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A Proof of Lemma 5.4

A.1 Preliminaries

We make use of the following intermediate result, which states that in a finite-horizon setting, the

benefit associated with being in a “better” system state increases with the length of the horizon.

Lemma A.1. For all n ≥ 1, α ∈ [0, 1), and applicable i and j, we have

1. vn,α(i, j)− vn,α(i+ 1, j) ≥ vn,α(i, j)− vn,α(i+ 1, j)

2. vn,α(i, j)− vn,α(i, j + 1) ≥ vn,α(i, j)− vn,α(i, j + 1)

3. vn,α(i, j + 1)− vn,α(i+ 1, j) ≥ vn,α(i, j + 1)− vn,α(i+ 1, j)

Proof. We verify Statement 1 with a sample path argument; the proofs of Statements 2 and 3 are

similar. Start two processes on the same probability space: one in state (i, j) and one in state (i+1, j),

each with n periods remaining in the horizon. Let ∆n denote the difference in reward collected by

the two processes until either coupling occurs or n time periods have elapsed. We show ∆n ≤ ∆n+1

pathwise. On sample paths ω where coupling occurs in the first n periods, ∆n(ω) = ∆n+1(ω). On all

other paths, Process 1 has at least as many servers available as Process 2 after n periods, and collects

a reward in the remaining period at least as large as that by Process 2. Thus, ∆n(ω) ≤ ∆n+1(ω).

To prove Lemma 5.4, it suffices to show that for every n that

vn,α(i, j)− vn,α(i, j + 1) ≤ vn,α(i, j + 1)− vn,α(i, j + 2) (1)

vn,α(i, j)− vn,α(i, j + 1) ≤ vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) (2)

vn,α(i, NB)− vn,α(i+ 1, NB) ≤ vn,α(i+ 1, NB)− vn,α(i+ 2, NB) (3)

vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) ≤ vn,α(i, j + 1)− vn,α(i, j + 2), (4)

and we proceed via induction over the time periods. The base case (n = 0) is trivial, as we assume

v0,α = 0. Now suppose that (1)–(4) hold over horizons of length up to n: our induction hypothesis.

In the analysis that follows, we assume, for convenience, that α = 1, allowing us to suppress α in our

arguments; nearly identical reasoning can be used for the case where α < 1.
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A.2 Inductive Step, Inequality (1)

Fix i ∈ {0, 1, . . . , NA} and j ∈ {0, 1, . . . , NB − 2}. We want to show that

vn+1, α(i, j)− vn+1, α(i, j + 1) ≤ vn+1, α(i, j + 1)− vn+1, α(i, j + 2). (5)

Using finite-horizon analogues of the optimality equations (3), we rewrite the left-hand side of (5):

vn+1, α(i, j)− vn+1, α(i, j + 1) = λH

[
1{i<NA}α

(
vn,α(i+ 1, j)− vn,α(i+ 1, j + 1)

)
(6)

+ 1{i=NA}α
(
vn,α(i, j + 1)− vn,α(i, j + 2)

)]
+ λL

[
max

{
RL + αvn,α(i, j + 1), αvn,α(i, j)

}
−max

{
RL + αvn,α(i, j + 2), αvn,α(i, j + 1)

}]
+ iµα

[
vn,α(i− 1, j)− vn,α(i− 1, j + 1)

]
+ jµα

[
vn,α(i, j − 1)− vn,α(i, j)

]
+ µα

[
vn,α(i, j)− vn,α(i, j)

]
+ (NA +NB − i− j − 1)µα

[
vn,α(i, j)− vn,α(i, j + 1)

]
It suffices to show that each term in brackets on the right-hand side of (6) is bounded above by

vn+1, α(i, j + 1)− vn+1, α(i, j + 2). Consider the first term. If i < NA, we have that

vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) ≤ vn,α(i, j + 1)− vn,α(i, j + 2)

≤ vn+1, α(i, j + 1)− vn+1, α(i, j + 2),

where the first inequality follows by (4) and our induction hypothesis, and the second by Lemma A.1.

Similar reasoning applies if i = NA. Now consider the second term. There are three possibilities:

1. RL + αvn,α(i, j + 1) ≥ αvn,α(i, j) and RL + αvn,α(i, j + 2) < αvn,α(i, j + 1),

2. RL + αvn,α(i, j + 1) ≥ αvn,α(i, j) and RL + αvn,α(i, j + 2) ≥ αvn,α(i, j + 1), and

3. RL + αvn,α(i, j + 1) < αvn,α(i, j) and RL + αvn,α(i, j + 2) < αvn,α(i, j + 1).

We cannot have RL + αvn,α(i, j + 1) < αvn,α(i, j) and RL + αvn,α(i, j + 2) ≥ αvn,α(i, j + 1), as by

the induction hypothesis, vn,α is convex in j. Consider the first case; the analysis for the latter two
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cases is straightforward. We have

max
{
RL + αvn,α(i, j + 1), αvn,α(i, j)

}
−max

{
RL + αvn,α(i, j + 2), αvn,α(i, j + 1)

}
= RL + αvn,α(i, j + 1)− vn,α(i, j + 1)

< vn,α(i, j + 1)− vn,α(i, j + 2)

≤ vn+1, α(i, j + 1)− vn+1, α(i, j + 2),

where the first inequality follows by assumption, and the second by Lemma A.1. Now consider the

third term. The induction hypothesis (specifically, inequalities (1) and (2)) and Lemma A.1 yield

vn,α(i− 1, j)− vn,α(i− 1, j + 1) ≤ vn,α(i, j)− vn,α(i, j + 1)

≤ vn,α(i, j + 1)− vn,α(i, j + 2)

≤ vn+1, α(i, j + 1)− vn+1, α(i, j + 2).

The remaining terms follow in a similar fashion.

A.3 Inductive Step, Inequality (2)

Fix i ∈ {0, . . . , NA − 1} and j ∈ {0, . . . , NB − 1}. We want to show that

vn+1, α(i, j)− vn+1, α(i, j + 1) ≤ vn+1, α(i+ 1, j)− vn+1, α(i+ 1, j + 1), (7)

and proceed using a sample path argument. Start four processes on the same probability space, each

with n+1 periods remaining in the horizon. Processes 1 and 4 begin in states (i, j) and (i+1, j+1),

respectively, and follow the optimal policy π∗. Processes 2 and 3 begin in states (i, j + 1) and

(i+1, j), respectively, and use potentially suboptimal policies π2 and π3, respectively. These policies

deviate from π∗ only during the first time period; we describe them in more detail later.

Let ∆ be the difference in reward collected by Processes 1 and 2 until coupling occurs; define ∆′

analogously for Processes 3 and 4. Equation (1) implies that

E∆ = vn+1, α(i, j)− vπ2n+1, α(i, j + 1)

E∆′ = vπ3n+1, α(i+ 1, j)− vn+1, α(i+ 1, j + 1)
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It suffices to show E∆ ≤ E∆′, as this implies

vn+1, α(i, j)− vn+1, α(i, j + 1) ≤ vn+1, α(i, j)− vπ2n+1, α(i, j + 1)

≤ vπ3n+1, α(i+ 1, j)− vn+1, α(i+ 1, j + 1)

≤ vn+1, α(i+ 1, j)− vn+1, α(i+ 1, j + 1).

There is one Type B server that is busy in Processes 2 and 4, but idle in Processes 1 and 3; call it

Server I. We construct our probability space so that Server I completes service in all four processes

simultaneously (but triggers a dummy completion in Processes 1 and 3). Similarly, there is one

Type A server that is busy in Processes 3 and 4, but idle in Processes 1 and 2; call it Server II. We

probabilistically link this server across all four processes as we did with Server I. In the first time

period, seven transitions are possible:

1. A Type H arrival

2. A Type L arrival

3. A Type A service completion.

4. A completion by Server I.

5. A completion by Server II.

6. A completion by any other Type B server.

7. A dummy transition due to uniformization.

For k = 1, . . . , 7, let Ak be the event in which the kth transition occurs; these events partition the

sample space. By the Tower Property, it suffices to show that E[∆ |Ak] ≤ E[∆′ |Ak] for each k.

