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S1 Auxiliary Results

S1.1 Asymptotic Variance of Two-Stage Rank Estimator

This section states the asymptotic variance of the two-stage rank estimator (described
in Section and compares it to our two-stage isotonic estimator. It complements
Remark Recall that X = (X1, X’ ;)" and denote By = (1, 5;_)" (the first element of S
is normalized to 1). Let Sr_ and égr be the two-stage rank estimators for the coefficients
Bo— and threshold aq of the ordered response model . In addition, let gy denote the
density function of X'y, and Fy and fy denote the distribution and density functions of
the error term €. The asymptotic variances of BR_ and &g are given in Theorem ,

whose proof is presented at the end of this section.

Condition S1. The density of X, conditional on X_; and Y, has bounded derivatives up
to the third order.

Condition [S1] adapted from [Sherman| (1993)) [p.137], is sufficient for Assumption 7(i) to
(iv) of Cavanagh and Sherman (1998)).

Theorem S1.1. Under Conditions[1] to[9 and Condition [S1], we have

\/ﬁ(ﬁRf —fB-) = N (07 Hﬁfol,RJBmRHﬁfol,R) ]
\/ﬁ (@R - aO) = N (07 Va;,lRJaoyRVa_(J,lR) )
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Hgr = —E [{X—l — E[X_1 X Bo]}®* 90(X'Bo) (fo(X"Bo) + fo(X'Bo + Oéo))} ,

Joo,n = E [{X—l — E[X_1|X Bl 9o(X'Bo)* (Y + Fo(X'Bo) + Fo(X'Bo + ag) — 3)2] :
—E [fo(X'Bo)go(X'Bo — ao) + f(X'Bo + o) go(X'Bo + ao)],

E [[(Fo(Xlﬁo) — A1) go(X'Bo — a) + (1 — Az — Fo(X'Bo + a)) go(X'Bo + Oéo)]Q] .
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Despite that the asymptotic variance formulae of the isotonic two-stage estimator (The-
orem and the two-stage rank estimator (Theorem have a few comparable terms,
there is no definite ranking between them. We conjecture that the isotonic two-stage estima-
tor may have smaller asymptotic variances in some circumstances as it is likelihood-based,
and also uses the information of the distribution function F'(;, ) and moment conditions.

We present a numerical example to illustrate the relationship between the asymptotic
variances of the isotonic and rank estimators. Let Sy_ contain two elements 5y— = (5o2, So3)’
and X ~ N(0, I5) so that X_; ~ N(0, [3) and K = 3. Define the linear index U = X'f3;. It
follows that U ~ N(0,0%), where o2 = 3)3). We observe that the conditional distribution

of covariates X given the linear index U = X'f3; is
X |U ~N(Bo-U/ots, Iiic1yx(x-1) = Bo-Bo_ /o)
Therefore,
X1 —E[X|U] = X_1 — Bo-UJo}, and E[(X_1 —E[X_4|U))®*|U]| = I — Bo_By_/oF.
The Hessian matrices Hg, (in Theorem and Hg, g (in Theorem simplify to

Hg, = E[fo(U)] x [I = o-B_/opr],
Hgr = E[(fo(U)+ fo(U + ao)) go(U)] x [12 = Bo—By_ /o]

For this example, Figure plots the ratio of asymptotic standard errors (ASE)
between the isotonic and the rank estimators for (Gyo, [o3, and ag, when Fy and fy are the
normal CDF and PDF with the mean equal to 0 and the variance equal to 2. Panel (a)
depicts the ratio ASE(f,)/ASE(8s,z) (black solid line) and ASE(fs)/ASE(fs.z) (red dash-
dotted line) as the true value fp2 = fBy3 = by is running over [0.1,2]. Panel (b) plots the
ratio ASE(&)/ASE(ag) (black solid line) as the true value ¢ is running over [0.1,2.5] and
Bo2 = Bos = 0.5. Both figures also include a curve representing Pr[Y = 3] (black dotted
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line) to show that values of 3y and ¢ are varying within a reasonable range.ﬂ

Figure S1:  Asymptotic standard error (ASE) ratios between the isotonic and the rank
estimators, the error term € ~ N(0, 2), the black dotted line denotes Pr[Y = 3]. Panel (a):
ASE ratios for Soy (black, solid) and [y (red, dashed), By = Sos = by € [0.1,2], ap = 1.
Panel (b): ASE ratio for oy (black, solid), So2 = Boz = 0.5, o € [0.1,2.5].
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Panel (a) shows that the ASEs of the isotonic estimator for the coefficients 5y; and Soo
are about one half of those of the rank estimator, with the ratio varying from 0.52 to 0.56.
Panel (b), on the other hand, shows that the ASE for the threshold «aq is comparable be-
tween these two estimators, as the ratio varies from 0.94 to 1.14. Overall, in this numerical
example, the isotonic two-stage estimator tends to have a smaller asymptotic variance for
estimating 3y while the relative magnitude of two variances depends more on the case for
the estimation of ag. From a heuristic perspective, the first stage of the rank estimator
(Han| 1987, |Cavanagh and Sherman, 1998) only uses the monotonicity of E[Y|X] with
respect to X'fy. Its second stage, on the other hand, uses more structural information
from the ordered response, because it compares conditional probabilities across different

categories.

Proof of Theorem[S1.1. A quick inspection confirms that all the regularity conditions from
Cavanagh and Sherman| (1998) and (Chen| (2002)) are imposed. Therefore, our main task is
to derive explicit forms for the rank scores and Hessian matrices. Consider the first-stage
rank estimator 3z_. Applying Theorems 2 and 3 of |(Cavanagh and Sherman| (1998) with
M being the identity function leads to

INote that in this example, Pr[Y = 1] = 0.5 regardless of the values of 3y and «y.
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\/E(BR— —fo-) = N (07 H%{RjﬁovRHbjol,R) J

where
Hyn = E|{X_1 = EX1[X8]} g0 (X Bo)o (X'0)] . (S.1)
Jan = E[{X 1~ ELXIX' 5]} go(X'80)S(Y, X'60)%| (S.2)
S(y,t) = Y =E[Y[X'5 =], (5.3)
p(t) = E[Y|X'By =t]. (S.4)

In the ordered response model (1.1),
Y = H{—X{BO + & < O} + 2]1{0 < —X{ﬁo +é&; < Oéo} + 3H{—X{ﬁo +é& = Oéo},
and hence

S(Y, XI/B()) = Y+ F()(X/ﬁ()) + Fo(XIB() + Oéo) — 3,
P(X'Bo) = —fo(X'Bo) — fo(X'Bo + ap).

Then we consider the second stage rank estimator ag. Theorem 1 of (Chen (2002) gives
Vn(dg —a0) = N(0,V, 2JaozVa r)

where

2 2
VaoR - F 0 T(Y7 X, BOaQO) 7Ja0R =T 87—(}/’ X> 607a0> 7 (85)
’ oa? ’ oo

and

Ty, 2,0, 8) =E[(I{y = 1} — {Y < 2)) /B — X' > a}]
FE[I{Y = 1} — I{y < 2D {X'B — /8 > a}]. (S.6)

In the following, we provide an explicit expression for 7(y, z, o, $) by computing the con-

ditional expectation given X and then applying the law of iterated expectation. The first
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term of (S.6) becomes
f (L{y = 1) — Fo(X'fo + a0)) dFx (X),
(X—z)B<—o
and the second term of ([S.6]) reduces to

J(X_ . (Fo(X'By) — {y < 2}) dFx(X).

We calculate the partial derivative with respect to .. Let go(-|r) be the conditional density

function of X'y given X_; = r and g¢o(-) be the marginal density of X’fy. Notice that

Jx’50a+(mX)’(BBQ)

T(y7x7a75> = Sl(y7t>gﬁ(t|r)dtdFX—1 (T)

+f Saly, t)go(tr)dtdFx_, (r),
2/ Bo+a+(z—X)' (B—PBo)

where

Si(y,1) E[l{y =1} —I{Y < 2}|X"By = t] = l{y = 1} — Fo(t + ao),
Sy, t) = E[I{Y =1} — I{y < 2}|X'By = t] = Fo(t) — I{y < 2}

Therefore, for v — 0,

T(Z/al’ﬂl + v, /80) - T(yaxvawBO)
' Bo—a ' Bo+a+v
- S et~ | Suly (o
2/ Bo—(a+v) ' Bot+a
= —vSi(y, ' o — a)go(z'Bo — ) — vSa(y, 2’ o + a)go(z' o + ).
Combining equations ([S.8]), (S.9)), and (S.10]) yields

or(Y, X, a, fy)
oo

= [Fo(X'Bo—a+ ag) — A1] go(X'Bo — )
+ [1 — A3 — Fo(X/ﬂo + Oé)] gD(X,ﬁo + Oé),

and thus

aT(Ya X7 Q, 60)
o

S5

(S.7)

(S.10)

(S.11)

= [Fo(X'Bo) — A1] go(X'Bo—cw)+[1 — A — Fo(X'Bo + )] 90(X'Bo+ ).

