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This online supplement is composed of three parts. Section S1 provides an alternative method

to study the limiting null distribution of our test statistic. Section S2 provides some discussion

on the asymptotic pivotality of our test. Section S3 provides some additional simulation and

application results.

S1 An Alternative Proof for the Limiting Null Distribution

In Section 3.1, we conjectured that the integrability condition in Assumption A.2 can be discarded

with an alternative proof using the theory for V -statistics and the Mercer theorem in functional

analysis. In this section, we provide the proof of Theorem 3.1 by restricting our attention to the case

where the weighting function W (u, v) can be written as W1 (w)W2 (v). Let
∑T

s,t=1 =
∑T

s=1

∑T
t=1,∑T

s,t,r=1 =
∑T

s=1

∑T
t=1

∑T
r=1, and

∑T
s,t,r,m=1 =

∑T
s=1

∑T
t=1

∑T
r=1

∑T
m=1 . Let maxs = max1≤s≤T .

Let {Vt} denote a sequence of random variables that are uniformly distributed on [0, 1] and

independent of the process {Yt} . Let h1ts = h1(Yt, Ys) and h2ts = h2 (Vt, Vs) , where h1 and h2 are

as defined in Section 2. We make the following assumptions.

Assumption S.1 (i) {Yt} is a strong mixing process on Rdm with the mixing coefficient α (·) such

that
∑∞

s=1 sα (s)δ/(2+δ) < ∞; (ii) max1≤t,s≤T E(|h1ts|2+δ) < ∞ and max1≤t,s≤T E(|h2ts|2+δ) < ∞

for some δ > 0.

Assumption S.2 The weighting function W (·): Rdm+1 → R+ is a nonnegative and symmetric

function such that W (u, v) =W1(u)W2(v).
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Assumptions S.1 and S.2 parallel Assumption A.1 and A.2 in the paper. One major difference

is that we do not need to impose integrability on W (u, v). Instead, we assume that the weighting

function can be written as the product of two functions. This assumption can be relaxed at the

cost of more lengthy derivations on the kernel used in the Mercer theorem. The second major

difference is that we do not need to impose any moment conditions on Yt. Instead we impose

some weak moment conditions on h1ts and h2ts. It is easy to see that the moment conditions in

Assumption S.2(ii) are satisfied for the weighting functions discussed in the main text even if Yt
does not have any finite first moment. The symmetric properties of W1 and W2 ensure that both

h1 (·, ·) and h2 (·, ·) are symmetric functions.

The following theorem presents an alternative representation of the main result in Theorem

3.1.

Theorem S1.1. Suppose Assumptions S.1 and S.2 hold. Then under H0 we have

D̂
d−→

∞∑
j=0

λjZ2
j ,

where λj’s are the positive eigenvalues defined in (S1.2) and (S1.3) below, and {Zj}∞j=0 is a sequence
of zero-mean Gaussian variables with covariance defined in (S1.5) below.

To prove Theorem S1.1, we state the following lemma of Sun and Chiang (1997) which will be

used repeatedly.

Lemma S1.2. Let {Vi, i ≥ 1} be a v-dimensional strong mixing process with mixing coefficient
α (·) . Let Fi1,...,im , denote the distribution function of (Vi1 , . . . , Vim) . For any integer m > 1 and
integers (i1, . . . , im) such that 1 ≤ i1 < i2 < . . . < im, let θ be a Borel measurable function such that
max{

∫
|θ (v1, . . . , vm)|1+η̃ dFi1,...,ij (v1, . . . , vj) dFij+1,...,im (vj+1, . . . , vm) ,

∫
|θ (v1, . . . , vm)|1+η̃ dFi1,...,im}

≤Mn for some η̃ > 0. Then |
∫
θ (v1, . . . , vm) dFi1,...,im (v1, . . . , vm)−

∫
θ (v1, . . . , vm) dFi1,...,ij (v1, . . . , vj)

dFij+1,...,im(vj+1, . . . , vm)| ≤ 4M
1/(1+η̃)
n α (ij+1 − ij)

η̃/(1+η̃) .

Proof of Theorem S1.1.

By (2.8), we have

D̂ =
1

T

T∑
s,t=1

h̃1sth̃2st =
1

T

T∑
s,t=1

h̃1sth2st,

where h̃ℓst ≡ hℓst − 1
T

∑T
t=1 hℓst −

1
T

∑T
s=1 hℓst +

1
T 2

∑T
s,t=1 hℓst for ℓ = 1, 2, h1st ≡ h1 (Ys, Yt) ≡∫

Rdm e
iu′(Ys−Yt)W1 (u) du, and h2st ≡ h2(

s
T ,

t
T ) ≡

∫
R e

iv2π(s−t)/TW2 (v) dv. In the last displayed
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equation, the second equality holds by the fact that 1
T

∑T
s=1 h̃1st =

1
T

∑T
t=1 h̃1st = 0. Because h̃1st

involves double demeaning operator, D̂ is a fourth-order V -statistic. Define

h̆1st ≡ h1st −
1

T

T∑
t=1

Et (h1st)−
1

T

T∑
s=1

Es (h1st) +
1

T 2

T∑
s,t=1

EtEs (h1st)

where Et (·) denotes expectation with respect to t-indexed random variable only. Similarly, let

h̆2st ≡ h2

(
s

T
,
t

T

)
−
∫ 1

0
h2

( s
T
, τ
)
dτ −

∫ 1

0
h2

(
τ̃ ,
t

T

)
dτ̃ +

∫ 1

0

∫ 1

0
h2 (τ̃ , τ) dτ̃dτ .

We prove the theorem by showing that

(i) D̂ = D̂1 + op(1) with D̂1 =
1
T

∑T
s,t=1 h̆1sth̆2st,

(ii) D̂1
d→
∑∞

j=0 λjZ2
j .

Step 1. We prove that D̂ = D̂1 + op(1).

Then

h̃1st = h1st −
1

T

T∑
t=1

h1st −
1

T

T∑
s=1

h1st +
1

T 2

T∑
s,t=1

h1st

= h̆1st −
1

T

T∑
t=1

[h1st − Et (h1st)]−
1

T

T∑
s=1

[h1st − Es(h1st)] +
1

T 2

T∑
s,t=1

[h1st − EtEs (h1st)]

and

h̃2st = h2st −
1

T

T∑
t=1

h2st −
1

T

T∑
s=1

h2st +
1

T 2

T∑
s,t=1

h2st

= h̆2st −

[
1

T

T∑
t=1

h2st −
∫ 1

0
h2

( s
T
, τ
)
dτ

]
−

[
1

T

T∑
s=1

h2st −
∫ 1

0
h2

(
τ̃ ,
t

T

)
dτ̃

]

+

 1

T 2

T∑
s,t=1

h2st −
∫ 1

0

∫ 1

0
h2 (τ̃ , τ) dτ̃dτ


≡ h̆2st − r1s − r2t + r3.

Under the null of strict stationarity, it is easy to see that we can rewrite h̆1st as h̆1st = h1st−Et (h1st)

−Es (h1st)+EtEs (h1st) so that Et(h̆1st) = Es(h̆1st) = 0. Noting that 1
T

∑T
s=1 h̃2st =

1
T

∑T
t=1 h̃2st =
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0, we have

D̂ =
1

T

T∑
s,t=1

h̃1sth̃2st =
1

T

T∑
s,t=1

h̆1sth̃2st

=
1

T

T∑
s,t=1

h̆1sth̆2st −
1

T

T∑
s,t=1

h̆1str1s −
1

T

T∑
s,t=1

h̆1str2s +
r3
T

T∑
s,t=1

h̆1st

≡ D̂1 − D̂2 − D̂3 + D̂4.