Case 1 (Event A1): If i+ 1 < NA, all four processes admit the Type H job with a Type A server,

and transition to states (i + 1, j), (i + 1, j + 1), (i + 2, j) and (i + 2, j + 1), respectively. Since all

four processes subsequently follow the optimal policy, we have that

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1)

E[∆′ |A1] = vn,α(i+ 2, j)− vn,α(i+ 2, j + 1).

By the induction hypothesis and (1), we have E[∆ |A1] ≤ E[∆′ |A1], as desired. If i + 1 = NA, but

j + 1 < NB, then Processes 3 and 4 must admit the job with a Type B server, and we have that

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) ≤ vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 2) = E[∆′ |A1],
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again, by the induction hypothesis and (1). Finally, if i + 1 = NA and j + 1 = NB, then Process 3

admits the job with a Type B server, whereas Process 4 must turn the job away. We thus have

E[∆ |A1] = vn,α(i+1, j)−vn,α(i+1, j+1) ≤ RHB +vn,α(i+1, j+1)−vn,α(i+1, j+1) = E[∆′ |A1],

where the inequality follows this time by Lemma 4.2.

Case 2 (Event A2): Processes 2 and 3 take (potentially suboptimal) actions based upon those

taken by Processes 1 and 4. Specifically:

• If Processes 1 and 4 admit the arriving Type L job, so do Processes 2 and 3.

• If Processes 1 and 4 reject the arriving Type L job, so do Processes 2 and 3.

• If Process 1 admits the job, and Process 4 rejects, then Process 2 rejects and Process 3 admits.

We need not consider the case when Process 1 rejects the job in state (i, j), and Process 4 admits

the job in state (i+ 1, j + 1), as by the induction hypothesis, we can assume that π∗ is a monotone

switching curve policy. Suppose j + 1 < NB. If Processes 1 and 4 both admit the job, then

E[∆ |A2] = vn,α(i, j + 1)− vn,α(i, j + 2) ≤ vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 2) = E[∆′ |A2],

by (2) and the induction hypothesis. If Processes 1 and 4 both reject, all four processes remain in

the same state, and we can again leverage (2) and the induction hypothesis. Finally, if Process 1

admits and Process 4 rejects, we have that

E[∆ |A2] = RL+vn,α(i, j+1)−vn,α(i, j+1) = RL+vn,α(i+1, j+1)−vn,α(i+1, j+1) = E[∆′ |A2].

The case where j + 1 = NB follows via similar arguments, which we omit for brevity.

Case 3 (Event A3): The four processes transition to states (i − 1, j), (i − 1, j + 1), (i, j), and

(i, j + 1), respectively, and

E[∆ |A3] = vn,α(i− 1, j)− vn,α(i− 1, j + 1) ≤ vn,α(i, j)− vn,α(i, j + 1) = E[∆′ |A3],

by (2) and the induction hypothesis.

Case 4 (Event A4): Processes 1 and 2 both transition to state (i, j), and coupling occurs. Processes

3 and 4 transition to state (i+ 1, j), and couple as well. Thus E[∆ |A4] = E[∆′ |A4] = 0.

Case 5 (Event A5): Processes 1 and 3 both transition to state (i, j), while Processes 2 and 4 both

transition to state (i+ 1, j). We thus have E[∆ |A5] = E[∆′ |A5] = vn,α(i, j)− vn,α(i+ 1, j).
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Case 6 (Event A6): The four processes transition to states (i, j − 1), (i, j), (i + 1, j − 1), and

(i+ 1, j), respectively, and

E[∆ |A6] = vn,α(i, j − 1)− vn,α(i, j) ≤ vn,α(i+ 1, j − 1)− vn,α(i+ 1, j) = E[∆′ |A6],

by (2) and the induction hypothesis.

Case 7 (Event A7): The four processes do not change state, and E[∆ |A7] ≤ E[∆′ |A7] by (2) and

the induction hypothesis.

Thus, E∆ ≤ E∆′, as desired.

A.4 Inductive Step, Inequality (3)

Fix i ∈ {0, 1, . . . , NA − 2}. We want to show that

vn+1, α(i, NB)− vn+1, α(i+ 1, NB) ≤ vn+1, α(i+ 1, NB)− vn+1, α(i+ 2, NB). (8)

As in the inductive proof of (1), we can rewrite the right-hand side of (8) as

vn+1, α(i, NB)− vn+1, α(i+ 1, NB) = λH
(
vn,α(i+ 1, NB)− vn,α(i+ 2, NB)

)
(9)

+ λL

[
max

{
RL + αvn,α(i+ 1, NB), αvn,α(i, NB)

}
−max

{
RL + αvn,α(i+ 2, NB), αvn,α(i+ 1, NB)

}]
+ iµα

[
vn,α(i− 1, NB)− vn,α(i, NB)]

+ µα
[
vn,α(i, NB)− vn,α(i, NB)

]
+ jµα

[
vn,α(i, NB − 1)− vn,α(i+ 1, NB − 1)

]
+ (NA +NB − i− j)µα

[
vn,α(i, NB)− vn,α(i+ 1, NB)

]
It again suffices to show that each term in brackets on the right-hand side of (9) is bounded above

by vn+1, α(i+ 1, NB)− vn+1, α(i+ 2, NB). We consider only the second term, as the analysis of the

remaining terms is straightforward. There are again three possibilities:

1. RL + αvn,α(i+ 1, NB) ≥ αvn,α(i, NB) and RL + αvn,α(i+ 2, NB) < αvn,α(i+ 1, NB),

2. RL + αvn,α(i+ 1, NB) ≥ αvn,α(i, NB) and RL + αvn,α(i+ 2, NB) ≥ αvn,α(i+ 1, NB), and

3. RL + αvn,α(i+ 1, NB) < αvn,α(i, NB) and RL + αvn,α(i+ 2, NB) < αvn,α(i+ 1, NB).

We cannot have RL + αvn,α(i + 1, NB) < αvn,α(i, NB) and RL + αvn,α(i + 1, NB) ≥ αvn,α(i, NB),

as by the induction hypothesis, vn,α is convex in i when j = NB. Consider the first case; the analysis
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for the latter two cases is straightforward. We have

max
{
RL + αvn,α(i+ 1, NB), αvn,α(i, NB)

}
−max

{
RL + αvn,α(i+ 2, NB), αvn,α(i+ 1, NB)

}
= RL + vn,α(i+ 1, NB)− vn,α(i+ 1, NB)

< vn,α(i+ 1, NB)− vn,α(i+ 2, NB)

≤ vn+1, α(i+ 1, NB)− vn+1, α(i+ 2, NB),

as desired.

A.5 Inductive Step, Inequality (4)

Fix i ∈ {0, . . . , NA − 1} and j ∈ {0, . . . , NB − 2}. We want to show that

vn+1, α(i+ 1, j)− vn+1, α(i+ 1, j + 1) ≤ vn+1, α(i, j + 1)− vn+1, α(i, j + 2), (10)

and do so using another sample path argument. Start four processes on the same probability space,

each with n + 1 periods remaining in the horizon. Processes 1 and 4 begin in states (i + 1, j) and

(i, j+2), respectively, and follow the optimal policy π∗. Processes 2 and 3 begin in states (i+1, j+1)

and (i, j + 1), respectively, and use potentially suboptimal policies π2 and π3, respectively. These

policies deviate from π∗ only during the first time period, in a way that we specify later.

Let the random variable Θ denote the difference in reward collected by Processes 1 and 2 until

coupling occurs; define Θ′ analogously for Processes 3 and 4. It suffices to show that EΘ ≤ EΘ′.