(S.12)



Furthermore, observe that

E[S:1(Y, X'By — ap)|X'Bo] = 0, (S.13)
E [SQ(K Xlﬁo + Ozo)‘X/ﬂo] = 0. (814)

Using (S.11)), (S.13), and (S.14f), we have
Vao.r = —E [ fo(X'5o)g0(X'Bo — ao) + f(X'Bo + an)go(X'Bo + )] (S5.15)

which is negative and thus satisfies Assumption 5 of (Chen| (2002). O

Note that even for the binary choice data, there is no general ranking of the asymptotic
variances between our Stage 1 estimator in Section [2.2] and the maximum rank estimator.
(The estimators of |Sherman (1993)) and Cavanagh and Sherman| (1998) coincide in this
case.) They deviate from the efficient estimator (Klein and Spady, 1993) in different ways.
Our Stage 1 estimator is not efficient because it uses a simple moment condition rather
than the efficient score function, in order to avoid tuning parameters. The efficiency loss
in the maximum rank estimator, on the other hand, lies in its ignorance of the information
contained in the distribution function. Write the asymptotic variance of both estimators
for 3_; in the sandwich form H; 'S H; ", for d € {npmle, rank}, we have (see e.g. Table 2
of (Groeneboom and Hendrickx| (2019))

Hopmie = E|{X_1 = E[X1[ X801} fo(X'0)) .
Jupmte = E | (X1~ ELX X8} (F(XBo) = A0)?).
He = E|{X_1 = ELX X501 00X 80) fo(XBo) |
Jran = B [{X1 = EIX X B0} 90X 50)? (Fo(X'Bo) — M)

The additional factor go(X’fy) in both H and J for the rank estimator prevents a definite
ranking of two asymptotic variances. Due to the explicit form of the efficient score for
the binary choice model, |Groeneboom and Hendrickx| (2018)) show that one can smooth
the NPMLE and build the estimating equation with the additional weight fy/(Fo(1 — Fp)),

which leads to the efficient estimation.
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S1.2 Computation of NPMLE and Zero-crossing Points

This section provides computational details for the joint estimator proposed in Section
. Recall that the NPMLE Fn(, a, ) can be computed by the iterative convex minorant
algorithm in |Groeneboom and Wellner (1992) and Groeneboom and Jongbloed| (2014)).
Here we provide a more detailed description. The number of mass points, denoted by p,
is smaller than 2n, because for any i with Ay; = 0, either X/5 + o (if Ay; = 1) or Xf (if
As; = 1) does not enter the log-likelihood function. Denote the remaining elements in the
set {X/B, X6+ a:i=1,2,..,n} as U;a’ﬁ),j = 1,2,...,p. Partition the observations into

the following four groups:

I = {1<j<p:U](aB X! for some i and Ay =1},
Iy = {1<j<piU](a6 X8 for some i and Ay = 1},
L = {1<j<p3U](a = X!+« for some i and Ay = 1},
Iy = {1<j<pin(a = X/0 + « for some ¢ and Ag =1}

Define k£ as a function that maps any index from Iy to Iy, for a given observation ¢ with
Ay = 1: k(j) = mif Uj(a’ﬂ) = X/B and Uled X!B + a, for Ay; = 1. Let v® =
(v%t), s vi(,t))’ be the output from the ¢-th iteration, then v+ is the left derivative of the

cumulative sum diagram consisting of the following points:

Py = (0,0), (ZH Z f”Hj@“))—Gj(v(“)) J=1,.p,

where
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and

v? if jel,

Hy(w) = o ) A g
(v; —vpr(y) 2 i ey,
(

The initial value can be set as v® = (1/p,2/p, ...,1)’, which assigns the same probability
mass on each jump point.

Regarding the zero-crossing point, we adopt the modified Barzilai-Borwein method
(Varadhan and Gilbert, 2009), which does not require the differentiability of the estimating
equations. We illustrate with our joint estimator for 6, = (G, )" which solves ®,,(-) in
equation . If the estimating equations were differentiable, then the Newton-Raphson

method would iterate with
Ors1 = O, — D1 (0,)D,(6,), for k=1,2,. ...
Instead, we proceed with the following iteration:
Ori1 = 0 — 1D, (0y), for k=1,2,...,

where [ is known as the spectral step-length. One popular choice is

Sh 1 Sp_1
[, = =12 S.16
g 52_1yk71 ( )

where s;_1 = 0 — 01 and yp_1 = P,(0r) — P, (0x_1). The initial step-length is set as

— mi 1
lo = min { 1. gty
to be combined with a suitable line search technique:

}. To achieve the global convergence, the spectral iterate scheme needs

¢n(0k+1) < Ogi}]%/l ¢n(0k—j) + Mk — 10_4li¢n(9k>a (S'17)
in which ¢,(0) = ©,(0)'®,(6) and n; is a positive decreasing sequence that >~ ,m, < 0.

We refer interested readers to Varadhan and Gilbert| (2009) for the theoretical background

and additional Monte Carlo evidence.
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S1.3 Models with Four or More Categories

Here we discuss the general ordered response model where the dependent variable can take
more than three values such as in the empirical applications of Cameron and Heckman
(1998) or Klein and Sherman (2002)). Formally, the dependent variable is determined by

-

1 if & < XZ-//B(),
2 if X/By<e <X[Bo+ api,
3/1‘ =<3 if XZ//BQ + Qp,1 <g < X{,@o + Qo 2, (818)

\J-l-l if €i>X£ﬁ0+Oé0“]_1,

for ¢ = 1,...,n and J > 3, with a set of ordered thresholds (ag1,...,0 -1). In the
same spirit of [Lewbel (2002), our two-stage estimator in Section directly applies to
this setting. In the first stage, the binary data (I(Y; > 1), X;)", is employed to obtain Ba
and Fn(-; @n) in the same manner as Stage 1 in Section Then one utilizes the data
(I(Y; > j + 1), X;)!, in the second stage to estimate «y ; through the following estimating

equation of a; for j =1,...,J —1,
A 1« . .
\Ifjn<aj,ﬁn, n(: ) = 52[1—11 Yi>j+1)— n(XZﬂn+aj;Bn)]. (S.19)

The large sample properties of the two-stage estimator are presented in the following. We
collect the finite dimensional parameter in 6] = (ap1, g2, ..., -1,5_) and denote
the two-stage semiparametric estimator by 67 = (Qn1, Gy Gy, B ) with J > 3.

Furthermore, we introduce the following notations:

Voi(Zi) = [FolUi+aoy) —I(Y; <j+1)],
0

Vio, = QE[FO(X’,80+a)]\

Vag; = Vags (o + U + Vagg,),

a=ag,;’

forj=1,2,...,J—1. Corollary presents the asymptotic normality of é;{ . Its proof fol-
lows from a straightforward modification of our Theorem up to some notation changes,

and thus is omitted.
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Corollary S1.1. Suppose Conditions 1| to @ hold and Vi, , # 0 for all j. Then we have

Vi (8] - 07) = N(0, %)),

where

ZOJ = E[(wao,1 ) wao,za e 7w010,J—1¢,/80>/(w060,17wao,w e a¢ao,J_1 ) ¢/ﬁo)]

Our joint estimator in Section is also applicable. From a computational point of
view, if there are more than three categories, only the interval corresponding to the chosen
category and its adjacent ones are relevant for the computation of the NPMLE; the other
intervals can be discarded; see (Groeneboom (2014), [p.2093]. Therefore, the construction
of the NPMLE is almost the same as the case with three categories. The consistency of
the NPMLE for multiple categories is shown in [Schick and Yu (2000). However, the rate
of convergence or the asymptotic properties of its linear functionals remain unknown. We
leave this challenging issue to the future research. Thereafter, we recommend practitioners
use the methods in [Klein and Sherman| (2002)f] or [Coppejans| (2007)), if efficiency is the
main concern. Since our empirical application in Section involves three categories, we
will focus on the setup specified by .

S1.4 Estimation of the Trend Function in the Honoré-Paula Mod-

el

Honoré and de Paula (2010) apply the ordered response model (with three categories) to
identify and estimate an interdependent duration model of two players. Our simulation
design and empirical application are based on this model. Let (77,73) be the time of
switching from an initial activity to an alternative activity. The utility flow of the alterna-
tive activity for one player depends on whether the other player has switched or not, which
causes an endogenous interaction effect. The equilibrium of two duration variables (77, T3)

are characterized by

Ty = inf{t;: A(ty) exp (X1 50) exp [a*T{Ts < t1}] = €1},
Ty = inf {t : A(ty) exp (X300) exp [o*T{T} < t2}] = e}, (S.20)

where the unknown scalar o* captures the interaction effect, and the function A(¢) captures

the deterministic trend. Each player j (j = 1,2) has covariate X; and the initial random

2The K-S estimator is also semiparametrically efficient under an additional periodicity restriction on
the covariates; see Section 3.3 of |Coppejans| (2007)).
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utility flow €;. This interdependent duration model induces an ordered response model that
involves the parameters 3y and o*, but not the deterministic trend function A(t). However,
combining Theorem 3 of Honoré and de Paulal (2010) and the key idea of Horowitz| (1996)

yields a nonparametric estimator for In A(¢). To elaborate on the proposal, let
h(tl,tg;l’l,l'g) = PI"{Tl < tl,TQ > t2|X1 = $1,X2 = $2}, for t1 < to.

The proof of Theorem 3 in |[Honoré and de Paula (2010) implies that

6251 8h/8x1k
Thus, one can adopt the estimator given by equation (2.4) in |[Horowitz (1996)) and plug in
a nonparametric kernel estimator for the partial derivative of h(ty,ts;x1,22). Given that
the theoretical properties of such an estimator follow from Horowitz (1996), we will not

expand on the issue.