By the property of Riemann summation approximation to a definite integral, we can readily show

that rℓs = O
(
T−1

)
for ℓ = 1, 2 uniformly in s and r3 = O

(
T−1

)
. Now

D̂2 =
1

T

T∑
s=1

h̆1ssr1s +
1

T

∑
1≤s<t≤T

h̆1str1s +
1

T

∑
1≤t<s≤T

h̆1str1s ≡ D̂2,1 + D̂2,2 + D̂2,3.

Note that
∣∣∣D̂2,1

∣∣∣ ≤ maxs |r1s| 1
T

∑T
s=1 h̆1ss = O(T−1)Op (1) = Op(T

−1). Next, we study D̂2,2. Let

M1T = max
{
max1≤s<t≤T E |h1st|2+δ , EtEs |h1st|2+δ

}
. By Lemma S1.2 with η = 1 + δ,

∣∣∣E (D̂2,2

)∣∣∣ =

∣∣∣∣∣∣ 1T
∑

1≤s<t≤T

E
(
h̆1st

)
r1s

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1T

∑
1≤s<t≤T

[E (h1st)− EtEs (h1st)] r1s

∣∣∣∣∣∣
≤

4M
1/(2+δ)
1T

T

∑
1≤s<t≤T

α (t− s)(1+δ)/(2+δ) |r1s|

≲
T−1∑
τ=1

α (τ)(1+δ)/(2+δ)max
s

|r1s| = O
(
T−1

)
,

where we use the fact that M1T = O (1) . Now, notice that

E

[(
D̂2,2

)2]
=

1

T 2

∑
1≤s<t≤T

∑
1≤r<m≤T

E
(
h̆1sth̆1rm

)
r1sr1r

=
1

T 2

∑
1≤s<t≤T

E
(
h̆21st

)
r21s +

2

T 2

∑
1≤s<t<r≤T

E
(
h̆1sth̆1sr

)
r21s

+
1

T 2

∑
1≤s<t≤T,1≤r<m≤T,#{s,t,r,m}=4

E
(
h̆1sth̆1rm

)
r1sr1r

≡ I1T + I2T + I3T ,

where #A denotes the cardinality of setA. LetM2T ≡ max{max1≤s<t<r≤T E
∣∣∣h̆1sth̆1sr∣∣∣1+δ/2

, EtEsEr
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∣∣∣h̆1sth̆1sr∣∣∣1+δ/2
}. It is easy to see that

I1T =
1

T 2

∑
1≤s<t≤T

E
(
h̆21st

)
r21s ≲ max

s
r21s = O(T−2),

and

I2T =
2

T 2

∑
1≤s<t<r≤T

E
(
h̆1sth̆1sr

)
r21s ≤

8M
2/(2+δ)
2T

T 2

∑
1≤s<t<r≤T

α (r − t)δ/(2+δ)max
s
r21s

≲
T−1∑
τ=1

α (τ)δ/(2+δ)max
s
r21s = O

(
T−2

)
.

For I3T , we have

I3T = T−2
∑

1≤t1<t2≤T,1≤t3<t4≤T,#{t1,t2,t3,t4}=4

h̆1t1t2r1t1 h̆1t3t4r1t3 . (S1.1)

Let 1 ≤ k1 < . . . < k4 ≤ T be the permutation of t1, . . . , t4 in ascending order and let dc be the

c-th largest difference among kj+1 − kj , for j = 1, 2, and 3. Define

H (k1, . . . , k4) = h̆1t1t2r1t1 h̆1t3t4r1t3 .

LetM3T = max

{
max1≤s,t,r,m≤T,#{s,t,r,m}=4E

∣∣∣h̆1sth̆1rm∣∣∣1+δ/2
, EtEsErEm

∣∣∣h̆1sth̆1rm∣∣∣1+δ/2
}
. Since

Ek1 [H (k1, . . . , k4)] = 0, we have by Lemma S1.2 with η = δ/2,

∑
1≤k1<...<k4≤T

k2−k1=d1

|E [H (k1, . . . , k4)]| ≤ 4T−2M
2/(2+δ)
T

T−3∑
k1=1

T−2∑
k2=k1+maxj≥3{kj−kj−1}

T−1∑
k3=k2+1

T∑
k4=k3+1

[α (k2 − k1)]
δ/(2+δ)

×
(
max

s
r1s

)2
≤ 4T−2M

2/(2+δ)
T

T−3∑
k1=1

T−2∑
k2=k1+1

(k2 − k1)
2 [α (k2 − k1)]

δ/(2+δ)
(
max

s
r1s

)2
≤ 4M

2/(2+δ)
T

T∑
j=1

jα (j)δ/(2+δ)
(
max

s
r1s

)2
= O(T−2).

Similarly,
∑

1≤k1<...<k4≤T
k4−k3=d1

|E [H (k1, . . . , k4)]| = O(T−3) by using Ek4 [H (k1, . . . , k4)] = 0. If k3−

k2 = d1, then either k2− k1 = d2 or k4− k3 = d2. Then we can use the fact that Ek1 [H (k1, . . . , k4)]
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= 0 in the first case and Ek4 [H (k1, . . . , k4)] = 0 in the second case to obtain

∑
1≤k1<...<k4≤T

k3−k2=d1

|E [H (k1, . . . , k4)]| ≤ 4T−2M
2/(2+δ)
T

∑
1≤k1<...<k4≤T

k3−k2=d1,k2−k1=d2

[α (k2 − k1)]
δ/(2+δ)

(
max

s
r1s

)2

+ 4T−2M
2/(2+δ)
T

∑
1≤k1<...<k4≤T

k3−k2=d1,k4−k3=d2

[α (k4 − k3)]
δ/(2+δ)

(
max

s
r1s

)2

≤ 8T−1M
2/(2+δ)
T

T−1∑
k2=1

T∑
k3=k2+1

(k2 − k1) [α (k2 − k1)]
δ/(2+δ)

(
max

s
r1s

)2
≤ 8M

2/(2+δ)
T

T∑
j=1

jα (j)δ/(2+δ)
(
max

s
r1s

)2
= O(T−2).

It follows that I3T = O(T−2). Consequently, we have shown that E
[
(D̂2,2)

2
]
= O(T−2). Then

D̂2,2 = Op(T
−1) by the Chebyshev inequality. Similarly, D̂2,3 = Op(T

−1). It follows that D̂2 =

Op(T
−1). Analogously, D̂3 = Op(T

−1) and D̂4 = Op(T
−1). In sum, we have shown that

D̂ = D̂1 +Op(T
−1),

where D̂1 =
1
T

∑T
s,t=1 h̆1sth̆2st.

Step 2. We prove that D̂1
d→
∑∞

j=0 λjZ2
j .

Let ξtT ≡ (Y ′
t , t/T )

′. The dependence of ξtT on T will complicate the asymptotic analysis. But

{t/T}Tt=1 behaves like the T realizations of a uniform random variable on the interval [0, 1] . This

motivates us to introduce ξt ≡ (Y ′
t , Vt)

′, where {Vt} are i.i.d. U [0, 1] and are independent of the

process {Yt} . Let ξ = (y′, τ)′, ξ̃ = (ỹ′, τ̃)′, and φ(ξ, ξ̃) = h̆1 (y, ỹ) h̆2 (τ , τ̃) , where

h̆1 (y, ỹ) = h1 (y, ỹ)− E [h1 (y, Yt)]− E [h1 (Yt, ỹ)] + EsEt [h1 (Yt, Ys)] , and

h̆2 (τ , τ̃) = h2 (τ , τ̃)− E [h2 (τ , Vt)]− E [h2 (Vt, τ̃)] + EsEt [h2 (Vt, Vs)] .

