0q‖

)

. To achieve the global convergence, the spectral iterate scheme needs

to be combined with a suitable line search technique:

φnpθk`1q ď max
0ďjďM

φnpθk´jq ` ηk ´ 10´4l2kφnpθkq, (S.17)

in which φnpθq “ Φnpθq
1Φnpθq and ηk is a positive decreasing sequence that

ř8

k“0 ηk ă 8.

We refer interested readers to Varadhan and Gilbert (2009) for the theoretical background

and additional Monte Carlo evidence.
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S1.3 Models with Four or More Categories

Here we discuss the general ordered response model where the dependent variable can take

more than three values such as in the empirical applications of Cameron and Heckman

(1998) or Klein and Sherman (2002). Formally, the dependent variable is determined by

Yi “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1 if εi ď X 1
iβ0,

2 if X 1
iβ0 ă εi ď X 1

iβ0 ` α0,1,

3 if X 1
iβ0 ` α0,1 ă εi ď X 1

iβ0 ` α0,2,
...

J ` 1 if εi ą X 1
iβ0 ` α0,J´1,

(S.18)

for i “ 1, . . . , n and J ě 3, with a set of ordered thresholds pα0,1, . . . , α0,J´1q. In the

same spirit of Lewbel (2002), our two-stage estimator in Section 2.2 directly applies to

this setting. In the first stage, the binary data pIpYi ą 1q, Xiq
n
i“1 is employed to obtain β̂n

and F̂np¨; β̂nq in the same manner as Stage 1 in Section 2.2. Then one utilizes the data

pIpYi ą j ` 1q, Xiq
n
i“1 in the second stage to estimate α0,j through the following estimating

equation of αj for j “ 1, . . . , J ´ 1,

Ψj,n

´

αj, β̂n, F̂np¨; β̂nq
¯

“
1

n

n
ÿ

i“1

”

1´ IpYi ą j ` 1q ´ F̂npX
1
iβ̂n ` αj; β̂nq

ı

. (S.19)

The large sample properties of the two-stage estimator are presented in the following. We

collect the finite dimensional parameter in θJ0 “ pα0,1, α0,2, . . . , α0,J´1, β
1
0´q

1 and denote

the two-stage semiparametric estimator by θ̂Jn “ pα̂n,1, α̂n,2, . . . , α̂n,J´1, β̂
1
n´q

1 with J ě 3.

Furthermore, we introduce the following notations:

ψ0,jpZiq “ rF0pUi ` α0,jq ´ IpYi ď j ` 1qs ,

Vα0,j
“

B

Bα
ErF0pX

1β0 ` αqs
ˇ

ˇ

α“α0,j
,

ψα0,j
“ V ´1

α0,j
pψ0,j ` ψF0 ` Vβ0ψβ0q,

for j “ 1, 2, . . . , J´1. Corollary S1.1 presents the asymptotic normality of θ̂Jn . Its proof fol-

lows from a straightforward modification of our Theorem 3.1 up to some notation changes,

and thus is omitted.
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Corollary S1.1. Suppose Conditions 1 to 9 hold and Vα0,j
‰ 0 for all j. Then we have

?
n
´

θ̂Jn ´ θ
J
0

¯

ñ Np0,ΣJ
0 q,

where

ΣJ
0 “ Erpψα0,1 , ψα0,2 , . . . , ψα0,J´1

ψ1β0q
1
pψα0,1 , ψα0,2 , . . . , ψα0,J´1

, ψ1β0qs.

Our joint estimator in Section 2.3 is also applicable. From a computational point of

view, if there are more than three categories, only the interval corresponding to the chosen

category and its adjacent ones are relevant for the computation of the NPMLE; the other

intervals can be discarded; see Groeneboom (2014), [p.2093]. Therefore, the construction

of the NPMLE is almost the same as the case with three categories. The consistency of

the NPMLE for multiple categories is shown in Schick and Yu (2000). However, the rate

of convergence or the asymptotic properties of its linear functionals remain unknown. We

leave this challenging issue to the future research. Thereafter, we recommend practitioners

use the methods in Klein and Sherman (2002)2 or Coppejans (2007), if efficiency is the

main concern. Since our empirical application in Section 4.2 involves three categories, we

will focus on the setup specified by (1.1).

S1.4 Estimation of the Trend Function in the Honoré-Paula Mod-

el

Honoré and de Paula (2010) apply the ordered response model (with three categories) to

identify and estimate an interdependent duration model of two players. Our simulation

design and empirical application are based on this model. Let pT1, T2q be the time of

switching from an initial activity to an alternative activity. The utility flow of the alterna-

tive activity for one player depends on whether the other player has switched or not, which

causes an endogenous interaction effect. The equilibrium of two duration variables pT1, T2q

are characterized by

T1 “ inf tt1 : Λpt1q exp pX 1
1β0q exp rα˚I tT2 ď t1us ě ε1u ,

T2 “ inf tt2 : Λpt2q exp pX 1
2β0q exp rα˚I tT1 ď t2us ě ε2u , (S.20)

where the unknown scalar α˚ captures the interaction effect, and the function Λptq captures

the deterministic trend. Each player j (j “ 1, 2) has covariate Xj and the initial random

2The K-S estimator is also semiparametrically efficient under an additional periodicity restriction on
the covariates; see Section 3.3 of Coppejans (2007).
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utility flow εj. This interdependent duration model induces an ordered response model that

involves the parameters β0 and α˚, but not the deterministic trend function Λptq. However,

combining Theorem 3 of Honoré and de Paula (2010) and the key idea of Horowitz (1996)

yields a nonparametric estimator for ln Λptq. To elaborate on the proposal, let

hpt1, t2;x1, x2q ” PrtT1 ď t1, T2 ą t2|X1 “ x1, X2 “ x2u, for t1 ă t2.

The proof of Theorem 3 in Honoré and de Paula (2010) implies that

B ln Λpt1q

Bt1
“ β0k

Bh{Bt1
Bh{Bx1k

. (S.21)

Thus, one can adopt the estimator given by equation (2.4) in Horowitz (1996) and plug in

a nonparametric kernel estimator for the partial derivative of hpt1, t2;x1, x2q. Given that

the theoretical properties of such an estimator follow from Horowitz (1996), we will not

expand on the issue.

S2 Additional Simulation Results

S2.1 The Effect of Trimming

We repeat the Monte Carlo exercises in Section 4.1 for the isotonic two-stage estimator

and the NPMLE-based joint estimator but use the truncated estimating equations. The

trimming scheme follows that of Groeneboom and Hendrickx (2018), which restricts obser-

vations to those with the estimated F̂npX
1
iβq within the interval rτ, 1´τ s, where τ P r0, 1{2q

is the truncation parameter.

For the two-stage approach, the trimming revises the estimation procedure described

in Section 2.2 as follows:

Stage 1(ii) (Trimmed). Given F̂np¨; βq, the estimator β̂tr for the regression coefficient is

the zero-crossing point of the truncated estimating equation with respect to β:

1

n

n
ÿ

i“1

Xi,´1

”

∆1i ´ F̂npX
1
iβ; βq

ı

Itτ ď F̂npX
1
iβ; βq ď 1´ τu “ 0. (S.22)

Stage 2 (Trimmed). Given β̂tr and F̂np¨; β̂trq, we estimate α0 by α̂tr, which is the zero-
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crossing point of the truncated estimating equation Ψn,tr

´

α̂tr, β̂tr, F̂np¨; β̂trq
¯

“ 0, where

Ψn,tr

´

α, β̂tr, F̂np¨; β̂trq
¯

“
1

n

n
ÿ

i“1

”

1´∆3i ´ F̂npX
1
iβ̂tr ` α; β̂trq

ı

Itτ ď F̂npX
1
iβ̂tr`α; β̂trq ď 1´τu.

(S.23)

For the joint approach, the trimmed version is described as follows. Given F̃np¨;α, βq,

the estimators pα̃tr, β̃trq are the zero-crossing points of the following estimating equations:

Φn,trpα̃tr, β̃trq “ 0, (S.24)

where

Φn,trpα, βq ”

»

–

1
n

řn
i“1Xi,´1

”

∆1i ´ F̃npX
1
iβ;α, βq

ı

Itτ ď F̃npX
1
iβ;α, βq ď 1´ τu

1
n

řn
i“1

”

1´∆3i ´ F̃npX
1
iβ ` α;α, βq

ı

Itτ ď F̃npX
1
iβ ` α;α, βq ď 1´ τu

fi

fl .