S2 Additional Simulation Results

S2.1 The Effect of Trimming

We repeat the Monte Carlo exercises in Section for the isotonic two-stage estimator
and the NPMLE-based joint estimator but use the truncated estimating equations. The
trimming scheme follows that of (Groeneboom and Hendrickx (2018), which restricts obser-
vations to those with the estimated F),(X/3) within the interval [r,1—7], where 7 € [0,1/2)
is the truncation parameter.

For the two-stage approach, the trimming revises the estimation procedure described
in Section 2.2] as follows:
Stage 1(ii) (Trimmed). Given Fn(, B), the estimator B, for the regression coefficient is

the zero-crossing point of the truncated estimating equation with respect to 3:

S X [Aus— Bu(XIB:8)| T < Fu(XiB:8) < 1 -7} =00 (5.22)

i=1

Stage 2 (Trimmed). Given Btr and ﬁ’n(, B”), we estimate ag by dy,., which is the zero-
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crossing point of the truncated estimating equation ¥, ;, <6ytr, BAW, Fn(, Btr)> = (0, where

S|

\Ijn,tr <Oé, Btra Fn(a Btr)) = Z [1 - A3i - pn(X;Btr + Q; Btr)] ]I{T < Fn<XZ‘/Btr+a; Btr) < 1_7—}-
i1

(S.23)

For the joint approach, the trimmed version is described as follows. Given F,(-;a, ),

the estimators (ay,, Btr) are the zero-crossing points of the following estimating equations:

(I)n,tr(dtry Btr) = 07 (824)
where

%ZLI Xi 1 [AM — Fn(Xl’ﬁ, a,ﬁ)] {7 < Fn(XZ’ﬁ, a,pf)<1—r71}

q)n’tr<&’ﬁ> = 1 n n / n /
= i [1 — Ay — Fo(XB + o Oé,ﬁ)] {r < F,(X/B+a;a,8) <1—7}

Their finite sample performances are summarized in Tables [S1] and [S2] along with the
two-stage and the joint estimators without any trimming. To evaluate the effect of trim-
ming, we set the truncation parameter 7 = (.01, larger than the one used by |(Groeneboom
and Hendrickx| (2018) (7 = 0.001) . According to Tables[S1]and[S2] even with this relatively
large value of 7, the bias and RMSE for the estimators with trimming are similar to those
without trimming. The effect of trimming is particularly negligible for the joint estimator
of both fy_ and ag, and for the two-stage estimator of 5;_. When it comes to the two-stage
estimator of ag, the trimming reduces its bias to some extent, but that effect diminishes
with the increase of sample size. Overall, trimming is not critical for implementing our

two-stage and joint estimators.
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Table S1: Performance of estimators with and without trimming in the estimating equa-

tions, normal errors.

n = 250 n = 500 n = 750 n = 1000
Methods Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Two-stage  Boz -.0483 .1834 -.0419  .1360 -.0271  .1094 -.0211  .0938
Bos -.0505 .1822 -.0409 .1333 -.0331 .1064 -.0281 .0893
o -.0532  .1526 -.0408 1113 -.0320 .0933 -.0263 .0804
Two-stage  Bo2 -.0483 .1834 -.0418 .1361 -.0270  .1095 -.0208 .0939
(truncated, o3 -.0505 .1822 -.408  .1333 -.0330  .1065 -.0279  .0897
7=0.01) o* -.0368 .1603 -.0318 1135 -.0267  .0943 -.0213  .0810
Joint Bo2 -.0089  .1802 -.0161  .1320 -.0064 .1054 -.0036  .0888
Bos -.0119  .1803 -.0149 1312 -.0129  .0989 -.008  .0828
a* -.0275 1337 -.0213  .0951 -.0153 .0777 -.0117  .0652
Joint Bo2 -.0086  .1803 -.0159  .1320 -.0059  .1059 -.0034 .0886
(truncated, fo3 -.0116  .1807 -.0148 .1316 -.0128  .0995 -.0107 .0834
7=001) ao* -.0274 1338 -.0215  .0948 -.0155  .0777 -.0117  .0653

Table S2: Performance of estimators with and without trimming in the estimating equa-

tions, exponential errors.

n = 250 n = 500 n = 750 n = 1000
Methods Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Two-stage  Bo2 -.0505 .1745 -.0400  .1249 -.0337  .0965 -.0259  .0915
Bos -.0572 1714 -.0409  .1203 -.0319  .0996 -.0272  .0891
o -.0417 1411 -.0353  .1009 -.0290 .0802 -.0264 .0745
Two-stage  Bo2 -.0505 .1745 -.0399 1252 -.0333  .0966 -.0255  .0919
(truncated, o3 -.0572 1714 -.0408 .1203 -.0315  .0996 -.0269 .0893
7 =0.01) a* -.0263 .1474 -.0266 .1014 -.0221  .0809 -.0209 .0748
Joint Bo2 -.0144 1744 -.0158 .1193 -.0165 .0896 -.0117  .0839
Bo3 -.0228 1634 -.0174 1143 -.0144  .0927 -.0132 .0814
a* -.0193 .1253 -.0164 .0850 -.0136  .0652 -.0138  .0590
Joint Boz -.0114  .1745 -.0154 1198 -.0161  .0895 -.0112 .0842
(truncated, fo3 -.0229 .1633 -.0168  .1150 -.0142  .0928 -.0131 .0810
7=0.01) ao* -.0194 1255 -.0163  .0853 -.0133  .0655 -.0135 .0588
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S2.2 Confidence Intervals

Tables |S3| and [S4] report the empirical coverage rate (CR) and the mean length (ML) of
the 95% confidence intervals (ClIs) based on the nonparametric bootstrap for the proposed
semiparametric methods and several alternatives described in Section 3 of the main paper.
The simulation design and the computation of estimators follow Section [4.1] The trimming
proportion p is set to 0.2 in the K-S estimator. The number of bootstrap replications is
200. The sample sizes are 250, 500, 750 and 1000. The number of simulations is 1000.

We make the following observations regarding the confidence intervals. First, the Cls of
both two-stage and joint estimators have good coverage rates for the coefficients 5y_ and
the threshold parameter o with moderate sample sizes. Between them, the coverage rate
of the joint estimator is closer to the nominal rate. Second, the ClIs of two-stage and joint
estimators are substantially shorter than the rank and K-S estimators. Third, the coverage
rates of the bootstrap-based CIs of the rank and K-S estimator are also quite precise. On

the other hand, the SMS exhibits over-coverage in all scenarios.

Table S3: Coverage proportion (CR) and mean length (ML) of 95% bootstrap-based con-
fidence intervals, normal errors.
n = 250 n = 500 n = 750 n = 1000
Methods CR ML CR ML CR ML CR ML
Two-stage [y 889 .683 900 480 927 393 936 .338
Bos 901 .656 912 465 923 378 939 329
a* 876 .5d5 897 .393 914 320 923 277
Joint Bo2 916 739 925 519 933 425 947 365
Bos 917 714 924 506 949 412 954 355
o 897 523 929 382 943 311 945 267
Rank Bo2 926 1.327 940 1.025 938 929 938 .883
Bos 955 1.338 945 1.056 950 .957 921 907
a 884 797 912 577 921 .500 903 457
K-S Boz 901 1.376 932 1.048 946 .866 940 757
Bos 909  1.426 943 1.073 961 871 952 768
o 897 1.324 922 961 917 782 921 .702
SMS Bo2 988 2.506 996 .662 997 454 995 385
Bos 990 2.505 993 678 990 464 995 397
a* 995 2.381 989 .694 991 .500 995 427
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Table S4: Coverage proportion (CR) and mean length (ML) of 95% bootstrap-based con-
fidence intervals, exponential errors.
n = 250 n = 500 n = 750 n = 1000
Methods CR ML CR ML CR ML CR ML
Two-stage g2 895 .649 916 454 936 .365 922 317
Bos 902 .622 918 435 940 .354 928 .305
a* 896 531 920 .371 935 .300 933 .259
Joint Bo2 920 .690 935 485 .959  .390 945 338
Bos 926  .662 943 466 950 .380 939 .384
a* 918 496 952 .360 955 .289 948 247
Rank Bo2 945 1.278 938 1.000 938 914 930 .853
Bos 955 1.281 956 1.025 935 .945 919 .886
a® 911 759 929 553 931 .480 911 441
K-S Bo2 921 1.354 947 970 958 795 933 .704
Bos 947 1.370 957 998 967 817 959 720
a* 933 1.740 911 .866 929 .709 904 .637
SMS Bo2 998 1.174 994 514 991 422 997 384
Bos 997 1.136 996 521 996 431 994 .395
a* 992 1.127 989 444 993 .353 988  .314

S2.3 Unbounded Covariates and Errors

This section repeats the simulation exercises in Section for covariates X; and error
terms €; (j = 1,2) with unbounded support. To be sepcific, Xj; is a standard normal
variable; X, is a x?(1) variable standardized to mean zero and variance one; the remaining
components (X3, X4, X;5) are multivariate standard normal with the pairwise correlation
coefficient between X5, and X}y, equal to 0.5¥17%2|. The error terms (e;, ;) once again take
two types: (I). Normal errors: log(e;) and log(es) have the standard normal distribution,
and (II). Exponential errors: log(e;) and log(es) have the unit exponential distribution.
The following Figures and show that the performance of estimators in the case of
unbounded covariates and errors is similar to those in the bounded cases shown in Figures

3 and 4. Observations and discussions in Section apply here.
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Figure S2a: Finite sample performances of estimators for (o2, o3, @*), normal errors: two-
stage (black, dashed, o), joint (red, solid, W), rank (blue, long-dashed, A), K-S (green,
dotted, x for Bpa, fo3; x and + for a* depending on p), SMS (brown, dot-dashed, ),
ordered probit (violet, two-dashed, o), ordered logit (cyan, very long-dashed, o).