By construction, both h̆1 and h̆2 are canonical in the sense that they are E[h̆1 (y, Yt)] = E[h̆1 (Yt, y)] =

0 for all y and E[h̆2 (τ , Vt)] = E[h̆2 (Vt, τ)] = 0 for all τ . Note that φ (ξtT , ξsT ) = h̆1sth̆2st and

D̂1 =
1
T

∑T
s,t=1 h̆1sth̆2st =

1
T

∑T
s,t=1 φ (ξtT , ξsT ) . When W (u, v) =W1 (u)W2 (v) , we have

h̆1 (y, ỹ) =

∫ [
eiu

′y − E(eiu
′Yt)
] [
e−iu′ỹ − E(e−iu′Yt)

]
dW1(u), and
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h̆2 (τ , τ̃) =

∫ [
eiv2πτ − E(eiv2πVt)

] [
e−iv2πτ̃ − E(e−iv2πVt)

]
dW2(v).

With the above expressions, we can readily show that φ(ξ, ξ̃) is a positive semidefinite (p.s.d.)

kernel, i.e., ∫ ∫
φ(ξ, ξ̃)g (ξ) g(ξ̃)dξdξ̃ ≥ 0

for any g ∈ L2 (Ξ, F ) where L2 (Ξ, F ) denotes the Hilbert space defined on the support Ξ of ξt and

F denotes the cumulative distribution function (CDF) of ξt. Then by the Mercer theorem (e.g.,

Vapnik (1998, p.423) or Sun (2005)), φ
(
ξ, ξ̃
)

exhibits the following spectral decomposition

φ
(
ξ, ξ̃
)
=

∞∑
j=0

λjϕj (ξ)ϕj

(
ξ̃
)
, (S1.2)

where
{
ϕj (·)

}∞
j=0

denotes the orthonormal eigenfunctions with E
[
ϕj (ξt)

]
= 0, and E[ϕj (ξt)ϕk (ξt)]

= δj,k where δj,k = 1 (j = k), and {λj}∞j=1 the corresponding nonnegative eigenvalues of the inte-

gral equation ∫ 1

0

∫
Rdm

φ(ξ, ξ̃)ϕj(ỹ, τ̃)dFY (ỹ)dτ̃ = λjϕj(ξ), (S1.3)

where FY denotes the marginal CDF of Yt. Here, without loss of generality, we can restrict λj ’s to

be strictly positive in the above expansion as they will not contribute to the summation otherwise.

Indeed, for any λj > 0, we have by (S1.3),

ϕj(ξt) =
1

λj

∫ 1

0

∫
Rdm

φ
(
ξt, ξ̃

)
ϕj(ỹ, τ̃)dFY (ỹ)dτ̃ =

1

λj
Es

[
φ (ξt, ξs)ϕj(ξs)

]
.

Taking expectations on both sides and applying Fubini theorem, we obtain

E
[
ϕj(ξt)

]
=

1

λj
EtEs

[
φ (ξt, ξs)ϕj(ξs)

]
=

1

λj
Es

[
Et [φ (ξt, ξs)]ϕj(ξs)

]
= 0,

where the last equality holds by the fact that Et [φ (ξt, ξs)] = 0. By the fact that φ(ξ, ξ̃) =

h̆1 (y, ỹ) h̆2 (τ , τ̃) and both h̆1 and h̆2 are canonical, we have

E
[
φ
(
(y, Vt), ξ̃

)]
= E

[
h̆1 (y, ỹ) h̆2 (Vt, τ̃)

]
= 0 for any nonrandom y and ξ̃,

and

E
[
φ
(
(Yt, τ), ξ̃

)]
= E

[
h̆1 (Yt, ỹ) h̆2 (τ , τ̃)

]
= 0 for any nonrandom τ and ξ̃.
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It follows that

E
[
ϕj(y, Vt)

]
=

1

λj
EtEs

[
φ ((y, Vt) , ξs)ϕj(ξs)

]
=

1

λj
Es

[
Et [φ ((y, Vt) , ξs)]ϕj(ξs)

]
= 0 for any y,

and

E
[
ϕj(Yt, τ)

]
=

1

λj
EtEs

[
φ ((Yt, τ) , ξs)ϕj(ξs)

]
=

1

λj
Es

[
Et [φ ((Yt, τ) , ξs)]ϕj(ξs)

]
= 0 for any τ .

In particular E
[
ϕj (ξtT )

]
= E[ϕj(Yt,

t
T )] = 0 for all j and t. In addition, the series in (S1.2)

converges absolutely and the eigenvalues are summable. Difficulty lies in the fact that we observe

ξtT but not ξt and that E
[
ϕj (ξtT )

]
̸= 0. In fact, ξtT is not even stationary despite the stationarity

of ξt. Then we have

D̂1 =
1

T

T∑
s=1

T∑
t=1

N∑
j=0

λjϕj (ξtT )ϕjT (ξsT ) +
1

T

T∑
s=1

T∑
t=1

∞∑
j=N+1

λjϕj (ξtT )ϕj (ξsT )

≡ D̂N
1,1 + D̂N

1,2,

where D̂N
1,1 is the leading term and D̂1,2 is the remainder term for a well chosen integer N.

First, we show that D̂N
1,2 = op (1) . Noting that D̂N

1,2 = 1
T

∑∞
j=N+1 λj

[∑T
t=1 ϕj (ξtT )

]2
≥ 0, we

can readily apply Lemma S1.2

E
∣∣∣D̂N

1,2,1

∣∣∣ = ∞∑
j=N+1

λj
1

T

T∑
s=1

T∑
t=1

E
[
ϕj (ξtT )ϕj (ξsT )

]
≲

∞∑
j=N+1

λj = o(1) as N → ∞.

Then D̂N
1,2 = op (1) as N → ∞.

Next, by the fact that E
[
ϕj (ξtT )

]
= 0 for each j and t and the summability of {λj} , we can

readily follow the proof of Theorem 1 in Borisov and Volodko (2008) (see also the proof of Theorem

1 in Lee (1990, Ch.3.2.2)) and show that

D̂N
1,1 =

N∑
j=0

λj

[
1√
T

T∑
t=1

ϕj (ξtT )

]2
d→

∞∑
j=1

λjZ2
j ,

where {Zj}∞j=1 is a centered Gaussian sequence with the covariances

E [ZjZk] = lim
T→∞

1

T

T∑
s,t=1

E
[
ϕj (ξsT )ϕk (ξtT )

]
, (S1.4)
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where the last summation and limit are well defined by the Davydov inequality for strong mixing

processes. To simplify the expression in (S1.4), let

Vjk,T =
1

T

T∑
s,t=1

E
[
ϕj (ξsT )ϕk (ξtT )

]
=

1

T

T∑
t=1

E
[
ϕj (ξtT )ϕk (ξtT )

]
+

1

T

∑
1≤s<t≤T

E
[
ϕj (ξsT )ϕk (ξtT )

]
+

1

T

∑
1≤t<s≤T

E
[
ϕj (ξsT )ϕk (ξtT )

]
≡ Vjk,T,1 + Vjk,T,2 + Vjk,T,3.

For Vjk,T,1, we have

Vjk,T,1 =
1

T

T∑
t=1

E

[
ϕj

(
Yt,

t

T

)
ϕk

(
Yt,

t

T

)]
=

∫
ϕj (y, τ)ϕk (y, τ) dFY (y)dτ + o (1) = E

[
ϕj (ξt)ϕk (ξt)

]
+ o (1) .