Their finite sample performances are summarized in Tables S1 and S2, along with the

two-stage and the joint estimators without any trimming. To evaluate the effect of trim-

ming, we set the truncation parameter τ “ 0.01, larger than the one used by Groeneboom

and Hendrickx (2018) (τ “ 0.001) . According to Tables S1 and S2, even with this relatively

large value of τ , the bias and RMSE for the estimators with trimming are similar to those

without trimming. The effect of trimming is particularly negligible for the joint estimator

of both β0´ and α0, and for the two-stage estimator of β0´. When it comes to the two-stage

estimator of α0, the trimming reduces its bias to some extent, but that effect diminishes

with the increase of sample size. Overall, trimming is not critical for implementing our

two-stage and joint estimators.
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Table S1: Performance of estimators with and without trimming in the estimating equa-

tions, normal errors.

n “ 250 n “ 500 n “ 750 n “ 1000

Methods Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Two-stage β02 -.0483 .1834 -.0419 .1360 -.0271 .1094 -.0211 .0938

β03 -.0505 .1822 -.0409 .1333 -.0331 .1064 -.0281 .0893

α˚ -.0532 .1526 -.0408 .1113 -.0320 .0933 -.0263 .0804

Two-stage β02 -.0483 .1834 -.0418 .1361 -.0270 .1095 -.0208 .0939

(truncated, β03 -.0505 .1822 -.408 .1333 -.0330 .1065 -.0279 .0897

τ “ 0.01) α˚ -.0368 .1603 -.0318 .1135 -.0267 .0943 -.0213 .0810

Joint β02 -.0089 .1802 -.0161 .1320 -.0064 .1054 -.0036 .0888

β03 -.0119 .1803 -.0149 .1312 -.0129 .0989 -.008 .0828

α˚ -.0275 .1337 -.0213 .0951 -.0153 .0777 -.0117 .0652

Joint β02 -.0086 .1803 -.0159 .1320 -.0059 .1059 -.0034 .0886

(truncated, β03 -.0116 .1807 -.0148 .1316 -.0128 .0995 -.0107 .0834

τ “ 0.01) α˚ -.0274 .1338 -.0215 .0948 -.0155 .0777 -.0117 .0653

Table S2: Performance of estimators with and without trimming in the estimating equa-

tions, exponential errors.

n “ 250 n “ 500 n “ 750 n “ 1000

Methods Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Two-stage β02 -.0505 .1745 -.0400 .1249 -.0337 .0965 -.0259 .0915

β03 -.0572 .1714 -.0409 .1203 -.0319 .0996 -.0272 .0891

α˚ -.0417 .1411 -.0353 .1009 -.0290 .0802 -.0264 .0745

Two-stage β02 -.0505 .1745 -.0399 .1252 -.0333 .0966 -.0255 .0919

(truncated, β03 -.0572 .1714 -.0408 .1203 -.0315 .0996 -.0269 .0893

τ “ 0.01) α˚ -.0253 .1474 -.0266 .1014 -.0221 .0809 -.0209 .0748

Joint β02 -.0144 .1744 -.0158 .1193 -.0165 .0896 -.0117 .0839

β03 -.0228 .1634 -.0174 .1143 -.0144 .0927 -.0132 .0814

α˚ -.0193 .1253 -.0164 .0850 -.0136 .0652 -.0138 .0590

Joint β02 -.0114 .1745 -.0154 .1198 -.0161 .0895 -.0112 .0842

(truncated, β03 -.0229 .1633 -.0168 .1150 -.0142 .0928 -.0131 .0810

τ “ 0.01) α˚ -.0194 .1255 -.0163 .0853 -.0133 .0655 -.0135 .0588
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S2.2 Confidence Intervals

Tables S3 and S4 report the empirical coverage rate (CR) and the mean length (ML) of

the 95% confidence intervals (CIs) based on the nonparametric bootstrap for the proposed

semiparametric methods and several alternatives described in Section 3 of the main paper.

The simulation design and the computation of estimators follow Section 4.1. The trimming

proportion p is set to 0.2 in the K-S estimator. The number of bootstrap replications is

200. The sample sizes are 250, 500, 750 and 1000. The number of simulations is 1000.

We make the following observations regarding the confidence intervals. First, the CIs of

both two-stage and joint estimators have good coverage rates for the coefficients β0´ and

the threshold parameter α˚ with moderate sample sizes. Between them, the coverage rate

of the joint estimator is closer to the nominal rate. Second, the CIs of two-stage and joint

estimators are substantially shorter than the rank and K-S estimators. Third, the coverage

rates of the bootstrap-based CIs of the rank and K-S estimator are also quite precise. On

the other hand, the SMS exhibits over-coverage in all scenarios.

Table S3: Coverage proportion (CR) and mean length (ML) of 95% bootstrap-based con-

fidence intervals, normal errors.

n “ 250 n “ 500 n “ 750 n “ 1000

Methods CR ML CR ML CR ML CR ML

Two-stage β02 .889 .683 .900 .480 .927 .393 .936 .338

β03 .901 .656 .912 .465 .923 .378 .939 .329

α˚ .876 .555 .897 .393 .914 .320 .923 .277

Joint β02 .916 .739 .925 .519 .933 .425 .947 .365

β03 .917 .714 .924 .506 .949 .412 .954 .355

α˚ .897 .523 .929 .382 .943 .311 .945 .267

Rank β02 .926 1.327 .940 1.025 .938 .929 .938 .883

β03 .955 1.338 .945 1.056 .950 .957 .921 .907

α˚ .884 .797 .912 .577 .921 .500 .903 .457

K-S β02 .901 1.376 .932 1.048 .946 .866 .940 .757

β03 .909 1.426 .943 1.073 .961 .871 .952 .768

α˚ .897 1.324 .922 .961 .917 .782 .921 .702

SMS β02 .988 2.506 .996 .662 .997 .454 .995 .385

β03 .990 2.505 .993 .678 .990 .464 .995 .397

α˚ .995 2.381 .989 .694 .991 .500 .995 .427
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Table S4: Coverage proportion (CR) and mean length (ML) of 95% bootstrap-based con-

fidence intervals, exponential errors.

n “ 250 n “ 500 n “ 750 n “ 1000

Methods CR ML CR ML CR ML CR ML

Two-stage β02 .895 .649 .916 .454 .936 .365 .922 .317

β03 .902 .622 .918 .435 .940 .354 .928 .305

α˚ .896 .531 .920 .371 .935 .300 .933 .259

Joint β02 .920 .690 .935 .485 .959 .390 .945 .338

β03 .926 .662 .943 .466 .950 .380 .939 .384

α˚ .918 .496 .952 .360 .955 .289 .948 .247

Rank β02 .945 1.278 .938 1.000 .938 .914 .930 .853

β03 .955 1.281 .956 1.025 .935 .945 .919 .886

α˚ .911 .759 .929 .553 .931 .480 .911 .441

K-S β02 .921 1.354 .947 .970 .958 .795 .933 .704

β03 .947 1.370 .957 .998 .967 .817 .959 .720

α˚ .933 1.740 .911 .866 .929 .709 .904 .637

SMS β02 .998 1.174 .994 .514 .991 .422 .997 .384

β03 .997 1.136 .996 .521 .996 .431 .994 .395

α˚ .992 1.127 .989 .444 .993 .353 .988 .314

S2.3 Unbounded Covariates and Errors

This section repeats the simulation exercises in Section 4.1 for covariates Xj and error

terms εj (j “ 1, 2) with unbounded support. To be sepcific, Xj1 is a standard normal

variable; Xj2 is a χ2p1q variable standardized to mean zero and variance one; the remaining

components pXj3, Xj4, Xj5q are multivariate standard normal with the pairwise correlation

coefficient between Xjk1 and Xjk2 equal to 0.5|k1´k2|. The error terms pε1, ε2q once again take

two types: (I). Normal errors: logpε1q and logpε2q have the standard normal distribution,

and (II). Exponential errors: logpε1q and logpε2q have the unit exponential distribution.

The following Figures S2 and S3 show that the performance of estimators in the case of

unbounded covariates and errors is similar to those in the bounded cases shown in Figures

3 and 4. Observations and discussions in Section 4.1 apply here.
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Figure S2a: Finite sample performances of estimators for pβ02, β03, α
˚), normal errors: two-

stage (black, dashed, ‚), joint (red, solid, �), rank (blue, long-dashed, N), K-S (green,
dotted, ˆ for β02, β03; ˆ and ` for α˚ depending on p), SMS (brown, dot-dashed, �),
ordered probit (violet, two-dashed, ˝), ordered logit (cyan, very long-dashed, ˝).
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Figure S2b: Finite sample performances of estimators for pβ02, β03, α
˚), exponential errors.
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Figure S3a: Pointwsie estimators for the function Hpwq at w “ ´2,´1 and 1, normal
errors: two-stage (black, dashed, ‚), joint (red, solid, �), rank (blue, long-dashed, N), K-S
(green, dotted, ˆ), SMS (brown, dot-dashed, �), ordered probit (violet, two-dashed, ˝),
ordered logit (cyan, very long-dashed, ˝).
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Figure S3b: Pointwsie estimators for the function Hpwq at w “ ´2,´1 and 1, exponential
errors.
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S3 Technical Proofs Related to Two-stage Estimation

This section presents and proves the technical lemmas and other results that are used in

the proof of Theorem 3.1. We also prove Theorem 3.2.