Bias for Bo,
0.25

0.20
0.15
0.10
0.05

0.00

Bias for Bos Bias for o
0.25 0.20 O Xewun,,
......... X
0.20
0.15
0.15
0.10
0.10
e e
0.05] & - __ - 4
005 ey St teti bl 0T
0.00 000 A== T S ———.
500 750 1000 250 500 750 1000
n n
RMSE for Bos RMSE for a”

250

500 750 1000 250 500 750 1000 250 500 750 1000
n n n

® (1).Two-stage 4 (3).Rank + (5).SMS (7).Logit ® (1).Two-stage 4 (3).Rank + (5).K-S(p=0.20) = (7).Probit

= (2).Joint x (4).K-S = (6).Probit = (2).Joint % (4).K-S(p=0.05) * (6).SMS (8).Logit

Figure S2b: Finite sample performances of estimators for (g, fos, *), exponential errors.
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Figure S3a: Pointwsie estimators for the function H(w) at w = —2,—1 and 1, normal
errors: two-stage (black, dashed, o), joint (red, solid, W), rank (blue, long-dashed, A), K-S
(green, dotted, x), SMS (brown, dot—dashed, ¢), ordered probit (violet, two-dashed, o),
ordered logit (cyan, very long-dashed, o).
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Figure S3b: Pointwsie estimators for the function H(w) at w = —2, —1 and 1, exponential
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S3 Technical Proofs Related to Two-stage Estimation

This section presents and proves the technical lemmas and other results that are used in
the proof of Theorem We also prove Theorem [3.2]

We first restate some necessary definitions and Theorem 2.4.1 in [Van Der Vaart and
Wellner (1996)) that will be used repeatedly in the sequel. Let F be the class of functions
and Ly (@) be the Lo-norm defined by a probability measure ). For any probability measure
Q, let N(e, F, Ly(Q)) be the minimal number of balls of radius € needed to cover the class
F. The entropy integral J(d, F) is defined as

5
J(8, F) = supj \/1+1log N(e, F, Ly(Q))de.
Q Jo

An envelope function of a functional class F is a function F' such that |f(z)| < F(z) for
all v and f € F.

Lemma S1 (Theorem 2.14.1 in [Van Der Vaart and Wellner| (1996)). Let Py be the distri-
bution of the underlying observation and let F be a Py-measurable class with an envelope
function F. We have

Bsup|G. /| < J(LF) | F s (5.25)

We need to apply the following well-known entropy bounds concerning monotone func-
tions and functions of bounded variation repeatedly. The bounds actually hold for the
entropy integral uniformly over the underlying probability measure, which will be used in
Section [S4] as well. We refer readers to Theorem 2.7.5 on [p.159] of [Van Der Vaart and
Wellner| (1996) or Lemma 3.8 on [p.36] of [Van de Geer| (2000) for the proofs.

Lemma S2 (Entropy Bounds). Let Ac be the class of monotone functions with values in
[0,C], then for all § > 0,
J(6, Ac) S V0. (S.26)

Let Bo be the class of functions of bounded variation with values in [c,C|, then for all
0>0,
J(0,Bc) < V6. (S.27)

Now we obtain the entropy bounds for the key functional class in our context and prove

the asymptotic characterizations for several terms appearing in our proof of Theorem
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Lemma S3. The functional class G defined by
G = {(g;, 5y) = (1— 65— F('8+a)): (o, B_) € O, F() e A} (S.28)
has bounded entropy integral. Therefore, we have the following Glivenko-Cantelli property:
(B — P) | B (X'Ba + i B ) | = 00(1).
Moreover, we obtain the stochastic equicontinuity as
G | B (X7Br + i B) = Fo (X'By + o) | = 0,(1). (S.29)

Proof. We first verify that the uniform entropy integral J(1,G) is bounded. Because the
isotonic estimator Fn(t, f) is a monotonically increasing function for any given g, G is the
class of composite functions involving a monotonically increasing link/ridge function and
a linear index 2’ + « with parameters («, 3) belonging to a compact Euclidean space. By
Lemma 2.3 in Balabdaoui, Groeneboom, and Hendrickx (2019), we get log N(g,G) < 1/e,
so the uniform entropy integral J(1,G) is indeed bounded. Therefore, the functional class
G is P-Donsker, which directly implies the stated Glivenko-Cantelli property.

Regarding the stochastic equicontinuity, let ' = («, ") and consider the following

class:
G. = {x s (F('8 + a) — Fo(a'fo + ) : 0€ O, F(-) e A, 10— bo|v || F — Fy o< e},

for some small positive e. Again G, has bounded entropy integral similarly as G. Moreover,
E, (X/@n + Qi Bn> — Fo (X'6Bo + ) belongs to G, with probability tending to 1, because

I B (X8 i B ) = Fo (X6 + ) |1

<l B (X B+ i Bu) = Fo (X'Bu+ i B ) e + 1| Fo (X'Bu+ s B ) = Fo (X' + o) Il
—, 0.

The convergence of the first term on the right hand side of the inequality follows from the
uniform consistency of the isotonic estimator as in (S.40]), whereas the convergence of the
second term is due to the smoothness of Fy(u; 3) (w.r.t. both v and ) and the consistency

of &,, and Bn Thereafter, the desired stochastic equicontinuity follows from applying |D
to the class G.. O
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Proof of the existence of &,,. We show the existence of a unique zero-crossing point of ¥,
(defined in Stage 2 of Section with probability approaching to 1. Because « is a scalar,

the zero-crossing point of ¥, (a) can be equivalently defined as &, such that for any a:
(G — )W, (a) =0, (S.30)

see Lemma 4.1 of |(Groeneboom and Hendrickx| (2018)). If the zero-crossing point does not

exist, then for all a;; there exists some oy such that
(1 — ag)¥, () < —c <0, (S.31)

for some finite positive constant c¢. Such a constant term ¢ exists because the isotonic
estimate Fn (u; Bn) is a piece-wise constant function with finitely many jumps for any n, so

is W, («) for all . In particular, we have

(g — ) V() < —c. (S.32)
By the corresponding Glivenko-Cantelli property, we get

(ap — a2)¥(ae) < —c/2, (S.33)

with probability tending to 1. However, this contradicts the fact that oy is the unique
zero-crossing point of W(«), since W(«) is monotone and continuous with respect to «,
given the monotonicity and absolute continuity of Fy. Thus, the zero-crossing point &,

exists with probability tending to 1. O]

An immediate consequence of Lemma [S3]is Lemma [S4] which shows the negligibility of
the terms I8 and I5, in our proof of Theorem The claims directly follow from (S.29)).

Lemma S4. Suppose Conditions[1] to[q hold. We characterize the following smaller order

terms:

vnlb =o0,(1), and +/nI5, = o,(1). (S.34)

Now we prove several preparatory lemmas related to the linear representation of I3, .

Recall that U = X'[,.
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Lemma S5. Suppose Conditions[1] to[q hold. The following representation holds:

R f Do () (Fy(u: Bo) — 61)AP(u, 61), (5.35)

where

Pao (1) = go(u — a0)/go(u). (S.36)

Proof. The result follows from a similar argument used in Lemma 4.1 of (Groeneboom,
Jongbloed, and Witte| (2010):

I, =— Fn u+ ag; Bo) — Folu + Oéo)) go(u)du (S.37)

ol ( u; 6o) = Fylu) ) dGo(u)

(7l
(s Bo) = Folw) ) golu — ao)du
¢
Dao () (Fu(w; Bo) — 01)dP(u, 1),

F
F
|
F

where the last line uses the fact that §;dP = Fy(u)go(u), since the probability density
function of the binary choice data (U, Ay) is

p(u,01) = Fo(u)™ (1 — Fy(u)) ™ go(u). (S.38)

O

We consider the piece-wise constant version of ¢,, which is constant on the same in-
tervals where the isotonic estimator Fn(, f) remains constant. Denote those intervals by
Ji = |73, Tix1). We define

oy (1) = P (An (13 8)), (5.39)
where A
T, if Vte J;: Fo(t) > Fu(m; 8),
An(u; ) =1s, if dse J;: Fy(s) = An(s;ﬁ),
Tit1s if Vted;: Fo(t) < An(Ti;ﬁ),
for u € J;.

The following convergence results of the isotonic estimator are available from the first
equation on [p.79] of |Groeneboom and Wellner| (1992), Lemma 3.1 of |Groeneboom and
Hendrickx| (2018), Proposition 2 of Balabdaoui, Groeneboom, and Hendrickx| (2019), and
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Lemma 5.9 of (Groeneboom and Wellner| (1992).