For Vjk,T,2, we have

Vjk,T,2 =

T−1∑
l=1

1

T

T∑
t=l+1

E

[
ϕj

(
Yt−l,

t− l

T

)
ϕk

(
Yt,

t

T

)]

=

T−1∑
l=1

T − l

T

1

T − l

T∑
t=l+1

E

[
ϕj

(
Y1−l,

t

T
− l

T

)
ϕk

(
Y1,

t

T

)]

=
T−1∑
l=1

(
1− l

T

)∫ 1

0
E

[
ϕj

(
Y1−l, τ −

l

T

)
ϕk (Y1, τ)

]
dτ + o (1)

→
∞∑
l=1

∫ 1

0
E
[
ϕj (Y1−l, τ)ϕk (Y1, τ)

]
dτ =

∞∑
l=1

E
[
ϕj (Yt−l, Vt)ϕk (Yt, Vt)

]
,

where the second equality follows from the strict stationarity of {Yt} , the third holds by the Rie-

mann summation approximation of a definite integral, and the convergence holds by the dominated

convergence theorem. By the same token,

Vjk,T,3 →
∞∑
l=1

∫ 1

0
E
[
ϕj (Y1, τ)ϕk (Y1−l, τ)

]
dτ =

∞∑
l=1

E
[
ϕj (Yt, Vt)ϕk (Yt−l, Vt)

]
.
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It follows that

E [ZjZk] = E
[
ϕj (ξt)ϕk (ξt)

]
+

∞∑
l=1

{
E
[
ϕj (Yt−l, Vt)ϕk (Yt, Vt)

]
+ E

[
ϕj (Yt, Vt)ϕk (Yt−l, Vt)

]}
.

(S1.5)

In sum, we have shown that D̂1
d→
∑∞

j=0 λjZ2
j , where {Zj}∞j=0 is a sequence of zero-mean Gaussian

variables with covariance defined in (S1.5). ■

Remark. When {Yt} are i.i.d., it is easy to see that E [ZjZk] = E
[
ϕj (ξt)ϕk (ξt)

]
= δj,k. In

particular, E(Z2
j ) = 1 and {Zj}∞j=1 are i.i.d. N (0, 1) . Note that the major difference between the

main distributional results in Theorems S1.1 and 3.1 lies in the fact that one is represented in terms

of discrete Gaussian process while the other in terms of continuous Gaussian process. Despite such

different representations, the two limiting distributions are equivalent when the conditions in both

theorems are satisfied. Here we only show that the two limiting distributions share the same first

moment. It is easy to show that under Assumption S.2,

lim
T→∞

1

T

T∑
t,s=1

E
[
h̆1 (Yt, Ys)

]
h̆2st =

∫
Γ1 (u, u)W1 (u) du

∫
Γ2 (v, v)W2 (v) dv.

Then

E

[∫
|S (u, v)|2W (u, v) dudv

]
=

∫
E [S (u, v)S (u, v)∗]W1 (u)W2 (v) dudv

=

∫
Γ1 (u, u)W1 (u) du

∫
Γ2 (v, v)W2 (v) dv

= lim
T→∞

1

T

T∑
t,s=1

E
[
h̆1 (Yt, Ys) h̆2st

]

= lim
T→∞

1

T

T∑
t,s=1

E [φ (ξtT , ξsT )]

= lim
T→∞

∞∑
j=0

λj
1

T

T∑
t,s=1

E
[
ϕj (ξtT )ϕj (ξsT )

]
=

∞∑
j=0

λjE(Z2
j ).

The above calculations show that the two limiting distributions in S1.1 and 3.1 match in the first

moment. By more tedious arguments, one can show that they also match in the second moments.
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S2 Discussion on the Asymptotic Pivotality

An anonymous referee asks whether it is possible to standardize the statistic D̂ to obtain an

asymptotically pivotal test in our framework. Unfortunately, we are unable to provide a positive

solution. To appreciate the technical challenge, we notice that Proposition 3.1 implies that under

H0,
√
TÂ(u, v) converges to a complex-valued normal distribution for each fixed pair (u, v) with a

well-defined long-run variance K0(w,w) where w = (u′, v)′. Then it is tempting to construct the

following standardized version of Â(u, v):

ŜA(u, v) =

√
TÂ(u, v)√

Γ̂1(u, u)Γ̂2(v, v)
,

where Γ̂2(v, v) = 1 −
∣∣∣∫ 1

0 e
iv2πτdτ

∣∣∣2 and Γ̂1(u, u) is a consistent HAC estimator of the long-run

variance Γ1(u, u). By the continuous mapping theorem, it is standard to show that |ŜA(u, v)|2 d→

χ2(1), where χ2(1) denotes the chi-squared distribution with 1 degree of freedom. But ŜA(u, v)

alone cannot serve as a consistent test statistic for our null hypothesis as it only checks the spectrum

at a single pair (u, v) . To obtain a consistent test, one may consider the following integrated version

of ŜA(u, v) :

ŜD
(1)

=

∫
Rdm+1

∣∣∣ŜA(u, v)∣∣∣2W (u, v)dudv.

Even if |ŜA(u, v)|2 d→ χ2(1) for each fixed pair (u, v), ŜD
(1)

does not follow an asymptotically

pivotal distribution under the null since ŜA(u, v)’s are dependent across various pairs of (u, v)’s,

and we do not know how to take into account the dependence structure among them to deliver a

test statistic that is asymptotically pivotal under the null.

Alternatively, it is tempting to consider the following standardization:

ŜD
(2)

= (D̂ − B̂)/
√

V̂,

where B̂ and V̂ are consistent estimators of E(D̂) and var(D̂). As demonstrated in Section S1,

the limiting distribution of D̂ can be written as a weighted sum of chi-squared distributions with

a countable number of mixture components and complex dependence structures among the mix-
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ture components that depend on certain long-run variance. The estimation of E(D̂) and var(D̂)

would inevitably require the estimation of parameters in the limiting distribution that include the

eigenvalues and the long-run variance. Either one turns out to be extremely challenging if possible

at all. As a result, we are unable to obtain a version of our test statistic that is asymptotically

pivotal under the null.

S3 Some Additional Simulation and Application Results

In this section, we report some additional simulation and application results. First, we follow the

suggestion of an anonymous referee and study the sensitivity of our test to the choice of tuning

parameter bT used in the DWB for both simulated and real data. Second, we compare our test

with that of Francq and Zakoïan (2012) to test for strict stationarity of GARCH(1,1) processes.

Then, we consider the pth-order stationarity tests for both simulated and real data.

S3.1 Sensitivity of the test statistics

In this subsection, we use simulations to show the impact of the tuning parameter bT on our test

based on the dependent wild bootstrap (DWB). Compared to several existing tests, our test does

not need the choice of any smooth parameter in constructing the test statistic for the original data.

But we need to choose a tuning parameter bT that plays a similar role to the block length in the

moving block bootstrap (MBB) to implement the bootstrap version of our test.1 In addition, we

also need to choose a weighting function as in Hong et al. (2017). However, as long as it satisfies

Assumption A.2, our test is consistent against various types of nonstationarity, and the simulations

in the paper suggest that our test is not sensitive to the choice of weighting function.

Below we show that our test can perform well using various choices of bT . In the main text,

we use a data-driven method, i.e., the MV approach, to determine bT . Now, we also consider the

rule-of-thumb (RoT) approach proposed by Rho and Shao (2019) and examine the finite sample

performance of our test under various choices of bT . Rho and Shao (2019) proposed a RoT choice

for bT : bT ≡ lr ≡ ⌊6(T/100)1/4⌋, where ⌊·⌋ denotes the integer part of ·. Shao (2010) conjectured

that nonparametric plug-in methods (e.g., Bülmann and Künsch, 1999; Paparoditis and Politis,
1Shao (2010) calls the tuning parameter bT as “bandwidth”. To avoid confusion with the bandwidth in nonpara-

metric kernel estimation, we refer to bT as “block length”.
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2001, 2002; Politis and White, 2004; Lahiri et al., 2007) can be extended to the DWB. So, we

rerun the simulation of DGPs.S1–S5 and P1–P6 using the following choices of bT :

• the rule-of-thumb block length: bT = lr = ⌊6(T/100)1/4⌋;

• the over- and under-estimated RoT block length: bT = lr ± b for b = 1 and 2;

• the data-dependent block length via Politis and White’s (2004, PW04) procedure: bT =

lPW04;

• a combined approach that chooses the smaller one of lr and lPW04: bT = lCombined =

min(lr, lPW04).