We first restate some necessary definitions and Theorem 2.4.1 in Van Der Vaart and

Wellner (1996) that will be used repeatedly in the sequel. Let F be the class of functions

and L2pQq be the L2-norm defined by a probability measure Q. For any probability measure

Q, let Npε,F , L2pQqq be the minimal number of balls of radius ε needed to cover the class

F . The entropy integral Jpδ,Fq is defined as

Jpδ,Fq ” sup
Q

ż δ

0

a

1` logNpε,F , L2pQqqdε.

An envelope function of a functional class F is a function F such that |fpxq| ď F pxq for

all x and f P F .

Lemma S1 (Theorem 2.14.1 in Van Der Vaart and Wellner (1996)). Let P0 be the distri-

bution of the underlying observation and let F be a P0-measurable class with an envelope

function F . We have

E sup
fPF

|Gnf | À Jp1,Fq ‖ F ‖P0,2 . (S.25)

We need to apply the following well-known entropy bounds concerning monotone func-

tions and functions of bounded variation repeatedly. The bounds actually hold for the

entropy integral uniformly over the underlying probability measure, which will be used in

Section S4 as well. We refer readers to Theorem 2.7.5 on [p.159] of Van Der Vaart and

Wellner (1996) or Lemma 3.8 on [p.36] of Van de Geer (2000) for the proofs.

Lemma S2 (Entropy Bounds). Let AC be the class of monotone functions with values in

r0, Cs, then for all δ ą 0,

Jpδ,ACq À
?
δ. (S.26)

Let BC be the class of functions of bounded variation with values in rc, Cs, then for all

δ ą 0,

Jpδ,BCq À
?
δ. (S.27)

Now we obtain the entropy bounds for the key functional class in our context and prove

the asymptotic characterizations for several terms appearing in our proof of Theorem 3.1.
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Lemma S3. The functional class G defined by

G ”
!

px, δ3q ÞÑ p1´ δ3 ´ F px
1β ` αqq : pα, β´q P Θ, F p¨q P A

)

(S.28)

has bounded entropy integral. Therefore, we have the following Glivenko-Cantelli property:

pPn ´ P q
”

F̂n

´

X 1β̂n ` α̂n; β̂n

¯ı

“ opp1q.

Moreover, we obtain the stochastic equicontinuity as

Gn

”

F̂n

´

X 1β̂n ` α̂n; β̂n

¯

´ F0 pX
1β0 ` α0q

ı

“ opp1q. (S.29)

Proof. We first verify that the uniform entropy integral Jp1,Gq is bounded. Because the

isotonic estimator F̂npt, βq is a monotonically increasing function for any given β, G is the

class of composite functions involving a monotonically increasing link/ridge function and

a linear index x1β `α with parameters pα, βq belonging to a compact Euclidean space. By

Lemma 2.3 in Balabdaoui, Groeneboom, and Hendrickx (2019), we get logNpε,Gq À 1{ε,

so the uniform entropy integral Jp1,Gq is indeed bounded. Therefore, the functional class

G is P -Donsker, which directly implies the stated Glivenko-Cantelli property.

Regarding the stochastic equicontinuity, let θ1 ” pα, β1´q and consider the following

class:

Gε ”
!

x ÞÑ pF px1β ` αq ´ F0px
1β0 ` α0qq : θ P Θ, F p¨q P A, |θ ´ θ0|_ ‖ F ´ F0 ‖8ď ε

)

,

for some small positive ε. Again Gε has bounded entropy integral similarly as G. Moreover,

F̂n

´

X 1β̂n ` α̂n; β̂n

¯

´ F0 pX
1β0 ` α0q belongs to Gε with probability tending to 1, because

‖ F̂n
´

X 1β̂n ` α̂n; β̂n

¯

´ F0 pX
1β0 ` α0q ‖8

ď‖ F̂n
´

X 1β̂n ` α̂n; β̂n

¯

´ F0

´

X 1β̂n ` α̂n; β̂n

¯

‖8 ` ‖ F0

´

X 1β̂n ` α̂n; β̂n

¯

´ F0 pX
1β0 ` α0q ‖8

Ñp 0.

The convergence of the first term on the right hand side of the inequality follows from the

uniform consistency of the isotonic estimator as in (S.40), whereas the convergence of the

second term is due to the smoothness of F0pu; βq (w.r.t. both u and β) and the consistency

of α̂n and β̂n. Thereafter, the desired stochastic equicontinuity follows from applying (S.25)

to the class Gε.
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Proof of the existence of α̂n. We show the existence of a unique zero-crossing point of Ψn

(defined in Stage 2 of Section 2.2) with probability approaching to 1. Because α is a scalar,

the zero-crossing point of Ψnpαq can be equivalently defined as α̂n such that for any α:

pα̂n ´ αqΨnpαq ě 0, (S.30)

see Lemma 4.1 of Groeneboom and Hendrickx (2018). If the zero-crossing point does not

exist, then for all α1 there exists some α2 such that

pα1 ´ α2qΨnpα2q ď ´c ă 0, (S.31)

for some finite positive constant c. Such a constant term c exists because the isotonic

estimate F̂npu; β̂nq is a piece-wise constant function with finitely many jumps for any n, so

is Ψnpαq for all α. In particular, we have

pα0 ´ α2qΨnpα2q ď ´c. (S.32)

By the corresponding Glivenko-Cantelli property, we get

pα0 ´ α2qΨpα2q ď ´c{2, (S.33)

with probability tending to 1. However, this contradicts the fact that α0 is the unique

zero-crossing point of Ψpαq, since Ψpαq is monotone and continuous with respect to α,

given the monotonicity and absolute continuity of F0. Thus, the zero-crossing point α̂n

exists with probability tending to 1.

An immediate consequence of Lemma S3 is Lemma S4, which shows the negligibility of

the terms Ib2n and Ic3n in our proof of Theorem 3.1. The claims directly follow from (S.29).

Lemma S4. Suppose Conditions 1 to 9 hold. We characterize the following smaller order

terms:

?
nIb2n “ opp1q, and

?
nIc3n “ opp1q. (S.34)

Now we prove several preparatory lemmas related to the linear representation of Ia2n.

Recall that U “ X 1β0.
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Lemma S5. Suppose Conditions 1 to 9 hold. The following representation holds:

Ia2n “ ´

ż

φα0puqpF̂npu; β0q ´ δ1qdP pu, δ1q, (S.35)

where

φα0puq “ g0pu´ α0q{g0puq. (S.36)

Proof. The result follows from a similar argument used in Lemma 4.1 of Groeneboom,

Jongbloed, and Witte (2010):

Ia2n “ ´

ż

´

F̂npu` α0; β0q ´ F0pu` α0q

¯

g0puqdu (S.37)

“ ´

ż

´

F̂npu; β0q ´ F0puq
¯

g0pu´ α0qdu

“ ´

ż

φα0puq
´

F̂npu; β0q ´ F0puq
¯

dG0puq

“ ´

ż

φα0puqpF̂npu; β0q ´ δ1qdP pu, δ1q,

where the last line uses the fact that δ1dP “ F0puqg0puq, since the probability density

function of the binary choice data pU,∆1q is

ppu, δ1q “ F0puq
δ1p1´ F0puqq

1´δ1g0puq. (S.38)

We consider the piece-wise constant version of φα0 which is constant on the same in-

tervals where the isotonic estimator F̂np¨; βq remains constant. Denote those intervals by

Ji “ rτi, τi`1q. We define

φ̄α0puq “ φα0pÂnpu; βqq, (S.39)

where

Ânpu; βq “

$

’

’

’

&

’

’

’

%

τi, if @t P Ji : F0ptq ą F̂npτi; βq,

s, if Ds P Ji : F0psq “ F̂nps; βq,

τi`1, if @t P Ji : F0ptq ă F̂npτi; βq,

for u P Ji.

The following convergence results of the isotonic estimator are available from the first

equation on [p.79] of Groeneboom and Wellner (1992), Lemma 3.1 of Groeneboom and

Hendrickx (2018), Proposition 2 of Balabdaoui, Groeneboom, and Hendrickx (2019), and
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Lemma 5.9 of Groeneboom and Wellner (1992).