Lemma S6. Suppose Conditions [1] to[9 hold, then we have

P <lim sup |, (u; ) — Folu; 5)‘ = o> ~1, (S.40)
n—=%0 geB
and
A ; 1/2
sup ( F.(u; 8) — Fo(u;ﬁ)) dG(u)) =0, (logn X n_l/3) ,
BeB
A 1/2
sup (j ‘An(u; B) — u‘ dG(u)) = 0, (logn x n™%).
BeB

Note that the statement in Lemma 3.1(ii) of Groeneboom and Hendrickx! (2018]) applied
trimming on the distribution function in order to be comparable with the efficient estimators
they proposed. Here we do not need any trimming, in the same spirit of Proposition 2 of
Balabdaoui, Groeneboom, and Hendrickx (2019)). The isotonic estimator is consistent in
terms of the Hellinger distance without any trimming (Van de Geer, 1993). This implies
pointwise consistency if the true error distribution function is absolutely continuous. Since
both the isotonic estimator and the true distribution are monotone, pointwise consistency
implies uniform consistency; see Example 3.3 (a) in|Van de Geer|(1993)) for a nice exposition.
To show the convergence rate, one can first obtain the cubic root rate (modulo the logarithm

factor) in terms of the Hellinger distance, which means:

supj (\/ (u; B) — m> dG(u) = O,(log®n x n=%3).

Then we translate it into the Ly norm as in Lemma 3.1(i) of (Groeneboom and Hendrickx
(2018) or Proposition 2 of Balabdaoui, Groeneboom, and Hendrickx! (2019) using the fact

that (£, — Fp)? («/ «/F0>
The followmg lemma is adapted from Lemma A.4 of|Groeneboom, Jongbloed, and Witte
(2010)), which connects the rate of convergence of the piece-wise approximation ¢,, to the

convergence rate of the isotonic estimator.

Lemma S7. Suppose Conditions 1] to[9 hold. For any u, 3, we have

[@as () = Gaq (u)] < LIE, () = Fo(-)], (S.41)

for a finite positive constant L.
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Given the above lemmas, we get the following characterization of I3,,.

Lemma S8. Suppose Conditions [1] to [ hold, then we have the following linear represen-

tation:

Vnle, = \/nP [FO ~ By 50)] — Gutor, + 0,(1), (S.42)
where Vg, is defined in Theorem [3.1]

Proof. Given the characterization of the isotonic estimator ﬁn(u, Bo) and the piece-wise

constant nature of ano, we get

f¢ao u 50 ] = O, (843)

by equality (8.15) in |Groeneboom and Jongbloed| (2014). Therefore, starting with the

representation of /5, in Lemma [S5| we get

15, = [ Gua(Pols 60) - )P, — P) (S44)
(6 = GuFalas ) — 80) P (w61 (849

In the next lemma, we show that

J%O (u; Bo) — 61)d(P, — P) J%O (Fo(u) — 6,)d(P, — P) + 0,(n~"?), (S.46)

and

[ = Guu) Batus ) = )4, 51) = oy02), (S47
which lead to the desired conclusion. O

Lemma S9. Suppose Conditions[1] to[9 hold, then the following hold:

n_j%O — Fo(u))d(P, — P) = op(n"2),

and

EJ[%O Gaol (Fu(u; Bo) — 61)dP(u, 61) = 0, (n~"?). (S.48)
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Proof. We first handle the term S,, as follows.
S, = 8 — Gua) (Bulus o) ~ Fo(u)dGia)
S| Enlus Bo) = Fo(u) [l3= Op(n~" x log?n), (5.49)

where the second line uses Lemmas [S7] and [S6]
Referring to the term R,,, we introduce some notations adapted from the proof of Lemma

7 in |Groeneboom, Jongbloed, and Witte| (2010). Define

E5(u) = o, (u) B(u), (S.50)

where B € By, the class of functions of bounded variation and with the supremum norm
M. Let

Ge ={&p(u) : B € By} (S.51)

By Lemma [S@|, for any small v > 0 we can find a finite constant term C' such that for all

n sufficiently large:
Pr{Y,c} = Pr{sup || F,(u; 8) — Fo(u; B) |la< Cn~ Y3 logn} =1 — /2.
B
Now for an vanishing sequence v,,, we have

Pr{|n1/2Rn| > v} = Pr{|n1/2Rn| > v, N Thot+ Pr{|n1/2Rn| > v, 0 Ty o}
< v 'E (|02 R, | {0 c}] + /2,

for any small 7. Again by Lemma [S6| we have

E[|n'?R,|1{Ync}] <E sup
BeB¢o

V23 og J B (1) Bu)d(P, — P)‘

< n Y3lognkE sup
&ego

| ez, w

The rest of our proof uses Theorem 2.14.1 in Van Der Vaart and Wellner| (1996)) to bound
the expectation in the last display. Following the construction in|Groeneboom, Jongbloed,
and Witte| (2010), the entropy integral of G is bounded above by a finite constant, i.e.,
J(1,Gc) < . The Ly-norm of the envelope function is also bounded. Then applying
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(S.25)) yields

E|R,| <n *®logn x E sup <n%logn, (S.52)

&eGe

| étwdc, w)

which immediately leads to R,, = 0,(n~/?).
[

Lemma S10. Suppose Conditions[1] to[9 hold. We characterize the following smaller order

term:

Vnlh = o,(1). (S.53)
Proof. Recall that

A

I:?n =P I:Fn(X/Bn + G Bn) - FO(X,Bn + Bn)]_P [ n(Xlﬂo + 040;50) - Fo(Xlﬁo + Oéo)] .

Following the arguments in Lemma [S§ we get

B~ | [(M[m B - 51]) - (M[mu) _ 51])] i(P, — P)

g0(u; Br) go(u)
(S.54)

+ op(n_1/2).

The smoothness assumption in Condition [§/implies that the function in the bracket of (S.54)
belongs to a P-Donsker class by Example 19.7 in Van Der Vaart| (1998). The convergence
of &, and 3, leads to the desired conclusion that /nI = o,(1). O

We then prove Theorem [3.2] Consider the general exchangeable bootstrap weights
M, = (M1, ..., M,,) as in Section 3.6 of Van Der Vaart and Wellner| (1996). Common-
ly used exchangeable bootstrap schemes include: (i) nonparametric bootstrap in which
the weights M,, follow the multinomial distribution Multi (n, (n™!,... n™!)); (ii) Bayesian
bootstrap in which the bootstrap weights M,; = w;/> .  w; for i = 1,...,n and w; has
the unit exponential distribution (Rubin| |1981)); and (iii) Delete-h jackknives in which the
bootstrap weights are generated from permuting the deterministic weights w,; = n/(n — h)
forv = 1,...,n —h and M,; = wyg,;) where R, is a random permutation uniformly
over {1,...,n} (Wul 1990). We use the following notations: P*f = n=' 3"  M,.f (Z:),
and G f = n~Y2Y"  (M,; — 1) f (Z), where Z = (Y, X). To take into account the joint

randomness from the observed data and the bootstrap weights, we consider the underlying
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product probability space (Z° x M, A* x Q, Pzys) . Furthermore, the bootstrap weights

are independent of the sample observations, i.e., Pzy; = Pz X Pyy.

Lemma S11 (Lemma 3.6.7 in [Van Der Vaart and Wellner| (1996))). Let Z,1, ..., Zn, be
arbitrary stochastic processes and (M1, ..., M,,) be any exchangeable random vector in-

dependent of Zn1, ..., Zyn. For any ng > 0 and n > ng, we have

1 Ey (maxy<icn | Mpi
EZM<7 ><noEz<\zmu>( v (A sicn| '))

U VP (M du) Ey ( ) .

When it comes to proving the stochastic equicontinuity related to the bootstrap version,

max
ng<i<n

Z z

j =ngp+1

applying the multiplier inequality in Lemma, to G., we get

Ezu |l G ||| < JEM(maXMm +E,

where G, is the corresponding envelope function. The first term is of smaller order since

no<k<n

max || Gy H' (S.55)

1
—Ey ‘max M,;

NG

under our assumptions on the bootstrap weights. Meanwhile, the Levy inequality (Propo-
sition A.1.2 of [Van Der Vaart and Wellner| (1996))) implies:

= 0p(1),

Pr{max || Gy [|> A} < 2Pr{]| G, |[> A},

which makes the second term negligible. In analogous to Lemma [S6, the bootstrapped

isotonic estimator and its jump locations satisfy

Sﬁug || F;(%ﬁ) - Fo(u; ﬁ) ng Op (logn % n*1/3) ’
€

sup || AZ(U;B) —u |l2= 0, (logn % n—1/3) ’
BeB

in Pz-probability.

Proof of Theorem[3.4. The bootstrap validity of BA;“L_ has been shown in |(Groeneboom and
Hendrickx| (2017))[p3465, equation (4.19)]. Here we focus on . To prove its conditional

526



weak convergence, we start with the bootstrap estimating equation and decompose it into

%ng [1 — FXXIBE 4Gk BY) — Agi] —IF 4 IE I (S.56)
where

I - %iMn [1— Fy(X!By + o) — Aui] (S.57)

I, = %ile |:F0(Xz{50 + ) — FH(XIBo + ao; 50)] ; (S.58)

I, = %Z My | E(X[By + a0i o) = Fr(XI3; + a3 7). (8.59)

=1

The general scheme is analogous to our proof of Theorem First of all, note that
I}, = O,,,(n"%%) in P-probability. Referring to I3

* __ T*a b
o, We get I3 = I5% 4 I3 where

I3 = PFo(U +a0) = (U +agi fo) | and I3} = (B1=P) | Fo(U + o) = F;(U + ao; o).
(S.60)
We shall utilize P-Donsker property (Van Der Vaart and Wellner, [1996)) to show I3° =

0p,,(n71?) as in Lemma . We also have the following linear representation as in Lemma

S5
VRIge =P | By = (5 Bo)| = v [P: = Plum, + oy, (1), (3.61)
in Pz-probability.