There are i Type A and j Type B servers that are busy in all four processes, and NA− i− 1 Type A

and NB − j− 2 Type B servers that are idle in all four processes. We probabilistically the remaining

three servers (one Type A, two Type B) as in Table 1.

Server I Server II Server III

Process 1, State (i+ 1, j) Idle Type B Busy Type A Idle Type B

Process 2, State (i+ 1, j + 1) Busy Type B Busy Type A Idle Type B

Process 3, State (i, j + 1) Idle Type B Busy Type B Idle Type A

Process 4, State (i, j + 2) Busy Type B Busy Type B Idle Type A

Table 1: Marking scheme for servers in the sample path argument for Equation (4).

Note that our marking scheme does not require units to be of the same type in every process, but

are linked so that completions of all servers marked as Server I (similarly, Servers II and III) occur

simultaneously in all four processes. In the first time period, eight transitions are possible:
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1. A Type H arrival

2. A Type L arrival

3. A completion by Server I.

4. A completion by Server II.

5. A completion by Server III.

6. A completion by an unmarked Type A server.

7. A completion by an unmarked Type B server.

8. A dummy transition due to uniformization.

For k = 1, . . . 8, let Bk be the event in which transition k occurs. Again, it suffices to show that

E[Θ |Bk] ≤ E[Θ′ |Bk] for each k.

Case 1 (Event B1): If i+ 1 < NA, the analysis is straightforward. If i+ 1 = NA, then Processes 1

and 2 assign the Type H job to a Type B server, whereas Processes 3 and 4 route the job to a Type

A server. We have that

E[Θ |B1] = vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 2) = vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 2) = E[Θ′ |B1].

Case 2 (Event B2): Processes 2 and 3 take (potentially suboptimal) actions based upon those

taken by Processes 1 and 4. In particular:

• If Processes 1 and 4 admit the arriving Type L job, so do Processes 2 and 3.

• If Processes 1 and 4 reject the arriving Type L job, so do Processes 2 and 3.

• If Process 1 admits the job, and Process 4 rejects, then Process 2 rejects and Process 3 admits.

We need not consider the case when Process 1 rejects the job in state (i+1, j), and Process 4 admits

the job in state (i, j + 2), as by the induction hypothesis, we can assume that π∗ is a monotone

switching curve policy with a slope of at least −1. The analysis for the case where both Processes 1

and 4 reject the job is straightforward, as a dummy transition occurs.

Now consider the case where Processes 1 and 4 both admit the job. If j + 2 < NB, the analysis

is again straightforward. If j + 2 = NB, then Process 4 assigns a Type A server to the job, whereas

all other processes assign Type B servers, and we have that

E[Θ |B2] = vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 2) ≤ vn,α(i, j + 2)− vn,α(i+ 1, j + 2) = E[Θ′ |B2],
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where the inequality follows by Lemma 4.1. Finally, consider the case where Process 1 admits the job,

and Process 4 rejects. Transitions to states (i+1, j+1), (i+1, j+1), (i, j+2), and (i, j+2) occur.

Processes 1 and 2 couple, as do Processes 3 and 4, and we have that E[Θ |B2] = E[Θ′ |B2] = RL.

Case 3 (Event B3): The four processes transition to states (i+1, j), (i+1, j), (i, j+1), and (i, j+1),

respectively. Processes 1 and 2 couple, as do Processes 3 and 4, and E[Θ |B3] = E[Θ′ |B3] = 0.

Case 4 (Event B4): The four processes transition to states (i, j), (i, j + 1), (i, j), and (i, j + 1).

Processes 1 and 3 couple, as do Processes 2 and 4, and E[Θ |B4] = E[Θ′ |B4].

Case 5 (Event B5): A dummy transition occurs, and by the induction hypothesis, we have that

E[Θ |B5] = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) ≤ vn,α(i, j + 1)− vn,α(i, j + 2) = E[Θ′ |B5].

Case 6 (Event B6): The four processes transition to states (i, j), (i, j + 1), (i − 1, j + 1), and

(i−1, j+2), respectively, and we leverage the induction hypothesis to show that E[Θ |B6] ≤ E[Θ′ |B6].

Case 7 (Event B7): The analysis is identical to that for Case 5.

Thus, EΘ ≤ EΘ′, as desired.

B Proof of Proposition 5.6

Fix α ∈ (0, 1), and suppose

RHB ≤ RL ≤ RHB +
µ

λL
RHB +

µ

λH

(
1 +

µ

λL
+
λH
λL

)
RHA. (11)

We claim that condition (11) is sufficient for the value functions vα and h to be convex in i:

Lemma B.1. If RL > RHB, then for every n ≥ 0 and applicable i and j, we have that

vn,α(i, j)− vn,α(i+ 1, j) ≤ vn,α(i+ 1, j)− vn,α(i+ 2, j) (12)

vn,α(i, j)− vn,α(i, j + 1) ≤ vn,α(i, j + 1)− vn,α(i, j + 2) (13)

vn,α(i, j)− vn,α(i+ 1, j) ≤ vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) +RHA −RHB (14)

We defer the proof until Appendix E, as it is lengthy, and involves arguments very similar to

those used in the proof of Proposition 5.4 in Appendix A. In proving that inequalities (12)–(14)

hold, we make use of an intermediate result:

Lemma B.2. If condition (11) holds, then for each n ≥ 0, we have

vn,α(NA − 1, NB)− vn,α(NA, NB) ≤ RHA. (15)
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B.1 Proof of Lemma B.1

By a fairly unconventional sample path argument. Start two processes in the same probability space.

Process 1 begins in state (NA − 1, NB) and follows the optimal policy π∗, whereas Process 2 begins

in state (NA, NB) and uses a potentially suboptimal policy π that rejects Type L jobs arriving in any

states (i, j) where j = NB. Let ∆ denote the difference in reward collected by the two processes until

coupling occurs. We have E∆ = vα(NA − 1, NB)− vπα(NA, NB), and it suffices to show E∆ ≤ RHA.

Both processes move in parallel until one of the following occurs:

1. A service completion from the Type A server that is idle in Process 1, but busy in Process 2.

2. A Type L arrival when j = NB that Process 1 admits (but Process 2, by assumption, redirects).

3. A Type H arrival when Process 1 is in state (NA− 1, NB), and Process 2 is in state (NA, NB).

4. A Type H arrival when the two processes are in states (NA−1, j) and (NA, j), for some j < NB.

Let Ω1, Ω2, Ω3, and Ω4 be the set of paths on which Events 1, 2, 3, and 4 occur first, respectively;

these sets partition Ω. We further partition the set Ω4. After Event 4 occurs, Processes 1 and 2

are in states (NA, j) and (NA, j + 1), respectively, and Process 1 has collected RHA − RHB more

reward than Process 2. From here, Process 2 switches to a policy that imitates the decisions made

by Process 1 (and that no longer rejects jobs in states (i, j) where j = NB, unless Process 1 does

so). Both processes continue to move in parallel until one of the following occurs.