Lemma S6. Suppose Conditions 1 to 9 hold, then we have

P

ˆ

lim
nÑ8

sup
βPB,u

ˇ

ˇ

ˇ
F̂npu; βq ´ F0pu; βq

ˇ

ˇ

ˇ
“ 0

˙

“ 1, (S.40)

and

sup
βPB

ˆ
ż

ˇ

ˇ

ˇ
F̂npu; βq ´ F0pu; βq

ˇ

ˇ

ˇ

2

dGpuq

˙1{2

“ Op

`

log nˆ n´1{3
˘

,

sup
βPB

ˆ
ż

ˇ

ˇ

ˇ
Ânpu; βq ´ u

ˇ

ˇ

ˇ
dGpuq

˙1{2

“ Op

`

log nˆ n´1{3
˘

.

Note that the statement in Lemma 3.1(ii) of Groeneboom and Hendrickx (2018) applied

trimming on the distribution function in order to be comparable with the efficient estimators

they proposed. Here we do not need any trimming, in the same spirit of Proposition 2 of

Balabdaoui, Groeneboom, and Hendrickx (2019). The isotonic estimator is consistent in

terms of the Hellinger distance without any trimming (Van de Geer, 1993). This implies

pointwise consistency if the true error distribution function is absolutely continuous. Since

both the isotonic estimator and the true distribution are monotone, pointwise consistency

implies uniform consistency; see Example 3.3 (a) in Van de Geer (1993) for a nice exposition.

To show the convergence rate, one can first obtain the cubic root rate (modulo the logarithm

factor) in terms of the Hellinger distance, which means:

sup
β

ż
ˆ

b

F̂npu; βq ´
a

F0pu; βq

˙2

dGpuq “ Opplog2 nˆ n´2{3
q.

Then we translate it into the L2 norm as in Lemma 3.1(i) of Groeneboom and Hendrickx

(2018) or Proposition 2 of Balabdaoui, Groeneboom, and Hendrickx (2019) using the fact

that pF̂n ´ F0q
2 ď 4

´

a

F̂n ´
?
F0

¯2

.

The following lemma is adapted from Lemma A.4 of Groeneboom, Jongbloed, and Witte

(2010), which connects the rate of convergence of the piece-wise approximation φ̄α0 to the

convergence rate of the isotonic estimator.

Lemma S7. Suppose Conditions 1 to 9 hold. For any u, β, we have

|φ̄α0puq ´ φα0puq| ď L|F̂np¨; βq ´ F0p¨q|, (S.41)

for a finite positive constant L.
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Given the above lemmas, we get the following characterization of Ia2n.

Lemma S8. Suppose Conditions 1 to 9 hold, then we have the following linear represen-

tation:
?
nIa2n “

?
nP

”

F0 ´ F̂np¨, β0q

ı

“ GnψF0 ` opp1q, (S.42)

where ψF0 is defined in Theorem 3.1.

Proof. Given the characterization of the isotonic estimator F̂npu; β0q and the piece-wise

constant nature of φ̄α0 , we get

ż

φ̄α0rF̂npu; β0q ´ δ1sdPn “ 0, (S.43)

by equality (8.15) in Groeneboom and Jongbloed (2014). Therefore, starting with the

representation of Ia2n in Lemma S5 we get

Ia2n “

ż

φ̄α0pF̂npu; β0q ´ δ1qdpPn ´ P q (S.44)

`

ż

rφ̄α0 ´ φα0spF̂npu; β0q ´ δ1qdP pu, δ1q. (S.45)

In the next lemma, we show that

ż

φ̄α0pF̂npu; β0q ´ δ1qdpPn ´ P q “
ż

φα0pF0puq ´ δ1qdpPn ´ P q ` oppn´1{2
q, (S.46)

and
ż

rφ̄α0 ´ φα0spF̂npu; β0q ´ δ1qdP pu, δ1q “ oppn
´1{2

q, (S.47)

which lead to the desired conclusion.

Lemma S9. Suppose Conditions 1 to 9 hold, then the following hold:

Rn ”

ż

φ̄α0pF̂npu; β0q ´ F0puqqdpPn ´ P q “ oppn
´1{2

q,

and

Sn ”

ż

rφ̄α0 ´ φα0spF̂npu; β0q ´ δ1qdP pu, δ1q “ oppn
´1{2

q. (S.48)
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Proof. We first handle the term Sn as follows.

Sn “

ż

rφ̄α0 ´ φα0spF̂npu; β0q ´ F0puqqdGpuq

À‖ F̂npu; β0q ´ F0puq ‖2
2“ Oppn

´2{3
ˆ log2 nq, (S.49)

where the second line uses Lemmas S7 and S6.

Referring to the term Rn, we introduce some notations adapted from the proof of Lemma

7 in Groeneboom, Jongbloed, and Witte (2010). Define

ξBpuq “ φ̄α0puqBpuq, (S.50)

where B P BM , the class of functions of bounded variation and with the supremum norm

M . Let

GC ” tξBpuq : B P BMu. (S.51)

By Lemma S6, for any small γ ą 0 we can find a finite constant term C such that for all

n sufficiently large:

PrtΥn,Cu ” Prtsup
β

‖ F̂npu; βq ´ F0pu; βq ‖2ď Cn´1{3 log nu ě 1´ γ{2.

Now for an vanishing sequence νn, we have

Prt|n1{2Rn| ą νnu “ Prt|n1{2Rn| ą νn XΥn,Cu ` Prt|n1{2Rn| ą νn XΥc
n,Cu

ď ν´1
n E

“

|n1{2Rn|1tΥn,Cu
‰

` γ{2,

for any small γ. Again by Lemma S6, we have

E
“

|n1{2Rn|1tΥn,Cu
‰

ď E sup
BPBC

ˇ

ˇ

ˇ

ˇ

n1{2´1{3 log n

ż

φ̄α0puqBpuqdpPn ´ P q
ˇ

ˇ

ˇ

ˇ

ď n´1{3 log nE sup
ξPGC

ˇ

ˇ

ˇ

ˇ

ż

ξpuqdGnpuq

ˇ

ˇ

ˇ

ˇ

.

The rest of our proof uses Theorem 2.14.1 in Van Der Vaart and Wellner (1996) to bound

the expectation in the last display. Following the construction in Groeneboom, Jongbloed,

and Witte (2010), the entropy integral of GC is bounded above by a finite constant, i.e.,

Jp1,GCq ă 8. The L2-norm of the envelope function is also bounded. Then applying
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(S.25) yields

E|Rn| ď n´5{6 log nˆ E sup
ξPGC

ˇ

ˇ

ˇ

ˇ

ż

ξpuqdGnpuq

ˇ

ˇ

ˇ

ˇ

À n´5{6 log n, (S.52)

which immediately leads to Rn “ oppn
´1{2q.

Lemma S10. Suppose Conditions 1 to 9 hold. We characterize the following smaller order

term:
?
nIb3n “ opp1q. (S.53)

Proof. Recall that

Ib3n “ P
”

F̂npX
1β̂n ` α̂n; β̂nq ´ F0pX

1β̂n ` α̂n; β̂nq
ı

´P
”

F̂npX
1β0 ` α0; β0q ´ F0pX

1β0 ` α0q

ı

.

Following the arguments in Lemma S8, we get

Ib3n “

ż

«˜

g0pu´ α̂n; β̂nq

g0pu; β̂nq
rF0pu; β̂nq ´ δ1s

¸

´

ˆ

g0pu´ α0q

g0puq
rF0puq ´ δ1s

˙

ff

dpPn ´ P q

(S.54)

` oppn
´1{2

q.

The smoothness assumption in Condition 8 implies that the function in the bracket of (S.54)

belongs to a P -Donsker class by Example 19.7 in Van Der Vaart (1998). The convergence

of α̂n and β̂n leads to the desired conclusion that
?
nIb3n “ opp1q.

We then prove Theorem 3.2. Consider the general exchangeable bootstrap weights

Mn “ pMn1, . . . ,Mnnq
1 as in Section 3.6 of Van Der Vaart and Wellner (1996). Common-

ly used exchangeable bootstrap schemes include: (i) nonparametric bootstrap in which

the weights Mn follow the multinomial distribution Multi pn, pn´1, . . . , n´1qq; (ii) Bayesian

bootstrap in which the bootstrap weights Mni “ ωi{
řn
i“1 ωi for i “ 1, . . . , n and ωi has

the unit exponential distribution (Rubin, 1981); and (iii) Delete-h jackknives in which the

bootstrap weights are generated from permuting the deterministic weights wni “ n{pn´hq

for i “ 1, . . . , n ´ h and Mnj “ wnRnpjq where Rn is a random permutation uniformly

over t1, . . . , nu (Wu, 1990). We use the following notations: P˚nf “ n´1
řn
i“1Mnif pZiq,

and G˚nf “ n´1{2
řn
i“1 pMni ´ 1q f pZiq, where Z “ pY,Xq. To take into account the joint

randomness from the observed data and the bootstrap weights, we consider the underlying
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product probability space pZ8 ˆM,A8 ˆ Ω, PZMq . Furthermore, the bootstrap weights

are independent of the sample observations, i.e., PZM “ PZ ˆ PM .