When it comes to I, we decompose it into three terms: I3 = I3 + I3 + [*¢ where

3n’ 3nr
Iy =P [FO(XIB; + a5 B) — Fo(X'Bo + Oéo)] ; (S5.62)
I3 = P BE(XBy 4+ 6 ) — B (X o + ao; o) — Fo(X' By + @i B2) + Fo(X'Bo + )|

I = (P — P) [ BB + 6 ) — B (X 8o + i o) |

Similar to Lemma and Lemma[S4] we have I3 = 0,(n~"2) and I3 = 0,(n""/?) by the
P-Donsker property of the corresponding functional classes. We also have the following

expansion:

I35 = Vo (a5 = ao) + Vi (Bi_ = Bo-) + 0p(n ™% + & — ao + (3 — o). (5.63)
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By taking the difference of the linear representations for & and &,,, we get

V(6 = ) = Vo 'G [ + ¥r, + 1] + 0p(1). (S.64)

The desired result follows from Theorem 3.6.13 in [Van Der Vaart and Wellner| (1996). [

S4 Technical Proofs Related to Joint Estimation

This section presents and proves the technical lemmas and other results that are used in
the proof of Theorem [3.3] We also present the proof of Theorem

Related to the P-Glivenko-Cantelli or P-Donsker property, it is more convenient to work
with the bracketing entropy bounds. For that purpose, we collect the necessary definitions
from [Van Der Vaart and Wellner (1996) as follows. The bracketing number Np (e, F, |-[|,)
for subclass F is defined to be the minimum of m such that 3 f£, fV, ... fL fUforvVf e F,
fE< f< fY for some j, and |fY — ijHQ < €. Denote Hpj (¢, F, |-||5) = log Ny (e, F, |-[l5)-

We need a few more notations to establish the consistency and rate of convergence. Let
qo be the true density function and ¢ be a member of the class of densities, denoted by P.

We define
q+qo
2

In addition, we denote a ball (measured according to the Hellinger distance) around the

, 755{(]:(1673}7 and 751/25{@1/2:@675}. (8.65)

QE

true density ¢o, intersected with P2, by
PY2(6) = {q"* e P 1 h(q, qo) < 0},

for some small positive 6. We refer to Hpj(u, P/?(0)) as the local entropy with bracketing

and its corresponding entropy integral is given by

o
Jy (8, P2(0)) = f Hy(u, PY*(8))du v 6. (S.66)

62/213

Similar to |Geskus and Groeneboom! (1997)), we consider the following density functions:

QF(U,(Sl,(SQ,(S?,;OZ,ﬁ) = 51F(U7O{,ﬁ)+52{F(U+OZ,O[,6)*F(U,a,ﬁ)}+63{1*F(u+a7a,ﬁ)}
(S.67)

Recall the notations in the proof of Theorem [3.3} ¢ denotes the density g for given

0 = (o, ") and F = Fp, and g, ¢ denotes the maximum likelihood estimator for given 6.
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The Hellinger distance h between the two densities is given by

~ 2
20 (G0, G0.0) = J (F2(us0) — Ry (wi0)) dQ

51=1
. . 2
+f ((Fn(u +a;0) — Ey(u;0)Y? — (Fy(u + o; 0) — Fy(u; 0))1/2> dQ
Sa=1
- 2
+f ((1 — Fy(u+a;0)? - (1 - Fy(u + a; 9))1/2> dQ. (S.68)
S3=1
We record Theorem 7.4 in Van de Geer| (2000) which establishes a general result for
the convergence rate of the maximum likelihood estimator. We are going to apply it to

our context. In Lemma [S12] gy denotes the true density and ¢, denotes the maximum

likelihood estimator.

Lemma S12 (Theorem 7.4 in|Van de Geer|(2000)). Take ¥(8) > Jpj(8, PY2(8)) (the entropy
integral function defined in (S.66)) in such a way that ¥()/8? is a non-increasing function
of 6. Then for a universal constant c, and for \/nd> = c¢¥(6,), we have for all § = 6,

Pr{h(Gn, q0) > 0} < cexp (—nd?/c?) .

Lemma implies that the maximum likelihood estimator ¢, converges at the rate
O,(6y,). The next lemma delivers the rate of convergence for the NPMLE in terms of Ly

norm uniformly over the finite dimensional parameter.

Lemma S13. Regarding the convergence by Lo-norm, we have
sup || F(a +2'8;60) — Fo(a + 2/3;0) ||l.= O, (log® n x n’l/?’) : (S.69)
0

Proof. In order to obtain the rate of convergence, we need to first bound the entropy

number for the likelihood function:
FA5(X[B:0) x (F(XIB + a;0) — F(X!3;0)) x (1 — F(X[B + a;0))>* .

The only complication comes from the term

Fo= {VF@B+0a;0) = F@B:0) : (o, 8, F)}. (S.70)

Its entropy number can be bounded in the following way; see Example 3.3(b) of [Van de
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Geer| (1993). If F(2'8 + a;0) — F(2'8;0) > § or F(2'8 + &;0) — F(2/3;0) > 6, then

‘VF@%+aﬂ) P 5:0) - F@%+aw»—ﬁwwﬂﬂ

{‘F ('8 + o;0) — F(a'B + a; )| + |F('8;0) — F(2'B;0)|} -

If both F(2'8 + ;0) — F(2/3;0) <6 or F(2'3+ a;0) — F(2'B;0) < §, obviously one has

T+ i)~ F5i0) [P+ ai6) — F(5i6)| < 245,
In sum, for any probability measure (), we get
N<4\/gv ‘FD7 LZ(Q)) < N(57 Fo, L2<Q)>7

where Fy = {F(2'8 + a;0) : (o, 8, F)}. Compared with the calculation in Van de Geer
(1993), one needs to account for the presence of finite dimensional parameter, which incurs

an additional logn factor. Therefore, one can apply Lemma to get
h(g = O,(log? —13 S.71
SUp h(Gn 0, do.p) = Op(log™n > n ). (5.71)

Also, note that

(F, — Fy)? < <\/> \/FO) and (F, — Fp)? < (\/1—— ﬁ)

we get that
sup || ﬁn(-;ﬁ) — Fo(+;0) |l2= Op(log2n X n’1/3).
)

O

In the following, we provide some details for our proof of Theorem [3.3] Specifically, we
show the existence of zero-crossing points and the stochastic equicontinuity of negligible

terms related to our estimating equations.

Ezistence of the zero-crossing point of ®,. Recall that § = (a, 8" ). The first coordinate
of § is normalized to be 1; i.e., the overall number of unknown parameters is equal to K.

The uniform convergence of the estimating equation leads to

D,,(0) = By, (0 — 0p) + 7,(0), (S.72)
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where 7,(6) = 0,(1) + 0(6 — ). We define for h > 0
D, 1 (0) = B, (0 — 0p) + Fnpn(0), (S.73)
with
%ﬁW)=h”Jimml—ay~kauK—5Kw4uh~qumM.udmﬁ (S.74)

where k(-) is a standard kernel density function supported on [—1, 1]. Note that limj_,o 7, ,(0) =

rn(0). We re-parameterize 6 and 6, as
v = ®y,0, and ~y = Dy, by, (S.75)

which gives
D,5(0) =7 =70 + Fun(Py7). (S.76)

Given the result in (S.72]), the mapping
v 50 — Fa(Dg ') (S.77)

maps, for each 6 > 0, the ball Bs(vy) = {7 : [y — Y| < 0} into Bspa(y) = {v : |y —
70| < §/2} with probability approaching to 1. Therefore by Brouwer’s fixed point theorem
(Groeneboom and Hendrickx, [2018), the mapping v — o — fn,h@golfy) has a fixed point
which we denote by v, . Let 6, = @;)17n7h, then we have

D, 1(0,n) = 0. (S.78)

By compactness of the parameter space, the sequence (0,,1/)7—, must have a subsequence
(6,1/8,) With a limit point 6, as [ — 0.

Finally, we prove that ®,,(#) has a zero-crossing point at 6, by contradiction, following
Groeneboom and Hendrickx (2018))([p.14] in their supplementary material). Suppose that
the j-th component ®J of ®, does not have a crossing of zero at #,. Then there must be
an open ball Bs(6,) = {0 : |0 — 0,| < 6} of 0, such that ® has a constant sign in Bs(d,),
say ®J(0) = ¢ > 0 for all § € Bs(f,) and some constant ¢ > 0. Following the argument of
Groeneboom and Hendrickx (2018)), the j-th component of @Zhh of @, satisfies

N
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for sufficiently small h and all § € B;(0,,), which contradicting , since 6, , for h = 1/k,
belongs to Bs(0,,) for large k;.

We also show that (g, 5_) is the unique zero-crossing point for the population level
estimating equation. By the self-consistency of the NPMLE (Groeneboom and Wellner,
1992)), we have E[A|X'S = v, XS+« = u+ o] = F(u;,8). It is clear that given
the value of X', X' + a does not provide additional information about A;. Thereafter,
we can apply Lemma 4.1 of |Groeneboom and Hendrickx| (2018) to show [ is the unique
zero-crossing point of the first set of estimating equations associated with (A, X_4). For
the second estimating equation E[1 — Az — F(X'S + «a; «, §)], it is enough to fix § = fp.
Following the calculation in Lemma it is easy to see that the estimating equation is
monotone with respect to « for fixed 5. Hence, oy is the unique zero-crossing point.