Table S1 reports the finite sample size performance of our test using DWB with the afore-

mentioned choices of block length bT . Even though our test is a bit undersized under lr for four

out of five DGPs when the sample size is small, the rejection rates approach the corresponding

nominal levels quickly as the sample size grows. As expected, the under-rejection in small samples

is alleviated with bT = lr − 1 and lr − 2 but is worsened with bT = lr +1 and lr +2. The empirical

rejection rates are all reasonable when the sample size is large enough. This shows the insensitivity

of our results to the choice of bT . Furthermore, the plug-in method by Politis and White (2004)

and the combined approach both perform well in finite samples under all DGPs. Even though a

formal justification is not provided, our simulation results support the conjecture made by Shao

(2010).

Table S2 provides the finite sample power performance of our test under various choices of

bT . It shows that our test is powerful for all the considered DGPs and such performance is quite

robust to the choices of bT . We do observe that the rejection can be affected by bT when T = 100.

Nevertheless, the empirical rejection rates are all close to 1 when T = 300 and 500. We note

that an exception occurs under lPW04. Our test does not exhibit good finite sample power for

DGP.P1 and P4–P6 when lPW04 is used. That is because Politis and White’s (2004) approach

tends to generate a large bT under these DGPs. Notice that the adopted DWB mimics the serial

dependence in the data using an Ornstein-Uhlenbeck process. When bT is large, η⋆t in Section 3.4

behaves like a near-unit root process. That will inflate the value of the bootstrap test statistics

and result in under-rejection for an overly large value of bT . Such a problem can be alleviated if
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Table S1: Size of DFT tests with different DWB block lengths under DGPs.S1–S5

lr − 2 lr − 1 lr lr + 1 lr + 2 lPW04 lCombined

T 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
S1 100 0.044 0.134 0.034 0.100 0.010 0.084 0.006 0.080 0.010 0.072 0.024 0.106 0.040 0.110

300 0.052 0.128 0.056 0.138 0.036 0.110 0.030 0.106 0.020 0.108 0.038 0.108 0.042 0.108
500 0.060 0.112 0.052 0.126 0.048 0.120 0.034 0.094 0.046 0.124 0.042 0.108 0.046 0.114

S2 100 0.040 0.162 0.010 0.100 0.002 0.076 0.000 0.044 0.002 0.056 0.044 0.132 0.052 0.150
300 0.048 0.136 0.060 0.112 0.024 0.090 0.032 0.098 0.030 0.100 0.044 0.110 0.072 0.122
500 0.076 0.166 0.044 0.124 0.054 0.128 0.038 0.108 0.022 0.086 0.046 0.116 0.054 0.140

S3 100 0.050 0.142 0.018 0.094 0.006 0.062 0.008 0.070 0.002 0.038 0.026 0.082 0.042 0.144
300 0.070 0.126 0.032 0.116 0.040 0.112 0.028 0.102 0.030 0.104 0.028 0.108 0.046 0.110
500 0.028 0.112 0.068 0.130 0.042 0.094 0.036 0.100 0.034 0.092 0.040 0.106 0.054 0.098

S4 100 0.052 0.168 0.044 0.138 0.020 0.122 0.016 0.088 0.006 0.082 0.016 0.102 0.024 0.112
300 0.070 0.140 0.052 0.164 0.046 0.132 0.034 0.110 0.042 0.122 0.030 0.096 0.058 0.128
500 0.074 0.134 0.076 0.164 0.044 0.102 0.042 0.104 0.044 0.104 0.040 0.120 0.054 0.130

S5 100 0.048 0.136 0.010 0.072 0.008 0.080 0.000 0.044 0.002 0.036 0.018 0.080 0.016 0.092
300 0.044 0.118 0.048 0.106 0.036 0.108 0.024 0.084 0.022 0.092 0.040 0.130 0.032 0.108
500 0.078 0.150 0.058 0.122 0.038 0.118 0.062 0.122 0.048 0.098 0.036 0.114 0.044 0.096

Notes: (i) lr denotes using the rule-of-thumb block length lr = ⌊6(T/100)1/4⌋; (ii) lr ± b, b = 1, 2 denote using block
lengths lr ± b, respectively; (iii) lPW04 denotes using the block length selection method of Politis and White (2004);
(iv) lCombined denotes choosing the smaller value between lr and lPW04; and (v) the number of bootstrap samples is
1000.
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one adopts the combined approach that picks a smaller value between lr and lPW04. Since lr only

depends on the sample size, it will offset the effect of an excessively large value of bT selected by

PW04 when the serial dependence is strong in the data.

Table S2: Power of DFT tests with different DWB block lengths under DGPs.P1–P6

lr − 2 lr − 1 lr lr + 1 lr + 2 lPW04 lCombined

DGP T 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
P1 100 0.788 0.904 0.670 0.868 0.526 0.812 0.420 0.716 0.256 0.690 0.000 0.072 0.534 0.796

300 0.938 0.956 0.936 0.974 0.884 0.942 0.876 0.946 0.834 0.932 0.010 0.430 0.888 0.948
500 0.964 0.980 0.970 0.984 0.960 0.978 0.928 0.976 0.920 0.970 0.078 0.568 0.958 0.990

P2 100 0.530 0.776 0.448 0.746 0.320 0.704 0.264 0.686 0.122 0.642 0.682 0.820 0.692 0.838
300 0.998 1.000 0.994 0.996 1.000 1.000 1.000 1.000 0.998 1.000 0.996 0.998 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

P3 100 0.566 0.774 0.458 0.730 0.316 0.696 0.252 0.676 0.122 0.562 0.660 0.790 0.668 0.802
300 0.998 1.000 0.992 0.998 0.998 1.000 0.994 1.000 0.988 0.998 1.000 1.000 0.998 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

P4 100 0.770 0.906 0.694 0.886 0.608 0.868 0.474 0.820 0.284 0.768 0.080 0.478 0.588 0.866
300 0.998 0.998 0.996 1.000 0.990 1.000 0.994 1.000 0.986 0.998 0.158 0.926 0.994 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.720 1.000 1.000 1.000

P5 100 0.972 1.000 0.910 0.994 0.746 0.990 0.480 0.962 0.248 0.926 0.028 0.278 0.706 0.992
300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.070 0.986 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.504 1.000 1.000 1.000

P6 100 0.962 0.990 0.920 0.980 0.852 0.988 0.668 0.948 0.440 0.912 0.000 0.056 0.834 0.972
300 1.000 1.000 0.996 1.000 0.996 0.998 0.990 0.996 0.966 0.994 0.002 0.406 0.992 1.000
500 1.000 1.000 1.000 1.000 0.998 0.998 0.998 1.000 1.000 1.000 0.006 0.572 1.000 1.000

Notes: (i) lr denotes using the rule-of-thumb block length lr = ⌊6(T/100)1/4⌋; (ii) lr ± b, b = 1, 2 denote using block
lengths lr ± b, respectively; (iii) lPW04 denotes using the block length selection method of Politis and White (2004);
(iv) lCombined denotes choosing the smaller value between lr and lPW04; and (v) the number of bootstrap samples is
1000.