Lemma S11 (Lemma 3.6.7 in Van Der Vaart and Wellner (1996)). Let Zn1, . . . , Znn be

arbitrary stochastic processes and pMn1, . . . ,Mnnq
1 be any exchangeable random vector in-

dependent of Zn1, . . . , Znn. For any n0 ą 0 and n ą n0, we have

EZM

˜
›

›

›

›

›

1
?
n

n
ÿ

i“1

MniZni

›

›

›

›

›

¸

ď n0EZ p}Zn1}q

ˆ

EM pmax1ďiďn |Mni|q
?
n

˙

`

ˆ
ż 8

0

a

PM pMn1 ě uqdu

˙

EZ

˜
ˇ

ˇ

ˇ

ˇ

ˇ

max
n0ăiďn

›

›

›

›

›

1
?
n

i
ÿ

j“n0`1

Znj

›

›

›

›

›

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

When it comes to proving the stochastic equicontinuity related to the bootstrap version,

applying the multiplier inequality in Lemma S11 to Gε, we get

EZM |‖ G˚n ‖| À EZ |Gε|
1
?
n
EM

ˇ

ˇ

ˇ
max
i
Mni

ˇ

ˇ

ˇ
` EZ

ˇ

ˇ

ˇ

ˇ

max
n0ďkďn

‖ Gk ‖
ˇ

ˇ

ˇ

ˇ

, (S.55)

where Gε is the corresponding envelope function. The first term is of smaller order since

1
?
n
EM

ˇ

ˇ

ˇ
max
i
Mni

ˇ

ˇ

ˇ
“ opp1q,

under our assumptions on the bootstrap weights. Meanwhile, the Levy inequality (Propo-

sition A.1.2 of Van Der Vaart and Wellner (1996)) implies:

Prtmax
kďn

‖ Gk ‖ą λu ď 2 Prt‖ Gn ‖ą λu,

which makes the second term negligible. In analogous to Lemma S6, the bootstrapped

isotonic estimator and its jump locations satisfy

sup
βPB

‖ F̂ ˚n pu; βq ´ F0pu; βq ‖2“ Op

`

log nˆ n´1{3
˘

,

sup
βPB

‖ Â˚npu; βq ´ u ‖2“ Op

`

log nˆ n´1{3
˘

,

in PZ-probability.

Proof of Theorem 3.2. The bootstrap validity of β̂˚n´ has been shown in Groeneboom and

Hendrickx (2017)[p3465, equation (4.19)]. Here we focus on α̂˚n. To prove its conditional
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weak convergence, we start with the bootstrap estimating equation and decompose it into

1

n

n
ÿ

i“1

Mni

”

1´ F̂ ˚n pX
1
iβ̂
˚
n ` α̂

˚
n; β̂˚nq ´∆3i

ı

“ I˚1n ` I
˚
2n ` I

˚
3n, (S.56)

where

I˚1n “
1

n

n
ÿ

i“1

Mni r1´ F0pX
1
iβ0 ` α0q ´∆3is , (S.57)

I˚2n “
1

n

n
ÿ

i“1

Mni

”

F0pX
1
iβ0 ` α0q ´ F̂

˚
n pX

1
iβ0 ` α0; β0q

ı

, (S.58)

I˚3n “
1

n

n
ÿ

i“1

Mni

”

F̂ ˚n pX
1
iβ0 ` α0; β0q ´ F̂

˚
n pX

1
iβ̂
˚
n ` α̂

˚
n; β̂˚nq

ı

. (S.59)

The general scheme is analogous to our proof of Theorem 3.1. First of all, note that

I˚1n “ OpM pn
´1{2q in PZ-probability. Referring to I˚2n, we get I˚2n “ I˚a2n ` I

˚b
2n where

I˚a2n “ P
”

F0pU ` α0q ´ F̂
˚
n pU ` α0; β0q

ı

and I˚b2n “ pP˚n´P q
”

F0pU ` α0q ´ F̂
˚
n pU ` α0; β0q

ı

.

(S.60)

We shall utilize P -Donsker property (Van Der Vaart and Wellner, 1996) to show I˚b2n “

opM pn
´1{2q as in Lemma S4. We also have the following linear representation as in Lemma

S8:
?
nI˚a2n “

?
nP

”

F0 ´ F̂
˚
n p¨, β0q

ı

“
?
n rP˚n ´ P sψF0 ` opM p1q, (S.61)

in PZ-probability.

When it comes to I˚3n, we decompose it into three terms: I˚3n “ I˚a3n ` I
˚b
3n ` I

˚c
3n, where

I˚a3n “ P
”

F0pX
1β̂˚n ` α̂

˚
n; β̂˚nq ´ F0pX

1β0 ` α0q

ı

, (S.62)

I˚b3n “ P
”

F̂ ˚n pX
1β̂˚n ` α̂

˚
n; β̂˚nq ´ F̂

˚
n pX

1β0 ` α0; β0q ´ F0pX
1β̂˚n ` α̂

˚
n; β̂˚nq ` F0pX

1β0 ` α0q

ı

,

I˚c3n “ pP˚n ´ P q
”

F̂ ˚n pX
1β̂˚n ` α̂

˚
n; β̂˚nq ´ F̂

˚
n pX

1β0 ` α0; β0q

ı

.

Similar to Lemma S10 and Lemma S4, we have I˚b3n “ oppn
´1{2q and I˚c3n “ oppn

´1{2q by the

P -Donsker property of the corresponding functional classes. We also have the following

expansion:

I˚a3n “ Vα0pα̂
˚
n ´ α0q ` Vβ0pβ̂

˚
n´ ´ β0´q ` oppn

´1{2
` α̂˚n ´ α0 ` |β̂

˚
n ´ β0|q. (S.63)
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By taking the difference of the linear representations for α̂˚n and α̂n, we get

?
n pα̂˚n ´ α̂nq “ V ´1

α0
G˚n rψ0 ` ψF0 ` ψβ0s ` opp1q. (S.64)

The desired result follows from Theorem 3.6.13 in Van Der Vaart and Wellner (1996).

S4 Technical Proofs Related to Joint Estimation

This section presents and proves the technical lemmas and other results that are used in

the proof of Theorem 3.3. We also present the proof of Theorem 3.4.

Related to the P -Glivenko-Cantelli or P -Donsker property, it is more convenient to work

with the bracketing entropy bounds. For that purpose, we collect the necessary definitions

from Van Der Vaart and Wellner (1996) as follows. The bracketing number Nrs pε,F , }¨}2q
for subclass F is defined to be the minimum of m such that D fL1 , f

U
1 , . . . , f

L
m, f

U
m for @f P F ,

fLj ď f ď fUj for some j, and
›

›fUj ´ f
L
j

›

›

2
ď ε. Denote Hrs pε,F , }¨}2q ” logNrs pε,F , }¨}2q.

We need a few more notations to establish the consistency and rate of convergence. Let

q0 be the true density function and q be a member of the class of densities, denoted by P .

We define

q̄ ”
q ` q0

2
, P̄ ” tq̄ : q P Pu, and P̄1{2

” tq̄1{2 : q̄ P P̄u. (S.65)

In addition, we denote a ball (measured according to the Hellinger distance) around the

true density q0, intersected with P̄1{2, by

P̄1{2
pδq ” tq̄1{2

P P̄1{2 : hpq̄, q0q ď δu,

for some small positive δ. We refer to Hrspu, P̄1{2pδqq as the local entropy with bracketing

and its corresponding entropy integral is given by

Jrspδ, P̄1{2
pδqq ”

ż δ

δ2{213
Hrspu, P̄1{2

pδqqdu_ δ. (S.66)

Similar to Geskus and Groeneboom (1997), we consider the following density functions:

qF pu, δ1, δ2, δ3;α, βq “ δ1F pu;α, βq`δ2tF pu`α;α, βq´F pu;α, βqu`δ3t1´F pu`α;α, βqu.