[]

Lemma S14. Under Conditions[] to[I(, we have
(]P)n - P)C(Z, d/m Bm Fn(v &n) Bn)) = PnC(Zy Qy, BO) FO) + Op(n_l/Q)a

and

P[C(Z; G, By Fule 6, Bn)) — C(Z; a0, Boy Fu(5 a0, Bo))]
= P[C(Z; dn, Bn, Fo(-; am, Bn)) — C(Z; a0, Bo, Fo())] + 0p(n™ ).

Proof. The proof essentially follows from Lemma by the stochastic equicontinuity of
the related P-Donsker classes and the consistency of &, and Bn The only change applies
to the functional class that the NPMLE F, belongs to, given that the NPMLE is a sub-
distribution or a defective distribution. However, the entropy bound for the monotone
functions in Lemma [S2| does not depend on the range of the function, as long as it is finite.

Hence, the desired results follow. O

The remaining proofs characterize the asymptotic property of the linear functional for
the NPMLE given the data and the true unknown parameter 6,. We denote the empirical
probability measure of the ordered response data by @),, and its population version by Qg,,
where the distribution is set to be the true unknown Fy. We mentioned in the main text
that the NPMLE could be a defective distribution (or a sub-distribution) in finite samples;
ie., Fn(u) < 1 for any w in the support. However, this plays a minor role regarding the large

sample properties because the defectiveness does not occur with probability 1 as n — oo.
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Lemma S15 (Proposition 1 in |Geskus and Groeneboom! (1997))). We have

lim Pr{F, is defective} = 0.

n—0o0

We record the following lemma from Corollary 1 in |Geskus and Groeneboom| (1997)),
which characterizes the NPMLE Fn.

Lemma S16. Any function o that is constant at the same intervals as F), satisfies

Jo(u) [ I Sl bl B % dQn(u,6,,8,) = 0. (S.80)
F,(u) 1-F,(u+ay) F.(u+ay)—F,(u)

We draw on (Geskus and Groeneboom| (1996, (1997, 1999)), where the authors developed

a systematic approach to characterize the linear functional of NPMLE for the interval

censored data (case 2). For that purpose, we define ¢;(u SC X _1|v]go(v)dv, c3(u) =

Go(u — ap), and c(u) = (¢} (u), cs(u))’. Consider the hnear functlonal k(Fp) = §c(v)dFy(v)

and its canonical (with zero mean) gradient
Rp(u) = c(u) — fc(v)dF(v). (S.81)

A key component in determining the asymptotic property of (&, Bn) 1S Kf, (00,60)7 1€ the
linear functional of the NPMLE when the finite dimensional parameter is set to be its true
value. The influence function of the latter one crucially depends on whether there is a
unique element ¢ satisfying

L*¢p = kp, (S.82)

given the differentiability of Zr in the sense of [Van der Vaart| (1991), where L* denotes the

adjoint operator of L defined in equation . We further denote its derivative by & p.
To present the solution ¢p, we denote u = z/fy and the support of it as [Cf, Cyl;

see (Coppejans (2007). For any function a in the tangent set, the score operator for the

nonparametric component is

01 SZ*L adF 5 S;Hao adF (1 =01 — ) Su+a0 adF

LlalCe,0002) = =5y = " Flu+ ag) — Fw) 1= Flu+ ao)

(.83)

For any function b(v, d1, d2), we also have the adjoint operator L* specified as follows:

L*[b](u) = f : b(v,1,0)go(v)dv + Ju b(v,0,1)go(v)dv + J b(v,0,0)go(v)dv. (S.84)

u u—« Cr
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Letting ¢p(u) = SZL a(v)dF(v) be the integrated score function, we have

u u—agQ

v s(v)

F ) go(v)dv—i-f

u—aQ

(v + ag) —<(v)
F(v+ ap) — F(v)

go(v)dzH—JC %%(v)dv.

(S.85)
Following equation (4) in |Geskus and Groeneboom (1997) and Example 4.2 in |Van de Geer

(1995)), the solution to (S.82) can be written as

L*Lia](u) = f

u

- sr(u) sp(u+ ag) — cp(u) sr(u+ ag)
O 01,02) = 1y e Sy — (U= = ) s (S:86)
where
() = —F(u)[(1 = F(u))w(u) + (1 = F(u+ ap))w(u + ag)], for Cp <u < ap
(1= F(u)) [F(uw)w(u) + F(u — ap)w(u — ap)], for ap < u < Cy,
and w(u) = géo(&)).

We consider the piece-wise approximation of ¢z , which is constant on the same intervals
where the NPMLE Fn(-; a, ) remains constant. Denote those intervals by J; = [, Tit1).
We define

i (1) = 57, (An(u; 0, 8)), (S:87)
where )
Tis it Vte J;: Fo(t) > F(m; «, 8),
fln(u;a,ﬂ) =1 s, if Jse J;: Fy(s) = Fn(s; a, ),
Tit1s it Vte J;: Fo(t) < Fn(Ti; a, 3),
for u € J,.

We define the function £p as

sp(u)
F(u)(1 = F(u)

Er(u) = (S.88)

We also consider the piece-wise constant version of §z , denoted by '3 7., which is defined

by &5 (u) = Gpn/[ﬁn(u)(l — F,(u))]. In addition, let ¢ denote the function ¢y defined
in (S.86)), but with ¢z replaced by ¢ .
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Lemma S17. Under Conditions[] to[I(, we have

Va(Ey) - k(F)) = v f o d(Qn — Q) + 0p(1). (5.89)

Proof. The proof of this result requires several intermediate lemmas that we present after-
wards. Here we describe the crux of the arguments in four steps.
Step 1. The first step rewrites the effect from estimating the distribution using NPMLE

in terms of its linear functional:
Vn((F,) — k(Fy)) = \/ﬁfrapod(ﬁn — Fy). (S.90)

Step 2. The second step is similar to the proof of Lemma [S5| where we apply integration

by parts. Now we have
fgpod(ﬁn —Fy) =— quﬁndQFo, (S.91)

by Lemma 1 in |Geskus and Groeneboom (1997)).
Step 3. We consider the piece-wise approximation &Fn defined below |) By Lemma
[S16] one gets
| ér.d0. -0
Thus, we have

- J(bﬁndQFo =— f‘lgﬁnd(Qn —Qr,) + 0,(n71?), (S.92)

in which we use
[ @~ o) dan, = o)

as proved in Lemma [S20]
Step 4. In the last step, we proceed with the following decomposition

- J&FndQFo = — J¢Fod<Qn - Qr) + J (05 — 01, ] d(Qn — QR,). (S.93)

We show that the second term on the r.h.s. of (S.93)) is 0,(n~'/2). Following the argument
in the proof of Lemma 3 in |Geskus and Groeneboom| (1997) and using Lemma OF
and its piece-wise constant approximation ¢y are of bounded variation. Therefore, one

can show that the random entropy integral as a function of § is of order O,(6%2) for the

S35



functional class that includes (¢ — ¢p,). Then by the uniform consistency of E,, we get

f (65, — dm)* dQr, — 0.

with probability 1. As a result, {[¢z — ¢r|d(Qn — Qr,) = 0,(n™"?) follows from the

stochastic equicontinuity of the related P-Donsker class. In the end, we arrive at

- j Br dQu = — f b d(Qn — Qry) + 0p(n~12). (5.94)

]

The following lemma states the Lipschitz property for ¢z and £g. It can be shown by
combining the closed-form expression of ¢ in (S.86)) and the proof of Lemma 4 in |Geskus
and Groeneboom| (1996)).

Lemma S18. The derwative of sg at the points of continuity is bounded, uniformly over

F and the points of continuity; i.e.,
|<p(u) = sp(v)| < Cilu — v, (S.95)

for u and v in the same interval between jumps and for a finite positive constant Cy. The

same holds for &p. Moreover, the jumps satisfy
[sr(u) = sp(u=)| < Co|F(u) — F(u—)], (5.96)

for a finite positive constant Cs. Again, the same holds for &p.

The next lemma controls the approximation error for the function £z . Its proof resem-
bles the one for Lemma [S7 and uses Lemma [ST8l

Lemma S19. Suppose our Conditions hold, then we have

€5, (w) — &5, (w) N2 Fu(us a0, Bo) — Fo(u) |2 - (5.97)

The following lemma characterizes a smaller order term in Step 3 of the proof of Lemma
while analyzing v/n(k(E,) — k(Fp)).

Lemma S20. Under our conditions, we have
J(ﬁgﬁn — ¢5,) dQr, = 0,(n""?). (S.98)
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Proof. We start by defining the function ¢,, as

Qon(u) == [Qgﬁ’n - ¢Fn] <u7 L, O)FO(U)
— 95, — ¢5,] (w,0,1)[Fo(u + o) — Fo(w)] + |95, — 65, | (4,0,0)[1 = Fo(u + ap)].

Then we obtain

) = 1—]5“(14)~ F ) — £ (u
) = g (6, (1) €, 0)

X [Fo(u + ) (Ey(u) — Fy(u)) + Fo(u)(Fy(u + ag) — Fp(u + ao))]
Fn(u + ao)

o P (R a0) — €5, ut o)

x [(1 — Fy(u + ao))(Fa(u) — Fo(u)) + (1 — Fo(w))(Fp(u + ag) — Fy(u + ao))] .

We apply the Cauchy-Schwarz inequality to get

[ Gr, = on) dan| <116, &, 12 < 1 ool (5.99)
Following a similar argument as in the proof of Lemma we get

€5, (w) = &5, (w)] < C|Fy(u) = Fy(u)|.
Now the result follows from Lemma O
The following lemma computes the Hessian matrix related to our joint estimator.