Table S3 provides the empirical results for our test with different choices of bT . Compared

with the results in the main text, we can see that our test is quite robust to the choices of bT ,

even though we may draw different conclusions for different choices of bT in some cases. As the

simulations suggest, in case of conflicting conclusions, we recommend the use of lCombined.
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Table S3: Stationarity tests for exchange rate returns with different block lengths

lr − 2 lr − 1 lr lr + 1 lr + 2 lPW04 lCombined

Nominal-univariate
GBP 0.022 0.030 0.032 0.049 0.037 0.006 0.003
CAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000
JAY 0.051 0.074 0.066 0.078 0.112 0.006 0.008
EUR 0.086 0.083 0.100 0.110 0.118 0.031 0.018
Real-univariate
GBP 0.013 0.012 0.030 0.018 0.016 0.000 0.001
CAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000
JAY 0.059 0.071 0.065 0.083 0.069 0.014 0.011
EUR 0.100 0.105 0.115 0.120 0.120 0.028 0.028
Nominal-bivariate
(GBP , CAD) 0.000 0.000 0.000 0.002 0.000 0.000 0.000
(GBP , JAY ) 0.008 0.018 0.012 0.025 0.026 0.001 0.000
(GBP , EUR) 0.192 0.221 0.249 0.236 0.247 0.123 0.123
(CAD, JAY ) 0.000 0.001 0.000 0.002 0.004 0.000 0.000
(CAD, EUR) 0.068 0.070 0.101 0.109 0.113 0.022 0.028
(JAY , EUR) 0.066 0.088 0.109 0.112 0.150 0.025 0.028
Real-bivariate
(GBP ,CAD) 0.000 0.000 0.000 0.002 0.000 0.000 0.000
(GBP , JAY ) 0.006 0.009 0.011 0.014 0.016 0.001 0.001
(GBP , EUR) 0.262 0.265 0.300 0.271 0.290 0.153 0.154
(CAD, JAY ) 0.001 0.000 0.001 0.001 0.003 0.000 0.000
(CAD, EUR) 0.077 0.077 0.089 0.090 0.119 0.037 0.034
(JAY , EUR) 0.075 0.093 0.126 0.135 0.139 0.044 0.029

Notes: (i) numbers in main entries are the bootstrap p-values; (ii) lr denotes using the rule-of-thumb block length
lr = ⌊6(T/100)1/4⌋; (iii) lr ± b, b = 1, 2 denote using block lengths lr ± b, respectively; (iv) lPW04 denotes using the
block length selection method of Politis and White (2004); (v) lCombined denotes choosing the smaller value between
lr and lPW04; and (vi) the number of bootstrap samples is 1000.
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S3.2 A Comparison of the DFT test with Francq and Zakoïan’s (2012) test for
the strict stationarity of GARCH(1,1) processes

As suggested by one referee, we further investigated how the proposed test performs in GARCH

models, in comparison with Francq and Zakoïan’s (2012) strict stationarity test which is developed

specifically for GARCH(1, 1). Specifically, we consider the following four GARCH(1,1) processes.

DGP.S6 : Yt =
√
htεt, ht = 0.01 + 0.01Y 2

t−1 + 0.92ht−1;

DGP.S7 : Yt =
√
htεt, ht = 0.001 + 0.8Y 2

t−1 + 0.2ht−1;

DGP.P7 : Yt =
√
htεt, ht =


0.01 + 0.01Y 2

t−1 + 0.92ht−1, t ≤ 0.3T

0.001 + 0.8Y 2
t−1 + 0.15ht−1, t > 0.3T

;

DGP.P8 : Yt =
√
htεt, ht = 0.001 + 0.28Y 2

t−1 + 0.8ht−1;

where {Yt}Tt=1 is the process to be tested, and {εt} ∼ t(7) is an i.i.d. error term, which is adopted

in Francq and Zakoïan (2012). Obviously, DGP.S6 is a stationary GARCH(1,1) process, where

the coefficients of Y 2
t−1 and ht−1 (denoted as α and β, respectively) satisfy the weak stationarity

restriction α + β = 0.93 < 1. DGP.S7 is an integrated GARCH(1,1) (IGARCH) process with

α + β = 1. As illustrated by Nelson (1990), DGP.S7 satisfies the strict stationarity condition

but not the weak stationarity condition. The coefficients considered in DGPs.S6–S7 are common

in empirical studies as α + β ≃ 1. As for the nonstationary cases, DGP.P7 is a nonstationary

GARCH(1,1) process with an abrupt break in the volatility dynamics. DGP.P8 is a nonstationary

GARCH(1,1) process investigated by Francq and Zakoïan (2012) with the corresponding coefficients

satisfying α+ β > 1. (See e.g., Table IV of their paper.)

Table S4 reports the rejection rates for both our test and that of Francq and Zakoïan (2012). As

expected, our test shows reasonable empirical rejection rates around the nominal significance levels

under DGPs.S6–S7. Even though the test of Francq and Zakoïan (2012) shows under-rejection for

DGPs.S6–S7, it is consistent with their theory. Define the top Lyapunov exponent associated with

a GARCH(1,1) model: Yt =
√
htεt, ht = ω + αY 2

t−1 + βht−1 as

γ ≡ E
[
log
(
αε2t + β

)]
.

Nelson (1990) shows that the necessary and sufficient condition for the strict stationarity of the
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GARCH(1,1) process is γ < 0. Francq and Zakoïan (2012) consider a test for strict stationarity by

testing the null hypothesis H0 : γ < 0. But the empirical rejection rate of their test only converges

to the nominal significance level when the top Lyapunov exponent equals 0 (see Corollary 3.3 in

their paper). This explains the under-size issue of their test since γ < 0 in DGPs.S6 and S7.

As for the power performance, we find that Francq and Zakoïan’s (2012) test does not have

power against DGP.P7 when the nonstationarity results from an abrupt structural break instead

of explosive volatility dynamics. In contrast, our tests have good power and the empirical rejec-

tion rate increases as the sample size grows. This shows a power improvement of our test over

Francq and Zakoïan (2012). Intuitively, their test is designed to detect whether the top Lyapunov

exponent γ exceeds 0. DGP.P7 depicts two regimes of the volatility dynamics which are both non-

explosive with γ < 0. This explains why Francq and Zakoïan’s (2012) test does not have power.

In addition, our tests also have good power against the nonstationary explosive GARCH process

under DGP.P8 in which γ > 0. In contrast, Francq and Zakoïan’s (2012) test is less powerful and

even exhibits non-increasing power against DGP.P8 as the sample size increases. We note that the

empirical rejection rate of Francq and Zakoïan’s (2012) test increases as the sample size increases

from 500 to 4000 as indicated by their Table IV. The empirical rejection rates under 5% and 10%

significance levels are 69.2% and 80.9% when T = 2000, and 91.7% and 97% when T = 4000,

respectively. When conducting our simulation study, we adopted their code directly from their

online supplement at

https://www.econometricsociety.org/content/supplement-strict-stationarity-testing-and-estimation-

explosive-and-stationary-garch-models.

S3.3 Tests for the second-order stationarity via the DFT

In this subsection, we report some simulation results and empirical evidence for testing the second-

order stationarity via the DFT. We use DGPs.S1–S6 and P1–P7 studied in Sections 5 and S3.2.

Note that the second-order moment does not exist under DGPs.S7 and P8, the moment condition

of the second-order stationarity test is not satisfied. So the results for DGPs.S7 and P8 are omitted.

Furthermore, we note that testing second-order stationarity should contain testing constancy for

both the first and second moment of a time series. To concisely illustrate the idea of our test, we

only report the results for testing constancy of the second moment.

18



Table S4: Rejection rates of strict stationarity tests for DGPs.S6–S7 and DGPs.P7–P8

D̂N D̂L F̂

DGP T 5% 10% 5% 10% 5% 10%
S6 100 0.030 0.096 0.023 0.109 0.002 0.002

300 0.036 0.099 0.044 0.109 0.000 0.000
500 0.050 0.114 0.056 0.132 0.000 0.000

S7 100 0.048 0.129 0.060 0.161 0.001 0.001
300 0.036 0.139 0.046 0.183 0.000 0.000
500 0.040 0.128 0.040 0.124 0.000 0.000

P7 100 0.108 0.295 0.231 0.583 0.001 0.003
300 0.643 0.787 0.819 0.916 0.000 0.000
500 0.760 0.856 0.888 0.968 0.000 0.000

P8 100 0.848 0.927 0.884 0.956 0.335 0.382
300 0.994 0.998 0.993 1.000 0.279 0.370
500 0.942 0.999 0.934 1.000 0.312 0.436

Notes: (i) D̂N and D̂L denote DFT tests for strict stationarity with normal and Laplace weighting functions,
respectively; (ii) F̂ denotes strict stationarity tests of Francq and Zakoïan (2012); (iii) for each test, the number of
repetitions is 1000; and (iv) for our test, the number of bootstrap samples is 500.