(S.67)

Recall the notations in the proof of Theorem 3.3: q0,θ denotes the density qF for given

θ “ pα, β1´q
1 and F “ F0, and q̃n,θ denotes the maximum likelihood estimator for given θ.
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The Hellinger distance h between the two densities is given by

2h2
pq̃n,θ, q0,θq “

ż

δ1“1

´

F̃ 1{2
n pu; θq ´ F

1{2
0 pu; θq

¯2

dQ

`

ż

δ2“1

´

pF̃npu` α; θq ´ F̃npu; θqq1{2 ´ pF0pu` α; θq ´ F0pu; θqq1{2
¯2

dQ

`

ż

δ3“1

´

p1´ F̃npu` α; θqq1{2 ´ p1´ F0pu` α; θqq1{2
¯2

dQ. (S.68)

We record Theorem 7.4 in Van de Geer (2000) which establishes a general result for

the convergence rate of the maximum likelihood estimator. We are going to apply it to

our context. In Lemma S12, q0 denotes the true density and q̃n denotes the maximum

likelihood estimator.

Lemma S12 (Theorem 7.4 in Van de Geer (2000)). Take Ψpδq ě Jrspδ, P̄1{2pδqq (the entropy

integral function defined in (S.66)) in such a way that Ψpδq{δ2 is a non-increasing function

of δ. Then for a universal constant c, and for
?
nδ2

n ě cΨpδnq, we have for all δ ě δn

Pr thpq̃n, q0q ě δu ď c exp
`

´nδ2
{c2

˘

.

Lemma S12 implies that the maximum likelihood estimator q̃n converges at the rate

Oppδnq. The next lemma delivers the rate of convergence for the NPMLE in terms of L2

norm uniformly over the finite dimensional parameter.

Lemma S13. Regarding the convergence by L2-norm, we have

sup
θ

‖ F̃npα ` x1β; θq ´ F0pα ` x
1β; θq ‖2“ Op

`

log2 nˆ n´1{3
˘

. (S.69)

Proof. In order to obtain the rate of convergence, we need to first bound the entropy

number for the likelihood function:

F∆1ipX 1
iβ; θq ˆ pF pX 1

iβ ` α; θq ´ F pX 1
iβ; θqq

∆2i
ˆ p1´ F pX 1

iβ ` α; θqq
∆3i .

The only complication comes from the term

FD ”

!

a

F px1β ` α; θq ´ F px1β; θq : pα, β, F q
)

. (S.70)

Its entropy number can be bounded in the following way; see Example 3.3(b) of Van de
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Geer (1993). If F px1β ` α; θq ´ F px1β; θq ą δ or F̄ px1β̄ ` ᾱ; θ̄q ´ F̄ px1β̄; θ̄q ą δ, then

ˇ

ˇ

ˇ

ˇ

a

F px1β ` α; θq ´ F px1β; θq ´
b

F̄ px1β̄ ` ᾱ; θ̄q ´ F̄ px1β̄; θ̄q

ˇ

ˇ

ˇ

ˇ

ă
1
?
δ

 
ˇ

ˇF px1β ` α; θq ´ F̄ px1β̄ ` ᾱ; θ̄q
ˇ

ˇ`
ˇ

ˇF px1β; θq ´ F̄ px1β̄; θ̄q
ˇ

ˇ

(

.

If both F px1β ` α; θq ´ F px1β; θq ď δ or F̄ px1β̄ ` ᾱ; θ̄q ´ F̄ px1β̄; θ̄q ď δ, obviously one has

ˇ

ˇ

ˇ

ˇ

a

F px1β ` α; θq ´ F px1β; θq ´
b

F̄ px1β̄ ` ᾱ; θ̄q ´ F̄ px1β̄; θ̄q

ˇ

ˇ

ˇ

ˇ

ď 2
?
δ.

In sum, for any probability measure Q, we get

Np4
?
δ,FD, L2pQqq ď Npδ,F0, L2pQqq,

where F0 ” tF px1β ` α; θq : pα, β, F qu. Compared with the calculation in Van de Geer

(1993), one needs to account for the presence of finite dimensional parameter, which incurs

an additional log n factor. Therefore, one can apply Lemma S12 to get

sup
θ

hpq̃n,θ, q0,θq “ Opplog2 nˆ n´1{3
q. (S.71)

Also, note that

pF̃n ´ F0q
2
ď 4

ˆ

b

F̃n ´
a

F0

˙2

and pF̃n ´ F0q
2
ď 4

ˆ

b

1´ F̃n ´
a

1´ F0

˙2

,

we get that

sup
θ

‖ F̃np¨; θq ´ F0p¨; θq ‖2“ Opplog2 nˆ n´1{3
q.

In the following, we provide some details for our proof of Theorem 3.3. Specifically, we

show the existence of zero-crossing points and the stochastic equicontinuity of negligible

terms related to our estimating equations.

Existence of the zero-crossing point of Φn. Recall that θ “ pα, β1´q
1. The first coordinate

of β is normalized to be 1; i.e., the overall number of unknown parameters is equal to K.

The uniform convergence of the estimating equation leads to

Φnpθq “ 9Φθ0pθ ´ θ0q ` rnpθq, (S.72)
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where rnpθq “ opp1q ` opθ ´ θ0q. We define for h ą 0

Φn,hpθq ” 9Φθ0pθ ´ θ0q ` r̃n,hpθq, (S.73)

with

r̃n,hpθq “ h´d
ż

khpu1 ´ αq ¨ ¨ ¨ khpuK ´ βKqrnpu1, ¨ ¨ ¨ , uKqdu1 ¨ ¨ ¨ duK , (S.74)

where kp¨q is a standard kernel density function supported on r´1, 1s. Note that limhÑ0 r̃n,hpθq “

rnpθq. We re-parameterize θ and θ0 as

γ “ 9Φθ0θ, and γ0 “ 9Φθ0θ0, (S.75)

which gives

Φn,hpθq “ γ ´ γ0 ` r̃n,hp 9Φ
´1
θ0
γq. (S.76)

Given the result in (S.72), the mapping

γ ÞÑ γ0 ´ r̃np 9Φ
´1
θ0
γq (S.77)

maps, for each δ ą 0, the ball Bδpγ0q “ tγ : |γ ´ γ0| ď δu into Bδ{2pγ0q “ tγ : |γ ´

γ0| ď δ{2u with probability approaching to 1. Therefore by Brouwer’s fixed point theorem

(Groeneboom and Hendrickx, 2018), the mapping γ ÞÑ γ0 ´ r̃n,hp 9Φ
´1
θ0
γq has a fixed point

which we denote by γn,h. Let θn,h ” 9Φ´1
θ0
γn,h, then we have

Φn,hpθn,hq “ 0. (S.78)

By compactness of the parameter space, the sequence pθn,1{kq
8
k“1 must have a subsequence

pθn,1{klq with a limit point θ̄n as l Ñ 8.

Finally, we prove that Φnpθq has a zero-crossing point at θ̄n by contradiction, following

Groeneboom and Hendrickx (2018)([p.14] in their supplementary material). Suppose that

the j-th component Φj
n of Φn does not have a crossing of zero at θ̄n. Then there must be

an open ball Bδpθ̄nq “ tθ : |θ ´ θ̄n| ă δu of θ̄n such that Φj
n has a constant sign in Bδpθ̄nq,

say Φj
npθq ě c ą 0 for all θ P Bδpθ̄nq and some constant c ą 0. Following the argument of

Groeneboom and Hendrickx (2018), the j-th component of Φj
n,h of Φn,h satisfies

Φj
n,hpθq ě

c

2
, (S.79)
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for sufficiently small h and all θ P Bδpθ̄nq, which contradicting (S.78), since θn,h for h “ 1{kl

belongs to Bδpθ̄nq for large kl.

We also show that pα0, β
1
0´q is the unique zero-crossing point for the population level

estimating equation. By the self-consistency of the NPMLE (Groeneboom and Wellner,

1992), we have Er∆1|X
1β “ u,X 1β ` α “ u ` αs “ F pu;α, βq. It is clear that given

the value of X 1β, X 1β ` α does not provide additional information about ∆1. Thereafter,

we can apply Lemma 4.1 of Groeneboom and Hendrickx (2018) to show β0 is the unique

zero-crossing point of the first set of estimating equations associated with p∆1, X´1q. For

the second estimating equation Er1 ´∆3 ´ F pX 1β ` α;α, βqs, it is enough to fix β “ β0.

Following the calculation in Lemma S21, it is easy to see that the estimating equation is

monotone with respect to α for fixed β. Hence, α0 is the unique zero-crossing point.

Lemma S14. Under Conditions 1 to 10, we have

pPn ´ P qζpZ; α̃n, β̃n, F̃np¨; α̃n, β̃nqq “ PnζpZ;α0, β0, F0q ` oppn
´1{2

q,

and

P rζpZ; α̃n, β̃n, F̃np¨; α̃n, β̃nqq ´ ζpZ;α0, β0, F̃np¨;α0, β0qqs

“ P rζpZ; α̃n, β̃n, F0p¨; α̃n, β̃nqq ´ ζpZ;α0, β0, F0p¨qqs ` oppn
´1{2

q.