Lemma S21. Recall that the Hessian matrix is

H(a,f) = (E[_X*%F(X,ﬁ% a, )] E[—X_1”%F(X’ﬁ; a7ﬁ)]> |

E[-%F(X'B+a;a,p8)] E[-35-F(X'B +a;a, )]

then we have

Hy = Hoo, fo) = - (E[<X_1 ~E[X X0 (X )] BI(Xs — E[X 0| X)) fo(X )] ) _

E[fo(X'Bo + ao)] E[(X_1 — E[X 1| X"B]) fo(X'Bo + )]
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Proof. In order to avoid repetition, we only show that

E[a

55 P8+ 20 )l - = ELX -1 — ELX | X R]) (X Ao + )]

First of all, we have
F(u;a, 8) = E[1-A3]X'B+a = u] = JFO(UJFiU/(Bo—ﬁ)JFOéo—Oé)fX(X'5+a)(95|X/5+04 = u)dz.

Because the first slope coefficient is normalized to be 1, we denote the conditional density
function of (Xs, -+, Xk) given X'8 + a = u by hg(-|u). We make the following change of
variable by taking t; = 2’8+ c and t; = z; for j = 2,--- | K.

Then we can write
K K
F(@'B+asa, B) = JFO ((37/5 +o— 2 Bi&;) + oo + Z ﬁoj@) ho(T, -+, Tiel2' B[ ,dz;.
j=2 j=2
Now we take partial derivative w.r.t. 3; for j =2,--- | K:

0 , '
%F(x B+ a;a,B) (5.100)

K K
= J(aﬁj — i’j)fo <($/ﬁ + o — Z ﬁjfj) + oq + 2 50j£j> hg(.ij, cee 7jK’$/ﬁ + &)H]KZQdfj
j=2 Jj=2
K K a
+ JFO ((:L‘/B + o — Z 5]'53]') + aq + Z 50]'53]') a—ﬁjhg(:i‘Q’ c. 7i‘K|Q’}’5 + O_/)H]KZQdfj.
=2 j=2

The first term on the right-hand side of isequal to E[(X_1—E[X 1| X' Bo]) fo(X'Bo+
ap)]. Because the function hy(-|u) is a conditional density function that integrates to 1, the
second term on the right-hand side of is zero, when evaluated at 8 = 6,. Therefore,
the desired result follows. O

We complete this section by proving the bootstrap consistency of our joint estimator.

Proof of Theorem[3.4. The overall structure of the proof is the same as the one for Theorem
B.3] The necessary change is that one has to apply the maximal inequality with multiplier
bootstrap weights to the corresponding functional classes. To avoid repetition, we only

outline the main steps. We skip the steps leading to the consistency of (&, 5) and directly
start with

PEC(Z;as, B FX (5 ak, B5)) = 0.
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Then we proceed with

0=(P; — P)(Z: a5, B, Fr( a5, BE)
+P[C(Z;a0,ﬁo,13§(-; ao,ﬂo)) - C(Z;Oéoﬁo,Fo('))]
+P[C(Zy a5, B, B (560, B2) — C(Z; 0, Bo, B (+5 0, o)) .

Using arguments parallel to the proof of Theorem (the part below equation (A.4))), we

have

(P — P)((Z; a5, B Fr (6, BE)) = PEC(Z; g, Bo, Fo) + 0p(n™17?),
P[¢(Z; ag, Bo, F (5 a0, Bo)) — C(Z; 0, Boy Fo ()] = (P — P)gp, + 0p(n™?),

and

P[C( Z; a, B:>F*( dmﬁ ) —C(Z;Oéo,ﬁo,ﬁs(ﬁ@o,ﬂo))]
= P[C(Z; a5, B, Fo(+5a5, B2)) — C(Z; a0, Bo, Fo(+)] + op(n~1/?)

5 e

In the end, we get

H0< . _ZO ) = P1((Z; a0, B0, Fo) + (P — P)or, +0,(n™"2 + (@ — o) + 155 = fol),
n—_ 0—

which leads to
ar — a,, B . . .
( - ) = Hy' (B}, = B.)((Z5 00, o, Fo) + (B = Pu)or,] + 0p(n”"72).

Thereafter, the desired asymptotic normality follows from Theorem 3.6.13 in|Van Der Vaart

and Wellner| (1996)). O

References

Bavaspaoul, F., P. GROENEBOOM, AND K. HENDRICKX (2019): “Score estimation in

the monotone single-index model,” Scandinavian Journal of Statistics, 46(2), 517-544.

539



CAMERON, S. V., anD J. J. HECKMAN (1998): “Life cycle schooling and dynamic selection

2

bias: Models and evidence for five cohorts of American males,” Journal of Political

Economy, 106, 262-333.

CAVANAGH, C., anp R. P. SHERMAN (1998): “Rank estimators for monotonic index
models,” Journal of Econometrics, 84, 351-381.

CHEN, S. (2002): “Rank estimation of transformation models,” Econometrica, 70, 1683—
1697.

COPPEJANS, M. (2007): “On efficient estimation of the ordered response model,” Journal
of Econometrics, 137, 577-614.

GEskuUs, R., anp P. GROENEBOOM (1996): “Asymptotically optimal estimation of s-

mooth functionals for interval censoring, 1,” Statistica Neerlandica, 50, 69-88.

——— (1997): “Asymptotically optimal estimation of smooth functionals for interval
censoring, I1,” Statistica Neerlandica, 51, 201-219.

——— (1999): “Asymptotically optimal estimation of smooth functionals for interval
censoring, case 2,” The Annals of Statistics, 27, 627-674.

GROENEBOOM, P. (2014): “Maximum smoothed likelihood estimators for the interval
censoring model,” The Annals of Statistics, 42, 2092-2137.

GROENEBOOM, P., axnp K. HENDRICKX (2017): “The nonparametric bootstrap for the
current status model,” FElectronic Journal of Statistics, 11, 3446-3483.

(2018): “Current status linear regression,” The Annals of Statistics, 46, 1415-
1444.

(2019): “Estimation in monotone single-index models,” Statistica Neerlandica,
73(1), 78-99.

GROENEBOOM, P.; AND G. JONGBLOED (2014): Nonparametric estimation under shape

constraints. Cambridge University Press.

GROENEBOOM, P., G. JONGBLOED, aAND B. I. WITTE (2010): “Maximum smoothed
likelihood estimation and smoothed maximum likelihood estimation in the current status
model,” The Annals of Statistics, 38, 352—-387.

540



GROENEBOOM, P., AND J. A. WELLNER (1992): Information bounds and nonparametric

maximum likelthood estimation. Birkhauser.

HaNn, A. K. (1987): “Non-parametric analysis of a generalized regression model: the

maximum rank correlation estimator,” Journal of Econometrics, 35, 303-316.

HONORE, B. E., anD A. DE PauLa (2010): “Interdependent durations,” Review of Eco-
nomic Studies, 77, 1138-1163.

Horowitz, J. L. (1996): “Semiparametric estimation of a regression model with an

unknown transformation of the dependent variable,” Econometrica, 64, 103—137.

KLeEIN, R. W., anp R. P. SHERMAN (2002): “Shift restrictions and semiparametric

estimation in ordered response models,” Econometrica, 70(2), 663-691.

KrLeEIN, R. W., anp R. H. SpAaDY (1993): “An efficient semiparametric estimator for
binary response models,” Econometrica, 61(2), 387-421.

LEWBEL, A. (2002): “Ordered response threshold estimation,” Working paper.
RUBIN, D. (1981): “Bayesian bootstrap,” The Annals of statistics, 9, 130—134.

SCHICK, A., AND Q. YU (2000): “Consistency of the GMLE with mixed case intervalcen-
sored data,” Scandinavian Journal of Statistics, 27, 45-55.

SHERMAN, R. P. (1993): “The limiting distribution of the maximum rank correlation

estimator,” Econometrica, 61, 123-137.

VAN DE GEER, S. (1993): “Hellinger-consistency of certain nonparametric maximum like-
lihood estimators,” The Annals of Statistics, 21, 14—44.

(1995): “Asymptotic normality in mixture models,” ESAIM: Probability and
Statistics, 1, 17-33.

——— (2000): Empirical processes in M-estimation. Cambridge University Press.

VAN DER VAART, A. (1991): “On differentiable functionals,” The Annals of Statistics, 19,
178-204.

VAN DER VAART, A. (1998): Asymptotic statistics. Cambridge University Press.

VAN DER VAART, A., aND J. A. WELLNER (1996): Weak convergence and empirical

processes. Springer.

541



VARADHAN, R.; anD P. GILBERT (2009): “BB: An R package for solving a large system of
nonlinear equations and for optimizing a high-dimensional nonlinear objective function,”
Journal of Statistical Software, 32(4), 1-26.

Wu, C. (1990): “On the asymptotic properties of the jackknife histogram,” The Annals
of Statistics, 18, 1438-1452.

542



	Auxiliary Results
	Asymptotic Variance of Two-Stage Rank Estimator
	Computation of NPMLE and Zero-crossing Points
	Models with Four or More Categories
	Estimation of the Trend Function in the Honoré-Paula Model

	Additional Simulation Results
	The Effect of Trimming
	Confidence Intervals
	Unbounded Covariates and Errors

	Technical Proofs Related to Two-stage Estimation
	Technical Proofs Related to Joint Estimation