4.1 A Type L service completion seen by Process 2, but not by Process 1.

4.2 A Type H arrival when Process 1 is in state (NA, NB − 1), and Process 2 is in state (NA, NB).

4.3 A Type L arrival when Process 1 is in state (NA, NB − 1), and Process 2 is in state (NA, NB).

Let Ω1
4, Ω2

4 and Ω3
4 be the set of paths on which events 4.1, 4.2, and 4.3 occur first, respectively. Then

∆(ω) =



0 ω ∈ Ω1

RL ω ∈ Ω2

RHA ω ∈ Ω3

RHA −RHB ω ∈ Ω1
4

RHA ω ∈ Ω2
4

RHA +RL −RHB ω ∈ Ω3
4

, (16)

from which it follows that

E∆ = RLP(Ω2) +RHAP(Ω3) + (RHA −RHB)P(Ω1
4) +RHAP(Ω2

4) + (RHA +RL −RHB)P(Ω3
4). (17)

10



Note that ∆(ω) > RHA only when ω ∈ Ω3
4, and so we proceed by showing that P(Ω3

4) is relatively

small. Suppose, for the time being, that the following inequalities hold (which we later prove):

P(Ω1) ≥
µ

λH
P(Ω4) (18)

P(Ω1
4) ≥

µ

λL
P(Ω3

4) (19)

P(Ω2
4) =

λH
λL

P(Ω3
4) (20)

We demonstrate that (11), when combined with inequalities (18)–(20), imply E∆ ≤ RHA. Indeed:

RL ≤ RHB +
µ

λL
RHB +

µ

λH

(
1 +

µ

λL
+
λH
λL

)
RHA

⇐⇒ (RL −RHB)P (Ω3
4) ≤

[
µ

λL
RHB +

µ

λH

(
1 +

µ

λL
+
λH
λL

)
RHA

]
P (Ω3

4)

=⇒ (RL −RHB)P (Ω3
4) ≤ RHBP(Ω1

4) +RHA
µ

λH

[
P(Ω1

4) + P(Ω2
4) + P(Ω3

4)
]

=⇒ (RL −RHB)P (Ω3
4) ≤ RHBP(Ω1

4) +RHAP(Ω1)

=⇒ −RHAP (Ω1)−RHBP(Ω1
4) + (RL −RHB)P (Ω3

4) ≤ 0

=⇒ −RHAP (Ω1) + (RL −RHA)P(Ω2)−RHBP(Ω1
4) + (RL −RHB)P (Ω3

4) ≤ 0

⇐⇒ E∆−RHA ≤ 0,

where the second line follows by inequalities (19) and (20), the third by (18) and the fact that

P(Ω4) = P(Ω1
4) + P(Ω2

4) + P(Ω3
4), and the final line by Equation (17).

It remains to show that (18) – (20) hold. We prove (18) here; inequalities (19) and (20) follow

in a similar fashion. Because our MDP is uniformizable, and we have specified the policies by which

Processes 1 and 2 operate, we can model them jointly as a discrete-time Markov chain. Randomness in

this Markov chain is fully characterized by a sequence of i.i.d. uniform random variables {Un : n ≥ 1},

where Ui governs the state transition occurring immediately before the ith decision epoch.

However, each sample path ω can be described more succinctly. In formulating our MDP, we

assumed that Λ = λH +λL +NAµ+NBµ = 1. This allows us to partition the interval [0, 1] into one

subinterval of width λH , one subinterval of width λL, and (NA+NB) subintervals of width µ. We can

associate each subinterval with a possible state transition in our MDP model. For instance, we can use

the subinterval [0, λH) for transitions resulting from a Type H arrival, and [λH +λL, λH +λL+µ) for

service completions resulting from a specific Type A server in the system (or for a dummy transitions

if the server is idle). Thus, a sample path ω can be summarized by the type of transition that occurs

in each decision epoch; we describe this using a sequence of random variables {Xn : n ≥ 1}. We

11



allow the Xn to take on a value in the set {H, L, A1, . . . , ANA
, B1, . . . , BNB

}.

Fix ω ∈ Ω4, and let T (ω) be the time at which Event 4 occurs on this path; note XT (ω)(ω) = H.

Consider a transformed sample path ω′ that is identical to ω, except that its T (ω)th element is A1

instead of H. (Assume, without loss of generality, that the first Type A server is the one that is

initially idle in Process 1, but busy in Process 2.) Let Ω′1 be the set of all paths in Ω4 that are

transformed in this way. Observe that Ω′1 ⊆ Ω1, as Event 1 occurs on ω′ instead of Event 4. It

suffices to show P(Ω′1) = µ
λH

P(Ω4). Indeed:

P(Ω′1) =

∞∑
n=1

P(Ω′1, T = n)

=
∞∑
n=1

∑
(x1, ..., xn−1):T=n

P(X1 = x1, . . . , Xn−1 = xn−1, Xn = H)

=
∞∑
n=1

∑
(x1, ..., xn−1):T=n

P(X1 = x1, . . . , Xn−1 = xn−1)P(Xn = H)

=

∞∑
n=1

∑
(x1, ..., xn−1):T=n

P(X1 = x1, . . . , Xn−1 = xn−1)

[
µ

λH
P(Xn = A1)

]

=
∞∑
n=1

µ

λH
P(Ω4, T = n) =

µ

λH
P(Ω4)

where the second line follows because the Xn are i.i.d. Thus, inequality (18) holds.

C Proof of Proposition 5.7

C.1 Proposition 5.7, Undiscounted Rewards

For convenience, we refer to the system with rewards (RHA, RHB, RL) as the original system, and

the system with rewards (R′HA, R
′
HB, R

′
L) as the modified system. Because the MDP is unichain, the

long-run average reward under any policy is constant and independent of the starting state. Let πi

be the threshold policy in which Type L jobs are admitted in all states (i′, NB) where i′ ≤ i. We use

π−1 to denote the policy that never admits Type L jobs when all Type B servers are busy. Finally,

let Ji and J ′i denote the long-run average reward obtained attained by policy πi under the original

and modified systems, respectively.

For the original system, let πi∗ denote the best policy among {π−1, π0, π1, . . . , πNA
}; if multiple

policies are optimal, let πi∗ denote the one with the largest threshold. To avoid trivialities, assume

i∗ < NA. By construction, Ji∗ > Ji for all i > i∗. It suffices to show that J ′i∗ > J ′i for all i > i∗ as

well. Fix i > i∗, and construct two stochastic processes on the same probability space, both under

12



the original system. The process {X(t) : t ≥ 0} follows policy πi∗ , whereas {X̃(t) : t ≥ 0} follows πi.

Assume X(0) = X̃(0) = (i∗ + 1, NB). Let τ0 = 0, and for n ≥ 0, define the stopping times

τn+1 = inf
{
t > τn : (X(t), X̃(t)) = ((i∗ + 1, NB), (i∗ + 1, NB))

}
,

the times at which both processes return to state (i∗ + 1, NB). By memorylessness, {τn : n ≥ 1}

constitute a renewal process. Let R(t) and R̃(t) denote the reward collected by processes X and X̃

by time t. Similarly, let Ri and R̃i denote the reward collected by X and X̃ during the ith renewal

epoch. By the Renewal Reward Theorem,

Ji∗ = lim
t→∞

E
[
R(t)

t

]
=

ER1

Eτ1
Ji = lim

t→∞
E

[
R̃(t)

t

]
=

ER̃1

Eτ1
. (21)

The above limits are well-defined, as {(X(t), X̃(t)) : t ≥ 0} is an irreducible continuous-time Markov

chain with finite state space, implying Eτ1 <∞. Thus, we have

Ji∗ − Ji =
ER1 − ER̃1

Eτ1
> 0. (22)

Consider ER1 − ER̃1, the expected difference in reward collected by X and X̃ over a single renewal

epoch. Discrepancies between the reward collected by X and X̃ can occur in four ways. Let

1. N1 be the number of Type L jobs that X rejects due to policy considerations, but X̃ admits,

and assigns to Type A servers.

2. N2 be the number of Type H jobs that X admits, but X̃ rejects because all servers are busy.

3. N3 be the number of Type H jobs that X assigns to Type A servers, but X̃ is forced to assign

to Type B servers.

4. N4 be the number of Type L jobs that X admits, but X̃ rejects, either because all servers are

busy, or due to policy considerations.