For our test, we implement D̂(2) defined in Section 4 when the weighting function W̃ (v) is

chosen to be the normal and Laplace density functions, respectively. To implement the DWB,

we consider the following three choices of bT : (1) bT = lMV with lMV selected via the Rho and

Shao’s (2019) MV approach, (2) bT = lr with lr being the Rho and Shao’s (2019) rule-of-thumb

block length, and (3) bT = lCombined = min(lr, lPW04) with lPW04 selected via Politis and White’s

(2004) procedure. In addition, we also implement Hong et al.’s (2017) test for the second-order

stationarity and choose their bandwidth and block length parameters as they suggested.

Tables S5 reports the size performance of our test for DGPs.S1–S6 in comparison with Hong

et al.’s (2017) test for testing the second-order stationarity. As Table S5 suggests, our tests can be

undersized for some of the DGPs when the sample size T is small, but the size generally improves

as the sample size increases. Exception occurs for DGP.S6 where moderate oversize distortion is

observed when T is small. In contrast, Hong et al.’s (2017) test has superb size control for all

DGPs but DGP.S6 where severe size distortion exists even when T = 500.

Table S6 reports the finite sample power and size performance of our test for DGPs.P1–P7 in
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Table S5: Finite sample size of the second-order stationarity tests under DGPs.S1–S6

D̂
(2),N
lMV

D̂
(2),N
lr

D̂
(2),N
lCombined

D̂
(2),L
lMV

D̂
(2),L
lr

D̂
(2),L
lCombined

Ĥ(2)

DGP T 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
S1 Yt,1 100 0.022 0.087 0.023 0.103 0.032 0.110 0.012 0.059 0.000 0.035 0.023 0.088 0.073 0.123

300 0.036 0.105 0.036 0.096 0.058 0.116 0.021 0.070 0.026 0.092 0.042 0.116 0.062 0.106
500 0.039 0.093 0.032 0.082 0.046 0.112 0.036 0.094 0.026 0.076 0.032 0.094 0.050 0.100

S2 Yt,1 100 0.010 0.060 0.016 0.078 0.009 0.051 0.005 0.030 0.000 0.018 0.006 0.037 0.078 0.134
300 0.006 0.035 0.008 0.046 0.008 0.048 0.005 0.024 0.004 0.028 0.004 0.030 0.060 0.120
500 0.005 0.032 0.010 0.044 0.008 0.044 0.004 0.024 0.006 0.038 0.006 0.038 0.052 0.118

S3 Yt,1 100 0.016 0.071 0.024 0.082 0.032 0.093 0.010 0.051 0.002 0.026 0.022 0.076 0.076 0.143
300 0.019 0.065 0.020 0.066 0.032 0.088 0.009 0.052 0.020 0.050 0.030 0.074 0.062 0.104
500 0.022 0.068 0.020 0.076 0.038 0.086 0.023 0.063 0.020 0.064 0.036 0.082 0.050 0.094

Yt,2 100 0.017 0.086 0.019 0.095 0.028 0.097 0.008 0.051 0.002 0.028 0.020 0.090 0.059 0.109
300 0.040 0.089 0.032 0.086 0.050 0.118 0.016 0.075 0.024 0.074 0.042 0.102 0.056 0.102
500 0.036 0.074 0.034 0.086 0.038 0.104 0.035 0.084 0.032 0.070 0.036 0.088 0.042 0.092

S4 Yt,1 100 0.025 0.091 0.033 0.111 0.027 0.097 0.014 0.063 0.002 0.038 0.020 0.080 0.056 0.106
300 0.035 0.093 0.036 0.102 0.046 0.112 0.020 0.052 0.032 0.086 0.048 0.106 0.048 0.106
500 0.034 0.096 0.036 0.100 0.038 0.106 0.032 0.098 0.032 0.078 0.038 0.090 0.040 0.106

Yt,2 100 0.017 0.070 0.022 0.082 0.027 0.085 0.010 0.058 0.001 0.029 0.021 0.067 0.079 0.153
300 0.023 0.073 0.026 0.082 0.036 0.098 0.010 0.050 0.020 0.074 0.028 0.090 0.072 0.142
500 0.020 0.098 0.022 0.096 0.044 0.116 0.023 0.099 0.020 0.078 0.030 0.102 0.066 0.148

Yt,3 100 0.022 0.072 0.028 0.079 0.038 0.091 0.015 0.050 0.003 0.033 0.027 0.077 0.062 0.118
300 0.022 0.082 0.016 0.072 0.052 0.114 0.027 0.063 0.010 0.062 0.046 0.102 0.060 0.112
500 0.018 0.078 0.024 0.086 0.050 0.122 0.028 0.078 0.016 0.082 0.050 0.116 0.064 0.142

S5 Yt,1 100 0.012 0.069 0.013 0.081 0.023 0.090 0.007 0.048 0.000 0.020 0.019 0.078 0.046 0.104
300 0.032 0.090 0.026 0.076 0.040 0.124 0.019 0.059 0.020 0.054 0.038 0.104 0.052 0.106
500 0.034 0.078 0.038 0.080 0.046 0.100 0.032 0.076 0.032 0.078 0.046 0.096 0.044 0.096

Yt,2 100 0.018 0.067 0.016 0.071 0.022 0.086 0.007 0.045 0.004 0.028 0.018 0.070 0.055 0.118
300 0.032 0.084 0.030 0.088 0.046 0.114 0.023 0.071 0.020 0.080 0.042 0.102 0.056 0.112
500 0.028 0.078 0.026 0.070 0.036 0.104 0.027 0.069 0.024 0.060 0.038 0.098 0.056 0.114

Yt,3 100 0.019 0.075 0.025 0.078 0.036 0.096 0.009 0.054 0.003 0.029 0.030 0.079 0.061 0.116
300 0.023 0.084 0.030 0.090 0.044 0.124 0.013 0.049 0.020 0.074 0.040 0.116 0.048 0.106
500 0.026 0.084 0.026 0.088 0.048 0.102 0.021 0.087 0.022 0.076 0.044 0.098 0.044 0.088

Yt,4 100 0.011 0.064 0.017 0.068 0.028 0.083 0.008 0.048 0.002 0.024 0.018 0.071 0.048 0.092
300 0.027 0.081 0.028 0.068 0.038 0.100 0.019 0.067 0.018 0.060 0.030 0.094 0.054 0.092
500 0.040 0.084 0.042 0.088 0.050 0.106 0.040 0.089 0.040 0.082 0.056 0.108 0.056 0.112

S6 Yt,1 100 0.060 0.185 0.025 0.121 0.093 0.214 0.046 0.150 0.009 0.082 0.079 0.183 0.226 0.341
300 0.071 0.190 0.065 0.178 0.051 0.167 0.061 0.165 0.046 0.164 0.038 0.146 0.218 0.342
500 0.056 0.160 0.060 0.150 0.054 0.152 0.040 0.136 0.048 0.148 0.038 0.140 0.198 0.302

Notes: (i) D̂
(2),N

(·) and D̂
(2),L

(·) denote DFT tests for the second-order stationarity with normal and Laplace weighting
functions, respectively; (ii) among the subscripts of D̂(2),·

(·) , lMV denotes using minimum volatility method to select
DWB block length, lr denotes using the rule-of-thumb block length lr = ⌊6(T/100)1/4⌋, and lCombined denotes
choosing the smaller block length selected by lr and lPW04; (iii) Ĥ(2) denotes the second-order stationarity test of
Hong et al. (2017); and (iv) Yt,i, i = 1, . . . , d denotes the ith entry of vector Yt.
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comparison with Hong et al.’s (2017) test for testing the second-order stationarity. Please note

that the null hypothesis of second-order stationarity is violated in DGPs.P1, P2, P4, and {Yt,2}

in DGP.P5, and all three series in DGP.P6, whereas it holds for DGP.P3 and {Yt,1} in DGP.P5.