Proof. The proof essentially follows from Lemma S3 by the stochastic equicontinuity of

the related P -Donsker classes and the consistency of α̃n and β̃n. The only change applies

to the functional class that the NPMLE F̃n belongs to, given that the NPMLE is a sub-

distribution or a defective distribution. However, the entropy bound for the monotone

functions in Lemma S2 does not depend on the range of the function, as long as it is finite.

Hence, the desired results follow.

The remaining proofs characterize the asymptotic property of the linear functional for

the NPMLE given the data and the true unknown parameter θ0. We denote the empirical

probability measure of the ordered response data by Qn and its population version by QF0 ,

where the distribution is set to be the true unknown F0. We mentioned in the main text

that the NPMLE could be a defective distribution (or a sub-distribution) in finite samples;

i.e., F̃npuq ă 1 for any u in the support. However, this plays a minor role regarding the large

sample properties because the defectiveness does not occur with probability 1 as nÑ 8.
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Lemma S15 (Proposition 1 in Geskus and Groeneboom (1997)). We have

lim
nÑ8

PrtF̃n is defectiveu “ 0.

We record the following lemma from Corollary 1 in Geskus and Groeneboom (1997),

which characterizes the NPMLE F̃n.

Lemma S16. Any function σ that is constant at the same intervals as F̃n satisfies

ż

σpuq

„

δ1

F̃npuq
´

1´ δ1 ´ δ2

1´ F̃npu` α0q
`

δ2

F̃npu` α0q ´ F̃npuq



dQnpu, δ1, δ2q “ 0. (S.80)

We draw on Geskus and Groeneboom (1996, 1997, 1999), where the authors developed

a systematic approach to characterize the linear functional of NPMLE for the interval

censored data (case 2). For that purpose, we define c1puq “
şu

CL
ErX´1|vsg0pvqdv, c3puq “

G0pu´ α0q, and cpuq “ pc11puq, c3puqq
1. Consider the linear functional κpF0q “

ş

cpvqdF0pvq

and its canonical (with zero mean) gradient

κ̃F puq “ cpuq ´

ż

cpvqdF pvq. (S.81)

A key component in determining the asymptotic property of pα̃n, β̃nq is κF̃np¨;α0,β0q
; i.e., the

linear functional of the NPMLE when the finite dimensional parameter is set to be its true

value. The influence function of the latter one crucially depends on whether there is a

unique element φF satisfying

L˚φF “ κ̃F , (S.82)

given the differentiability of κ̃F in the sense of Van der Vaart (1991), where L˚ denotes the

adjoint operator of L defined in equation (S.83). We further denote its derivative by 9̃κF .

To present the solution φF , we denote u “ x1β0 and the support of it as rCL, CU s;

see Coppejans (2007). For any function a in the tangent set, the score operator for the

nonparametric component is

Lraspu, δ1, δ2q “
δ1

şu

CL
adF

F puq
`

δ2

şu`α0

u
adF

F pu` α0q ´ F puq
´
p1´ δ1 ´ δ2q

şCU

u`α0
adF

1´ F pu` α0q
. (S.83)

For any function bpv, δ1, δ2q, we also have the adjoint operator L˚ specified as follows:

L˚rbspuq “

ż CU

u

bpv, 1, 0qg0pvqdv `

ż u

u´α

bpv, 0, 1qg0pvqdv `

ż u´α

CL

bpv, 0, 0qg0pvqdv. (S.84)
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Letting ςF puq ”
şu

CL
apvqdF pvq be the integrated score function, we have

L˚Lraspuq “

ż CU

u

ςpvq

F pvq
g0pvqdv`

ż u

u´α0

ςpv ` α0q ´ ςpvq

F pv ` α0q ´ F pvq
g0pvqdv`

ż u´α0

CL

ςpv ` α0q

1´ F pv ` α0q
g0pvqdv.

(S.85)

Following equation (4) in Geskus and Groeneboom (1997) and Example 4.2 in Van de Geer

(1995), the solution to (S.82) can be written as

φF pu, δ1, δ2q “ δ1
ςF puq

F puq
` δ2

ςF pu` α0q ´ ςF puq

F pu` α0q ´ F puq
´ p1´ δ1 ´ δ2q

ςF pu` α0q

1´ F pu` α0q
, (S.86)

where

ςF puq “

$

&

%

´F puq rp1´ F puqqωpuq ` p1´ F pu` α0qqωpu` α0qs , for CL ď u ď α0

p1´ F puqq rF puqωpuq ` F pu´ α0qωpu´ α0qs , for α0 ď u ď CU ,

and ωpuq ” 9cpuq
g0puq

.

We consider the piece-wise approximation of ςF̃n
, which is constant on the same intervals

where the NPMLE F̃np¨;α, βq remains constant. Denote those intervals by Ji “ rτi, τi`1q.

We define

ς̄F̃n
puq “ ςF̃n

pÃnpu;α, βqq, (S.87)

where

Ãnpu;α, βq “

$

’

’

’

&

’

’

’

%

τi, if @t P Ji : F0ptq ą F̃npτi;α, βq,

s, if Ds P Ji : F0psq “ F̃nps;α, βq,

τi`1, if @t P Ji : F0ptq ă F̃npτi;α, βq,

for u P Ji.

We define the function ξF as

ξF puq “
ςF puq

F puqp1´ F puqq
. (S.88)

We also consider the piece-wise constant version of ξF̃n
, denoted by ξ̄F̃n

, which is defined

by ξ̄F̃n
puq “ ς̄F̃n

{rF̃npuqp1 ´ F̃npuqqs. In addition, let φ̄F̃n
denote the function φF̃n

defined

in (S.86), but with ςF̃n
replaced by ς̄F̃n

.
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Lemma S17. Under Conditions 1 to 10, we have

?
npκpF̃nq ´ κpF0qq “

?
n

ż

φF0dpQn ´QF0q ` opp1q. (S.89)

Proof. The proof of this result requires several intermediate lemmas that we present after-

wards. Here we describe the crux of the arguments in four steps.

Step 1. The first step rewrites the effect from estimating the distribution using NPMLE

in terms of its linear functional:

?
npκpF̃nq ´ κpF0qq “

?
n

ż

κ̃F0dpF̃n ´ F0q. (S.90)

Step 2. The second step is similar to the proof of Lemma S5 where we apply integration

by parts. Now we have
ż

κ̃F0dpF̃n ´ F0q “ ´

ż

φF̃n
dQF0 , (S.91)

by Lemma 1 in Geskus and Groeneboom (1997).

Step 3. We consider the piece-wise approximation φ̄F̃n
defined below (S.88). By Lemma

S16, one gets
ż

φ̄F̃n
dQn “ 0.

Thus, we have

´

ż

φF̃n
dQF0 “ ´

ż

φ̄F̃n
dpQn ´QF0q ` oppn

´1{2
q, (S.92)

in which we use
ż

`

φ̄F̃n
´ φF̃n

˘

dQF0 “ oppn
´1{2

q,

as proved in Lemma S20.

Step 4. In the last step, we proceed with the following decomposition

´

ż

φ̄F̃n
dQF0 “ ´

ż

φF0dpQn ´QF0q `

ż

“

φ̄F̃n
´ φF0

‰

dpQn ´QF0q. (S.93)

We show that the second term on the r.h.s. of (S.93) is oppn
´1{2q. Following the argument

in the proof of Lemma 3 in Geskus and Groeneboom (1997) and using Lemma S18, φF

and its piece-wise constant approximation φ̄F are of bounded variation. Therefore, one

can show that the random entropy integral as a function of δ is of order Oppδ
1{2q for the
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functional class that includes pφ̄F̃n
´ φF0q. Then by the uniform consistency of F̃n, we get

ż

`

φ̄F̃n
´ φF0

˘2
dQF0 Ñ 0,

with probability 1. As a result,
ş “

φ̄F̃n
´ φF0

‰

dpQn ´ QF0q “ oppn
´1{2q follows from the

stochastic equicontinuity of the related P -Donsker class. In the end, we arrive at

´

ż

φ̄F̃n
dQF0 “ ´

ż

φF0dpQn ´QF0q ` oppn
´1{2

q. (S.94)

The following lemma states the Lipschitz property for ςF and ξF . It can be shown by

combining the closed-form expression of ςF in (S.86) and the proof of Lemma 4 in Geskus

and Groeneboom (1996).