We make two claims, that we later prove: that the above list of discrepancies is comprehensive, and

that N1 ≥ N4 pathwise. Supposing these to be true for the time being, it follows that

E[R1 − R̃1] = −RLE[N1] +RHAE[N2] + (RHA −RHB)E[N3] +RLE[N4] > 0. (23)

We can similarly construct two processes {X ′(t) : t ≥ 0} and {X̃ ′(t) : t ≥ 0}, under the modified

system. Let R′1, and R̃′1 be defined as in (21). Since changing rewards does not affect the evolution
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of the processes X ′ and X̃ ′, we have

E[R′1 − R̃′1] = −R′LE[N1] +R′HAE[N2] + (R′HA −R′HB)E[N3] +R′LE[N4]

= R′HAE[N2] + (R′HA −R′HB)E[N3]−R′LE[N1 −N4]

≥ RHAE[N2] + (RHA −RHB)E[N3]−RLE[N1 −N4]

> 0.

By an equation analogous to (22), J ′i∗ > J ′i , and it is preferable under the modified system to set

the threshold to i∗ than to any i > i∗. It remains to prove the two aforementioned claims: that the

events described by the random variables N1, . . . , N4 are the only transitions in which processes X

and X̃ do not collect the same reward, and that N1 ≥ N4 pathwise.

To show the first claim, it suffices to show that if X̃ admits a Type H (Type L) job with a Type

A (Type B) server, X does as well. Let XA(t) and XB(t) be the number of free Type A and Type

B servers in process X at time t, respectively. Define X̃A(t) and X̃B(t) analogously. Since X and X̃

are defined on the same probability space, every service completion seen by X̃ is also observed by

X. It follows that XA(t) ≥ X̃A(t) and XB(t) ≥ X̃B(t) for all t on every sample path.

To show the second claim, consider XA(t) +XB(t)−
[
X̃A(t)− X̃B(t)

]
. This difference increases

by one whenever X̃ admits a Type L job with a Type A server that X is forced to reject (that is,

when N1 increases by one). Similarly, this difference decreases by one when X admits a job that

X̃ rejects (that is, when N2 or N4 increases by one), or when the aforementioned Type A server

completes service in X̃, but not in X. At the start of any renewal epoch, this difference equals zero,

and so we must have N1 ≥ N2 +N4.

D Proof of Proposition 5.5

If Type H calls are subject to admission control, the optimality equations must be modified slightly.

For brevity, we include only those for the long-run discounted reward criterion.

vα(i, j) = λH

[
1{i<NA}max {RHA + αvα(i+ 1, j), αvα(i, j)} (24)

+ 1{i=NA, j<NB}max {RHB + αvα(i, j + 1), αvα(i, j)}+ 1{i=NA, j=NB}αvα(i, j)
]

+ λL

[
1{j<NB}max{RL + αvα(i, j + 1), αvα(i, j)}

+ 1{i<NA, j=NB}max{RL + αvα(i+ 1, j), αvα(i, j)}+ 1{i=NA, j=NB}αvα(i, j)
]

+ iµ αvα(i− 1, j) + jµαvα(i, j − 1) + (NA +NB − i− j)µαvα(i, j)
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In this modified setting, the structural properties stated in Section 4 of the main paper all still hold;

they follow via identical sample path arguments as the ones presented therein. It suffices to show

that vn,α (and consequently, vα and h) satisfies the following structural properties:

vn,α(i, j)− vn,α(i+ 1, j) ≤ vn,α(i+ 1, j)− vn,α(i+ 2, j) (25)

vn,α(i, j)− vn,α(i, j + 1) ≤ vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) (26)

vn,α(NA, j)− vn,α(NA, j + 1) ≤ vn,α(NA, j + 1)− vn,α(NA, j + 2) (27)

We proceed via induction on n. The base case (n = 0) is trivial, as we assume vα, 0(i, j) = 0 for all i

and j. Now suppose that (25)—(27) hold over horizons of length up to n: our induction hypothesis.

We prove in separate subsections that these inequalities hold over horizons of length n+ 1.

D.1 Inductive Step, Inequality (25)

Fix i ∈ {0, . . . , NA − 2} and j ∈ {0, . . . , NB}. We want to show that

vn+1, α(i, j)− vn+1, α(i+ 1, j) ≤ vn+1, α(i+ 1, j)− vn+1, α(i+ 2, j), (28)

and proceed using a sample path argument. Start four processes on the same probability space, each

with n+ 1 periods remaining in the horizon. Processes 1 and 4 begin in states (i, j) and (i+ 2, j),

respectively, and follow the optimal policy π∗. Processes 2 and 3 both begin in state (i+ 1, j), and

use potentially suboptimal policies π2 and π3, respectively, that deviate from π∗ only during the first

time period. Specifically, Processes 2 and 3 take actions that depend on those made by Processes 1

and 4 when a job arrives:

• If Processes 1 and 4 admit the arriving job, so do Processes 2 and 3.

• If Processes 1 and 4 reject the arriving job, so do Processes 2 and 3.

• If Process 1 admits the job, and Process 4 rejects, then Process 2 rejects and Process 3 admits.

We need not consider the case where Process 1 rejects in state (i, j) and Process 4 admits in state

(i + 2, j), as by the induction hypothesis, we can assume that π∗ is a monotone switching curve

policy. Let ∆ be the difference in reward collected by Processes 1 and 2 until coupling occurs; define

∆′ analogously for Processes 3 and 4. We show that E∆ ≤ E∆′. There are i Type A and j Type B

servers that are busy in all four processes, and NA − i− 2 Type A and NB − j Type B servers that

are idle in all four processes. We probabilistically link the remaining two Type A servers according

to the scheme in Table 2.
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Server I Server II

Process 1, State (i, j) Idle Idle

Process 2, State (i+ 1, j) Busy Idle

Process 3, State (i+ 1, j) Idle Busy

Process 4, State (i+ 2, j) Busy Busy

Table 2: Marking scheme for units in the sample path argument for Equation (25).

Note that our marking scheme probabilistically links servers linked so that completions of all

servers marked as Server I (similarly, Server II) occur simultaneously in all four processes. In the

first time period, eight transitions are possible:

1. A Type H arrival

2. A Type L arrival

3. A completion by Server I.

4. A completion by Server II.

5. A completion by any other Type A server.

6. A Type A service completion.

7. A dummy transition due to uniformization.

For k = 1, . . . 7, let Ak be the event in which transition k occurs; it suffices to show that E[∆ |Ak] ≤

E[∆′ |Ak] for each k. We proceed case-by-case.

Case 1 (Event A1): If Processes 1 and 4 both admit the job, then by construction of policies π2

and π3, Processes 2 and 3 do so as well, and

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 2, j) ≤ vn,α(i+ 2, j)− vn,α(i+ 3, j) = E[∆′ |A1].

by the induction hypothesis and (25). If Processes 1 and 4 both reject, a dummy transition occurs,

and the analysis is straightforward. Finally, if Process 1 admits, and Process 4 rejects, then

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 1, j) ≤ vn,α(i+ 2, j)− vn,α(i+ 2, j) = E[∆′ |A1].

Now suppose i + 2 = NA. Process 4 must admit Type H jobs with a Type B server (provided
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j < NB). If Process 1 and 4 both admit the job, then

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 2, j)

≤ vn,α(i+ 1, j + 1)− vn,α(i+ 2, j + 1)

≤ vn,α(i+ 2, j) +RHA − vn,α(i+ 2, j + 1)−RHB = E[∆′ |A1]

where the inequalities follows by the induction hypothesis and (26), respectively.

Case 2 (Event A2): If j < NB, then all four processes admit the Type L job, and the analysis is

straightforward. When j = NB, then admitting in all four processes entails using a Type A server.

If Processes 1 and 4 both admit the job, then

E[∆ |A2] = vn,α(i+ 1, j)− vn,α(i+ 2, j) ≤ vn,α(i+ 2, j)− vn,α(i+ 3, j) = E[∆′ |A2],

by (25) and the induction hypothesis. If Processes 1 and 4 both reject, a dummy transition occurs,

and the analysis is again straightforward. Finally, if Process 1 admits and Process 4 rejects, we have

E[∆ |A2] = RL + vn,α(i+ 1, j)− vn,α(i+ 1, j) = RL + vn,α(i+ 2, j)− vn,α(i+ 2, j) = E[∆′ |A2].