Table S6 indicates that like the test of Hong et al. (2017), our test has reasonable power against

the alternatives in DGP.P1, P2, and {Yt,2} in DGP.P5, all three series in DGP.P6, and DGP.P7,

but has low power against the locally stationary alternative in DGP.P4. For this latter DGP, both

the first and second moments of Yt are time-varying but they are of the order t/T, which is o (1)

for a large number of time series observations. For DGP.P3 and {Yt,1} in DGP.P5 where the null

hypothesis of second-order stationarity holds, both our test and that of Hong et al. (2017) have

reasonable size and our test outperforms that of Hong et al. (2017) under DGP.P3.

We also apply the pth-order stationarity tests to the exchange rate returns data. In the case

of rejection of the null of strict stationarity, it is interesting to know the source of nonstationarity.

One way is to check whether it is caused by the nonstationarity in the first or second moments.

Since we reject strict stationarity for the GBP and CAD series, we apply the proposed pth-order

stationarity test to these two series. Specifically, we conduct the first- and second-order tests (i.e.,

p = 1 and 2) to both the nominal and real GBP/USD and CAD/USD returns with the normal

and Laplace weighting functions, respectively. We set the number of bootstrap replications to

be B = 1000. Table S7 reports the bootstrap p-values. It shows that we cannot reject the null

hypothesis when p = 1, but find strong evidence of the time-varying second-order moment under

p = 2. This indicates that one source of rejection for the strict stationarity test of GBP and CAD

is the time-varying second-order moment. The results also coincide with the conclusions drawn by

Malik (2003) and Rapach and Strauss (2008), which document structural breaks in the variance

of exchange rate returns.
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Table S6: Finite sample power/size of the second-order stationarity tests under DGPs.P1–P7

D̂
(2),N
lMV

D̂
(2),N
lr

D̂
(2),N
lCombined

D̂
(2),L
lMV

D̂
(2),L
lr

D̂
(2),L
lCombined

Ĥ(2)

DGP T 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
P1 Yt,1 100 0.195 0.469 0.053 0.266 0.053 0.266 0.164 0.472 0.031 0.233 0.031 0.234 0.250 0.379

300 0.443 0.675 0.491 0.720 0.491 0.720 0.453 0.719 0.496 0.764 0.496 0.764 0.590 0.682
500 0.508 0.746 0.712 0.844 0.712 0.844 0.513 0.785 0.754 0.892 0.754 0.892 0.750 0.822

P2 Yt,1 100 0.750 0.936 0.556 0.902 0.858 0.960 0.662 0.919 0.441 0.868 0.830 0.952 0.924 0.970
300 1.000 1.000 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

P3 Yt,1 100 0.069 0.160 0.038 0.111 0.089 0.154 0.053 0.133 0.030 0.093 0.082 0.147 0.133 0.203
300 0.052 0.113 0.065 0.117 0.084 0.127 0.047 0.098 0.056 0.108 0.074 0.122 0.108 0.166
500 0.074 0.130 0.054 0.116 0.054 0.122 0.063 0.131 0.060 0.106 0.062 0.114 0.092 0.146

P4 Yt,1 100 0.008 0.042 0.000 0.010 0.003 0.042 0.005 0.033 0.000 0.005 0.003 0.038 0.019 0.038
300 0.013 0.058 0.017 0.071 0.021 0.088 0.010 0.061 0.014 0.086 0.022 0.102 0.040 0.110
500 0.024 0.088 0.032 0.118 0.040 0.138 0.024 0.081 0.040 0.162 0.054 0.184 0.120 0.200

P5 Yt,1 100 0.017 0.078 0.005 0.054 0.038 0.108 0.011 0.059 0.001 0.034 0.026 0.095 0.054 0.100
300 0.021 0.088 0.033 0.106 0.058 0.126 0.015 0.075 0.026 0.088 0.048 0.120 0.044 0.102
500 0.034 0.078 0.039 0.102 0.039 0.102 0.029 0.080 0.022 0.078 0.030 0.100 0.046 0.094

Yt,2 100 0.007 0.043 0.001 0.013 0.032 0.084 0.007 0.040 0.002 0.013 0.034 0.104 0.036 0.067
300 0.018 0.139 0.022 0.185 0.143 0.340 0.034 0.261 0.042 0.322 0.216 0.488 0.164 0.376
500 0.058 0.368 0.186 0.642 0.294 0.694 0.075 0.399 0.398 0.864 0.484 0.890 0.680 0.898

P6 Yt,1 100 0.162 0.415 0.041 0.217 0.042 0.225 0.141 0.410 0.016 0.173 0.017 0.182 0.247 0.401
300 0.501 0.707 0.545 0.748 0.545 0.748 0.483 0.737 0.560 0.788 0.560 0.788 0.614 0.700
500 0.614 0.772 0.736 0.854 0.736 0.854 0.626 0.813 0.760 0.884 0.760 0.884 0.782 0.846

Yt,2 100 0.248 0.524 0.052 0.269 0.052 0.271 0.214 0.526 0.026 0.239 0.026 0.240 0.278 0.443
300 0.530 0.736 0.567 0.766 0.567 0.766 0.532 0.767 0.586 0.820 0.586 0.820 0.638 0.718
500 0.610 0.794 0.746 0.860 0.746 0.860 0.636 0.810 0.756 0.902 0.756 0.902 0.790 0.858

Yt,3 100 0.218 0.491 0.057 0.255 0.057 0.255 0.176 0.494 0.028 0.222 0.028 0.222 0.275 0.416
300 0.464 0.701 0.521 0.725 0.521 0.725 0.464 0.744 0.544 0.770 0.544 0.770 0.606 0.688
500 0.538 0.756 0.724 0.858 0.724 0.858 0.546 0.767 0.746 0.896 0.746 0.896 0.726 0.822

P7 Yt,1 100 0.357 0.637 0.154 0.530 0.226 0.577 0.289 0.587 0.098 0.460 0.181 0.528 0.620 0.686
300 0.594 0.690 0.608 0.672 0.602 0.672 0.574 0.673 0.616 0.674 0.605 0.675 0.708 0.770
500 0.684 0.752 0.644 0.692 0.636 0.688 0.668 0.744 0.628 0.684 0.628 0.684 0.708 0.744

Notes: (i) D̂
(2),N

(·) and D̂
(2),L

(·) denote DFT tests for the second-order stationarity with normal and Laplace weighting
functions, respectively; (ii) among the subscripts of D̂(2),·

(·) , lMV denotes using minimum volatility method to select
DWB block length, lr denotes using the rule-of-thumb block length lr = ⌊6(T/100)1/4⌋, and lCombined denotes
choosing the smaller block length selected by lr and lPW04; (iii) Ĥ(2) denotes the second-order stationarity test of
Hong et al. (2017); and (iv) Yt,i, i = 1, . . . , d denotes the ith entry of vector Yt.
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Table S7: The pth-order stationarity tests for GBP/USD and CAD/USD returns

D̂(p),N D̂(p),L

p = 1 p = 2 p = 1 p = 2

Nominal GBP/USD 0.832 0.028 0.872 0.026
Nominal CAD/USD 0.472 0.004 0.399 0.005

Real GBP/USD 0.865 0.010 0.882 0.007
Real CAD/USD 0.753 0.003 0.530 0.011

Notes: (i) the main entries are the bootstrap p-values of the tests; (ii) D̂(p),N and D̂(p),L denote the pth-order
stationarity test with the normal and Laplace weighting functions, respectively; (iii) p = 1 and p = 2 denote the
first-order and the second-order stationarity tests, respectively; and (iv) the number of bootstrap samples is 1000.
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