Lemma S18. The derivative of ςF at the points of continuity is bounded, uniformly over

F and the points of continuity; i.e.,

|ςF puq ´ ςF pvq| ď C1|u´ v|, (S.95)

for u and v in the same interval between jumps and for a finite positive constant C1. The

same holds for ξF . Moreover, the jumps satisfy

|ςF puq ´ ςF pu´q| ď C2|F puq ´ F pu´q|, (S.96)

for a finite positive constant C2. Again, the same holds for ξF .

The next lemma controls the approximation error for the function ξF̃n
. Its proof resem-

bles the one for Lemma S7 and uses Lemma S18.

Lemma S19. Suppose our Conditions hold, then we have

‖ ξ̄F̃n
puq ´ ξF̃n

puq ‖2À‖ F̃npu;α0, β0q ´ F0puq ‖2 . (S.97)

The following lemma characterizes a smaller order term in Step 3 of the proof of Lemma

S17 while analyzing
?
npκpF̃nq ´ κpF0qq.

Lemma S20. Under our conditions, we have

ż

`

φ̄F̃n
´ φF̃n

˘

dQF0 “ oppn
´1{2

q. (S.98)
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Proof. We start by defining the function ϕn as

ϕnpuq “ ´
“

φ̄F̃n
´ φF̃n

‰

pu, 1, 0qF0puq

´
“

φ̄F̃n
´ φF̃n

‰

pu, 0, 1qrF0pu` α0q ´ F0puqs `
“

φ̄F̃n
´ φF̃n

‰

pu, 0, 0qr1´ F0pu` α0qs.

Then we obtain

ϕnpuq “
1´ F̃npuq

F̃npu` α0q ´ F̃npuq

`

ξ̄F̃n
puq ´ ξF̃n

puq
˘

ˆ

”

F0pu` α0qpF̃npuq ´ F0puqq ` F0puqpF0pu` α0q ´ F̃npu` α0qq

ı

´
F̃npu` α0q

F̃npu` α0q ´ F̃npuq

`

ξ̄F̃n
pu` α0q ´ ξF̃n

pu` α0q
˘

ˆ

”

p1´ F0pu` α0qqpF̃npuq ´ F0puqq ` p1´ F0puqqpF0pu` α0q ´ F̃npu` α0qq

ı

.

We apply the Cauchy-Schwarz inequality to get

ˇ

ˇ

ˇ

ˇ

ż

`

φ̄F̃n
´ φF̃n

˘

dQF0

ˇ

ˇ

ˇ

ˇ

ď C ‖ ξ̄F̃n
´ ξF̃n

‖2 ˆ ‖ F̃n ´ F0 ‖2 . (S.99)

Following a similar argument as in the proof of Lemma S7, we get

|ξ̄F̃n
puq ´ ξF̃n

puq| ď C|F̃npuq ´ F0puq|.

Now the result follows from Lemma S13.

The following lemma computes the Hessian matrix related to our joint estimator.

Lemma S21. Recall that the Hessian matrix is

Hpα, βq ”

˜

Er´X´1
B

Bα
F pX 1β;α, βqs Er´X´1

B

Bβ´
F pX 1β;α, βqs

Er´ B

Bα
F pX 1β ` α;α, βqs Er´ B

Bβ1´
F pX 1β ` α;α, βqs

¸

,

then we have

H0 ” Hpα0, β0q “ ´

˜

ErpX´1 ´ ErX´1|X
1β0sqf0pX

1β0qs ErpX´1 ´ ErX´1|X
1β0sq

b2f0pX
1β0qs

Erf0pX
1β0 ` α0qs ErpX´1 ´ ErX´1|X

1β0sq
1f0pX

1β0 ` α0qs

¸

.
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Proof. In order to avoid repetition, we only show that

Er
B

Bβ1´
F pX 1β ` α;α, βqs|α“α0,β“β0 “ ErpX´1 ´ ErX´1|X

1β0sq
1f0pX

1β0 ` α0qs.

First of all, we have

F pu;α, βq ” Er1´∆3|X
1β`α “ us “

ż

F0pu`x
1
pβ0´βq`α0´αqfX|pX 1β`αqpx|X

1β`α “ uqdx.

Because the first slope coefficient is normalized to be 1, we denote the conditional density

function of pX2, ¨ ¨ ¨ , XKq given X 1β ` α “ u by hθp¨|uq. We make the following change of

variable by taking t1 “ x1β ` α and tj “ xj for j “ 2, ¨ ¨ ¨ , K.

Then we can write

F px1β`α;α, βq “

ż

F0

˜

px1β ` α ´
K
ÿ

j“2

βjx̃jq ` α0 `

K
ÿ

j“2

β0jx̃j

¸

hθpx̃2, ¨ ¨ ¨ , x̃K |x
1β`αqΠK

j“2dx̃j.

Now we take partial derivative w.r.t. βj for j “ 2, ¨ ¨ ¨ , K:

B

Bβj
F px1β ` α;α, βq (S.100)

“

ż

pxj ´ x̃jqf0

˜

px1β ` α ´
K
ÿ

j“2

βjx̃jq ` α0 `

K
ÿ

j“2

β0jx̃j

¸

hθpx̃2, ¨ ¨ ¨ , x̃K |x
1β ` αqΠK

j“2dx̃j

`

ż

F0

˜

px1β ` α ´
K
ÿ

j“2

βjx̃jq ` α0 `

K
ÿ

j“2

β0jx̃j

¸

B

Bβj
hθpx̃2, ¨ ¨ ¨ , x̃K |x

1β ` αqΠK
j“2dx̃j.

The first term on the right-hand side of (S.100) is equal to ErpX´1´ErX´1|X
1β0sq

1f0pX
1β0`

α0qs. Because the function hθp¨|uq is a conditional density function that integrates to 1, the

second term on the right-hand side of (S.100) is zero, when evaluated at θ “ θ0. Therefore,

the desired result follows.

We complete this section by proving the bootstrap consistency of our joint estimator.

Proof of Theorem 3.4. The overall structure of the proof is the same as the one for Theorem

3.3. The necessary change is that one has to apply the maximal inequality with multiplier

bootstrap weights to the corresponding functional classes. To avoid repetition, we only

outline the main steps. We skip the steps leading to the consistency of pα̃˚n, β̃
˚
nq and directly

start with

P˚nζpZ; α̃˚n, β̃
˚
n, F̃

˚
n p¨; α̃

˚
n, β̃

˚
nqq “ 0.
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Then we proceed with

0 “pP˚n ´ P qζpZ; α̃˚n, β̃
˚
n, F̃

˚
n p¨; α̃

˚
n, β̃

˚
nqq

`P rζpZ;α0, β0, F̃
˚
n p¨;α0, β0qq ´ ζpZ;α0, β0, F0p¨qqs

`P rζpZ; α̃˚n, β̃
˚
n, F̃

˚
n p¨; α̃

˚
n, β̃

˚
nqq ´ ζpZ;α0, β0, F̃

˚
n p¨;α0, β0qqs.

Using arguments parallel to the proof of Theorem 3.3 (the part below equation (A.4)), we

have

pP˚n ´ P qζpZ; α̃˚n, β̃
˚
n, F̃

˚
n p¨; α̃

˚
n, β̃

˚
nqq “ P˚nζpZ;α0, β0, F0q ` oppn

´1{2
q,

P rζpZ;α0, β0, F̃
˚
n p¨;α0, β0qq ´ ζpZ;α0, β0, F0p¨qqs “ pP˚n ´ P qφF0 ` oppn

´1{2
q,

and

P rζpZ; α̃˚n, β̃
˚
n, F̃

˚
n p¨; α̃

˚
n, β̃

˚
nqq ´ ζpZ;α0, β0, F̃

˚
n p¨;α0, β0qqs

“ P rζpZ; α̃˚n, β̃
˚
n, F0p¨; α̃

˚
n, β̃

˚
nqq ´ ζpZ;α0, β0, F0p¨qqs ` oppn

´1{2
q

“ H0

˜

α̃˚n ´ α0

β̃˚n ´ β0

¸

` oppn
´1{2

` pα̃˚n ´ α0q ` |β̃
˚
n ´ β0|q.

In the end, we get

H0

˜

α̃˚n ´ α0

β̃˚n´ ´ β0´

¸

“ P˚nζpZ;α0, β0, F0q ` pP˚n ´ P qφF0 ` oppn
´1{2

` pα̃˚n ´ α0q ` |β̃
˚
n ´ β0|q,

which leads to

˜

α̃˚n ´ α̃n

β̃˚n´ ´ β̃n´

¸

“ H´1
0 rpP˚n ´ PnqζpZ;α0, β0, F0q ` pP˚n ´ PnqφF0s ` oppn

´1{2
q.

Thereafter, the desired asymptotic normality follows from Theorem 3.6.13 in Van Der Vaart

and Wellner (1996).
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