Case 3 (Event A3): Processes 1 and 2 both transition to state (i, j), and coupling occurs. Processes

3 and 4 transition to state (i+ 1, j), and couple as well. Thus E[∆ |A3] = E[∆′ |A3] = 0.

Case 4 (Event A4): Processes 1 and 3 both transition to state (i, j), while Processes 2 and 4 both

transition to state (i+ 1, j). We thus have E[∆ |A4] = E[∆′ |A4] = vn,α(i, j)− vn,α(i+ 1, j).

Case 5 (Event A5): Tthe four processes transition to states (i− 1, j), (i, j), (i, j), and (i+ 1, j),

respectively, and

E[∆ |A5] = vn,α(i− 1, j)− vn,α(i, j) ≤ vn,α(i, j)− vn,α(i+ 1, j) = E[∆′ |A5],

by (25) and the induction hypothesis.

Case 6 (Event A6): The four processes transition to states (i, j − 1), (i+ 1, j − 1), (i+ 1, j − 1),

and (i+ 2, j − 1), respectively, and

E[∆ |A6] = vn,α(i, j − 1)− vn,α(i+ 1, j − 1) ≤ vn,α(i+ 1, j − 1)− vn,α(i+ 2, j − 1) = E[∆′ |A6],

by (25) and the induction hypothesis.
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Case 7 (Event A7): A dummy transition occurs, and the analysis is straightforward.

Thus, Equation (28) holds, as desired.

D.2 Inductive Step, Inequality (26)

Fix i ∈ {0, . . . , NA − 1} and j ∈ {0, . . . , NB − 1}. We want to show that

vn+1, α(i, j)− vn+1, α(i, j + 1) ≤ vn+1, α(i+ 1, j)− vn+1, α(i+ 1, j + 1). (29)

The proof follows by a sample path argument nearly identical to that used in the proof of Proposition

5.4, to show that the value function in that setting is supermodular. Thus, we restrict attention to

points in the proof that deviate from the original proof. We construct four stochastic processes and

define random variables ∆ and ∆′ as before; it again suffices to show that E∆ ≤ E∆′. We mark

servers as before, and operate Processes 2 and 3 according to the same suboptimal policies described

in Section D.1. Of the seven transitions that can occur in the next time period, the analysis for

the latter five cases (all of the possible transitions in which arrivals do not occur) is identical. We

consider only two possibilities below:

Case 1: Suppose a Type H arrival occurs in the next time period. This time, there is a decision

to make in all four processes with respect to the Type H arrival. Consider first the case where

i + 1 < NA. If Processes 1 and 4 both admit the job, then the four processes transition to states

(i+ 1, j), (i+ 1, j + 1), (i+ 2, j) and (i+ 2, j + 1), respectively, and

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) ≤ vn,α(i+ 2, j)− vn,α(i+ 2, j + 1) = E[∆′ |A1].

If Processes 1 and 4 both reject the job, dummy transitions occur and

E[∆ |A1] = vn,α(i, j)− vn,α(i, j + 1) ≤ vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) = E[∆′ |A1]

Finally, if Process 1 admits and Process 4 rejects, then

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) = E[∆′ |A1]

Now suppose i + 1 < NA. If Process 1 and 4 admit both admit the job (the latter with a Type B

server), so do Processes 2 and 3 (the latter, again, with a Type B server), and by (26), we have that

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) ≤ vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 2) = E[∆′ |A1].
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If Processes 1 and 4 both reject, a dummy transition occurs, and the analysis is straightforward.

Finally, if Process 1 admits and Process 4 rejects,

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) = E[∆′ |A1].

Case 2: Suppose a Type L arrival occurs. Since it is optimal for Type L jobs to be admitted when

Type B servers are available, the analysis when j + 1 < NB is straightforward. Suppose j + 1 = NB.

If Processes 1 and 4 both admit the job, then

E[∆ |A2] = vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 1) ≤ vn,α(i+ 1, j + 1)− vn,α(i+ 2, j + 1) = E[∆′ |A2],

by Lemma 4.1 and the induction hypothesis. If Processes 1 and 4 both reject, a dummy transition

occurs. Finally, if Process 1 admits and Process 4 rejects, we have that

E[∆ |A2] = RL+vn,α(i, j+1)−vn,α(i, j+1) = RL+vn,α(i+1, j+1)−vn,α(i+1, j+1) = E[∆′ |A2].

Thus, Equation (26) holds, as desired.

D.3 Inductive Step, Inequality (27)

Fix j ∈ {0, 1, . . . , NB − 2}. We want to show that

vn+1, α(NA, j)− vn+1, α(NA, j + 1) ≤ vn+1, α(NA, j + 1)− vn+1, α(NA, j + 2). (30)

We can rewrite the left-hand side of (30) as

vn+1, α(NA, j)− vn+1, α(NA, j + 1) = λH

[
max

{
RHB + αvn,α(NA, j + 1), αvn,α(NA, j)

}
(31)

−max
{
RHB + αvn,α(NA, j + 2), αvn,α(NA, j + 1)

}]
+ λL

[
RL + αvn,α(NA, j + 1)−RL − αvn,α(NA, j + 2)

]
+NAµα

[
vn,α(NA − 1, j)− vn,α(NA − 1, j + 1)]

+ jµα
[
vn,α(NA, j − 1)− vn,α(NA, j)

]
+ µα

[
vn,α(NA, j)− vn,α(NA, j)

]
+ (NA +NB − i− j)µα

[
vn,α(NA, j)− vn,α(NA, j + 1)

]
Note that in the second term, we leveraged the fact that when RL > RHB it is optimal to admit Type

L jobs whenever Type B servers are available. It again suffices to show that each term in brackets
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on the right-hand side of (31) is bounded above by vn+1, α(NA, j + 1)− vn+1, α(NA, j + 2). Consider

the first term. There are three possibilities:

1. RHA + αvn,α(NA, j + 1) ≥ αvn,α(NA, j) and RHA + αvn,α(NA, j + 2) ≥ αvn,α(NA, j + 1)

2. RHA + αvn,α(NA, j + 1) < αvn,α(NA, j) and RHA + αvn,α(NA, j + 2) < αvn,α(NA, j + 1)

3. RHA + αvn,α(NA, j + 1) ≥ αvn,α(NA, j) and RHA + αvn,α(NA, j + 2) < αvn,α(NA, j + 1)

We need not consider the remaining possibility, as by the induction hypothesis, vn,α is convex in j

when i = NA. Consider the third case; the analysis for the remaining two cases is straightforward.

We have that

max
{
RHA + αvn,α(NA, j + 1), αvn,α(NA, j)

}
−max

{
RHA + αvn,α(NA, j + 2), αvn,α(NA, j + 1)

}
= RHA

< vn,α(NA, j + 1)− vn,α(NA, j + 2)

≤ vn+1, α(NA, j + 1)− vn+1, α(NA, j + 2)

where the first inequality follows by assumption, and the second by Lemma A.1. Now consider the

third term. The induction hypothesis (specifically, inequalities (25) and (26)) yields

vn,α(NA − 1, j)− vn,α(NA − 1, j + 1) ≤ vn,α(NA, j)− vn,α(NA, j + 1)

≤ vn,α(NA, j + 1)− vn,α(NA, j + 2)

≤ vn+1, α(NA, j + 1)− vn+1, α(NA, j + 2).

The remaining terms follow in a similar fashion.

E Proof of Lemma B.1

We begin with an intermediate result:

Lemma E.1. If RL > RHB, then for every n ≥ 0 and applicable i and j, we have that

vn,α(i, j)− vn,α(i, j + 1) ≤ λH
λH + λL

RHB +
λL

λH + λL
RL. (32)

Inequality (32) is slightly stronger than that in Statement 2 of Lemma 4.2 (which states that

vn,α(i, j) − vn,α(i, j + 1) ≤ RL), by leveraging the fact that optimal policies always admit Type

L calls when Type B servers are available.
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Proof. We use a sample path argument. Fix α ∈ [0, 1], i ∈ {0, . . . , NA}, and j ∈ {0, . . . , NB − 1},

and construct two stochastic processes on the same probability space. Process 2 begins in state

(i, j + 1) and follows the optimal policy π∗, while Process 1 begins in state (i, j) and follows the

suboptimal policy that imitates the decisions made by Process 2, with one exception: Process 1

admits any job that arrives when Process 2 is in state (NA, NB). Let ∆ denote the difference in

reward collected by the two processes until coupling occurs; it suffices to show that

E∆ ≤ λH
λH + λL

RHB +
λL

λH + λL
RL.

Both processes move in parallel until they couple, which can occur in two ways:

1. Process 2 sees a Type B service completion not observed by Process 1.

2. Process 1 is in state (NA, NB − 1), Process 2 is in state (NA, NB), and an arrival occurs.

Let A1 and A2 be the events in which coupling occurs via the first and second possibilities, respec-

tively. Conditional on A1 occurring, we have ∆ = 0. Conditional on A2 occurring, with probability

λH/(λH + λL), a Type H arrival occurs, and ∆ = RHB. Similarly, with probability λL/(λH + λL), a

Type L arrival occurs, and ∆ = RL. It follows that

E[∆ |A2] =
λH

λH + λL
RHB +

λL
λH + λL

RL,

and we are done.

To prove Lemma B.1, we again use induction over the time periods. The base case (n = 0) is

trivial, as we assume vα, 0(i, j) = 0 for all i and j. Now suppose that (12)–(14) hold over horizons

of length k ≤ n: our induction hypothesis. In the analysis that follows, we assume once again (for

notational convenience) that α = 1; nearly identical reasoning can be used when α < 1.

E.1 Inductive Proof, Inequality (12)

Fix i ∈ {0, . . . , NA − 2} and j ∈ {0, . . . , NB}. We show that

vn+1, α(i, j)− vn+1, α(i+ 1, j) ≤ vn+1, α(i+ 1, j)− vn+1, α(i+ 2, j), (33)

using a sample path argument. Start four processes on the same probability space, each with n+ 1

periods remaining in the horizon. Processes 1 and 4 begin in states (i, j) and (i+ 2, j), respectively,

and follow the optimal policy π∗. Processes 2 and 3 begin in state (i + 1, j), and use potentially
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suboptimal policies π2 and π3, respectively, that deviate from π∗ during the first time period. The

actions Processes 2 and 3 take when a job arrives depend on those taken by Processes 1 and 4:

• If Processes 1 and 4 admit the arriving job, so do Processes 2 and 3.

• If Processes 1 and 4 reject the arriving job, so do Processes 2 and 3.

• If Process 1 admits the job, and Process 4 rejects, then Process 2 rejects and Process 3 admits.

We can ignore the case where Process 1 rejects in state (i, j) and Process 4 admits in state (i+ 2, j),

as by the induction hypothesis, we can assume that π∗ is a monotone switching curve policy.

Let ∆ be the difference in reward collected by Processes 1 and 2 until coupling occurs; define ∆′

analogously for Processes 3 and 4; it suffices to show E∆ ≤ E∆′. There are i Type A and j Type B

servers that are busy in all four processes, and NA − i− 2 Type A and NB − j Type B servers that

are idle in all four processes. We probabilistically link the remaining two Type A servers according

to the scheme in Table 3.

Server I Server II

Process 1, State (i, j) Idle Type A Idle Type A

Process 2, State (i+ 1, j) Busy Type A Idle Type A

Process 3, State (i+ 1, j) Idle Type A Busy Type A

Process 4, State (i+ 2, j) Busy Type A Busy Type A

Table 3: Marking scheme for units in the sample path argument for Equation (12).

In the first time period, eight transitions are possible:

1. A Type H arrival

2. A Type L arrival

3. A completion by Server I.

4. A completion by Server II.

5. A completion by any other Type A server.

6. A completion by a Type B server.

7. A dummy transition due to uniformization.

For k = 1, . . . 8, let Ak be the event in which transition k occurs. It suffices to show that E[Θ |Ak] ≤

E[Θ′ |Ak] for each k, and we proceed case-by-case.
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Case 1 (Event A1): If i+ 2 < NA, the analysis is straightforward. If i+ 2 = NA, Process 4 routes

the job to a Type A server, and we have

E[Θ |A1] = vn,α(i+1, j)−vn,α(i+2, j) ≤ vn,α(i+2, j)−vn,α(i+2, j+1)+RHA−RHB = E[Θ′ |A1],

by the induction hypothesis and (14). Finally, if i + 2 = NA and j = NB, then Processes 3 and 4

find themselves in state (i+ 2, j), and by inequality (12), we have

E[Θ |A1] = vn,α(i+ 1, j)− vn,α(i+ 2, j) ≤ RHA = E[Θ′ |A1].

Case 2 (Event A2): By Proposition 4.3, we need only consider the case where j = NB, as all

four processes would otherwise admit the arriving Type L job, and the analysis is straightforward.

Processes 2 and 3 take (potentially suboptimal) actions based upon those taken by Processes 1 and

4. In particular:

• If Processes 1 and 4 admit the arriving Type L job, so do Processes 2 and 3.

• If Processes 1 and 4 reject the arriving Type L job, so do Processes 2 and 3.

• If Process 1 admits the job, and Process 4 rejects, then Process 2 rejects and Process 3 admits.

We need not consider the case when Process 1 rejects the job in state (i+1, j), and Process 4 admits

the job in state (i, j + 2), as by the induction hypothesis, we can assume that π∗ is a threshold-type

policy. The analysis for the case where both Processes 1 and 4 reject the job is straightforward; all

four processes either reject the job or admit it with a Type A server, and we leverage the induction

hypothesis. For the latter possibility, the four processes transition to state (i + 1, j), (i + 1, j),

(i + 2, j), and (i + 2, j), respectively, and Processes 1 and 3 alone collect a reward RL. Thus, we

have that E[Θ |A2] = RL = E[Θ′ |A2].

Case 3 (Event A3): The four processes transition to states (i, j), (i, j), (i + 1, j), and (i + 1, j).

Processes 1 and 2 couple, as do Processes 3 and 4, and we have E[Θ |A3] = E[Θ′ |A3] = 0.

Case 4 (Event A4): The four processes transition to states (i, j), (i + 1, j), (i, j), and (i + 1, j).

Processes 1 and 3 couple, as do Processes 2 and 4, and we have E[∆ |A4] = E[∆′ |A4].

Case 5 (Event A5): The four processes transition to states (i − 1, j), (i, j), (i, j), and (i + 1, j),

respectively, and we can leverage the induction hypothesis to show that E[∆ |A5] = E[∆′ |A5].

Case 6 (Event A6): The four processes transition to states (i, j − 1), (i+ 1, j − 1), (i+ 1, j − 1),

and (i+ 2, j − 1), respectively, and the induction hypothesis applies.

Case 7 (Event A7): No process changes state, and the induction hypothesis applies.
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Thus, Inequality (12) holds for horizons of length n+ 1.

E.2 Inductive Proof, Inequality (13)

Fix i ∈ {0, . . . , NA − 2} and j ∈ {0, . . . , NB}. We want to show that

vn+1, α(i, j)− vn+1, α(i, j + 1) ≤ vn+1, α(i, j + 1)− vn+1, α(i, j + 2), (34)

and proceed using a sample path argument. Start four processes on the same probability space, each

with n+ 1 periods remaining in the horizon. Processes 1 and 4 begin in states (i, j) and (i, j + 2),

respectively, and follow the optimal policy π∗. Processes 2 and 3 both begin in state (i, j + 1), and

use potentially suboptimal policies π2 and π3 that mimic those described in Section E.1.

Let Θ be the difference in reward collected by Processes 1 and 2 until coupling occurs; define Θ′

analogously for Processes 3 and 4. It suffices to show EΘ ≤ EΘ′. There are i Type A and j Type B

servers that are busy in all four processes, and NA − i Type A and NB − j − 2 Type B servers that

are idle in all four processes. We probabilistically link the remaining two Type B servers according

to the scheme in Table 4.

Server I Server II

Process 1, State (i, j) Idle Type B Idle Type B

Process 2, State (i, j + 1) Busy Type B Idle Type B

Process 3, State (i, j + 1) Idle Type B Busy Type B

Process 4, State (i, j + 2) Busy Type B Busy Type B

Table 4: Marking scheme for units in the sample path argument for Equation (13).

In the first time period, eight transitions are possible:

1. A Type H arrival

2. A Type L arrival

3. A completion by a Type A server.

4. A completion by Server I.

5. A completion by Server II.

6. A completion by any other Type B server.

7. A dummy transition due to uniformization.

For k = 1, . . . 8, let Bk be the event in which transition k occurs. It suffices to show that E[Θ |Bk] ≤

E[Θ′ |Bk] for each k, and we proceed case-by-case.
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Case 1 (Event B1): For the time being, assume that either i < NA or j + 2 < NB; we handle later

the special case in which both inequalities do not hold. If i < NA, then the four processes transition

to states (i + 1, j), (i + 1, j + 1), (i + 1, j + 1), and (i + 1, j + 2), respectively, and the induction

hypothesis applies. If i = NA but j + 2 < NB, transitions to states (i, j + 1), (i, j + 2), (i, j + 2),

and (i, j + 3) occur instead, and we again leverage the induction hypothesis.

Case 2 (Event B2): As with Case 1, assume that either i < NA or j + 2 < NB for the time being.

If j+ 2 < NB, the analysis is straightforward. Suppose j+ 2 = NB but i < NA. If Processes 1 and 4

both reject, the analysis is straightforward. If Processes 1 and 4 both admit, Processes 2 and 3 use

a Type A server, and we have that

E[Θ |B2] = vn,α(i, j + 1)− vn,α(i+ 1, j + 1)

≤ vn,α(i, j + 1)− vn,α(i+ 1, j + 1)−RHA +RHB

≤ vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 2)

= E[Θ′ |B2],

where the first inequality follows by Lemma 4.2, and the second by the induction hypothesis on

inequality (14). Finally, if Process 1 accepts and Process 4 rejects, then E[Θ |B2] = RL = E[Θ′ |B2].

Case 3 (Event B3): The four processes transition to states (i− 1, j), (i− 1, j + 1), (i− 1, j + 1),

and (i− 1, j + 2), respectively, and the induction hypothesis applies.

Case 4 (Event B4): The four processes transition to states (i, j), (i, j), (i, j + 1), and (i, j + 1).

It follows that E[Θ |B4] = E[Θ′ |B4] = 0.

Case 5 (Event B5): The four processes transition to states (i, j), (i, j + 1), (i, j), and (i, j + 1),

respectively, and we have E[Θ |B5] = E[Θ′ |B5].

Case 6 (Event B6): The four processes transition to states (i, j − 1), (i, j), (i, j), and (i, j + 1),

respectively, and the induction hypothesis applies.

Case 7 (Event B7): No process changes state, and the induction hypothesis applies.

It remains to show that E[Θ |B1] ≤ E[Θ′ |B1] and E[Θ |B2] ≤ E[Θ′ |B2] when i = NA and j+2 = NB.

However, we have that E[Θ |B1] = vn,α(i, j + 1) − vn,α(i, j + 2) and E[Θ |B1] = RHB, and so

the former inequality may not hold in general. We instead prove a slightly weaker claim, that

E[Θ |B1 ∪ B2] ≤ E[Θ′ |B1 ∪ B2], which still suffices to show that E[Θ] ≤ E[Θ′]. Conditional on

B1 ∪ B2 occurring, a Type H job arrives with probability λH/(λH + λL), and a Type L job arrives
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with probability λL/(λH +λL). Noting that E[Θ |B2] = vn,α(i, j+1)−vn,α(i, j+2) as well, we have

E[Θ |B1 ∪B2] =
λH

λH + λL
E[Θ |B1] +

λL
λH + λL

E[Θ |B2]

= vn,α(i, j + 1)− vn,α(i, j + 2)

≤ λH
λH + λL

RHB +
λL

λH + λL
RL

≤ λH
λH + λL

E[Θ′ |B1] +
λL

λH + λL
E[Θ′ |B2]

= E[Θ′ |B1 ∪B2],

as desired. Thus, Inequality (13) holds for horizons of length n+ 1.

E.2.1 Inductive Proof, Inequality (14)

Fix i ∈ {0, . . . , NA − 2} and j ∈ {0, . . . , NB}. Once again, we show that

vn+1, α(i, j)− vn+1, α(i+ 1, j) ≤ vn+1, α(i+ 1, j)− vn+1, α(i+ 1, j + 1) +RHA −RHB (35)

using a sample path argument. Start four processes on the same probability space, each with n+ 1

periods remaining in the horizon. Processes 1 and 4 begin in states (i, j) and (i+1, j+1), respectively,

and follow the optimal policy π∗. Processes 2 and 3 begin in state (i + 1, j), and use potentially

suboptimal policies π2 and π3 that mimic those described in Section E.1.

Let Ψ be the difference in reward collected by Processes 1 and 2 until coupling occurs; define Ψ′

analogously for Processes 3 and 4. It suffices to show EΨ ≤ EΨ′ + RHA − RHB. There are i Type

A and j Type B servers that are busy in all four processes, and NA − i− 1 Type A and NB − j − 1

Type B servers that are idle in all four processes. We probabilistically link the remaining Type A

server and Type B server according to the scheme in Table 5.

Server I Server II

Process 1, State (i, j) Idle Type A Idle Type B

Process 2, State (i+ 1, j) Busy Type A Idle Type B

Process 3, State (i+ 1, j) Idle Type B Busy Type A

Process 4, State (i+ 1, j + 1) Busy Type B Busy Type A

Table 5: Marking scheme for units in the sample path argument for Equation (14).

In the first time period, eight transitions are possible:

1. A Type H arrival
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2. A Type L arrival

3. A completion by Server I.

4. A completion by Server II.

5. A completion by an unmarked Type A server.

6. A completion by an unmarked Type B server.

7. A dummy transition due to uniformization.

For k = 1, . . . 8, let Ck be the event in which transition k occurs. It suffices to show for each k that

E[Ψ |Ck] ≤ E[Ψ′ |Ck] +RHA −RHB for each k, and we proceed case-by-case.

Case 1 (Event C1): Assume, for the time being, that either i + 1 < NA or j + 1 < NB; we

handle later the special case in which both inequalities are violated. If i + 1 < NA, the analysis is

straightforward. If i+ 1 = NA but j+ 1 < NB, then Process 1 admits the call with a Type A server,

while all other processes use Type B servers instead, and

E[Ψ |C1] = vn,α(i+ 1, j) +RHA − vn,α(i+ 1, j + 1)−RHB

≤ vn,α(i+ 1, j + 1) +RHA − vn,α(i+ 1, j + 2)−RHB

= E[Ψ′ |C1] +RHA −RHB,

where the inequality follows by the induction hypothesis on inequality (13).

Case 2 (Event C2): As in Case 1, assume temporarily that either i + 1 < NA or j + 1 < NB. If

j + 1 < NB, the analysis is straightforward. If j + 2 = NB but i+ 1 < NA, suppose that Processes 2

and 3 always admit the incoming Type L job (with Type B servers), regardless of the actions taken

by the other processes. If Process 4 admits (with a Type A server), then

E[Ψ |C2] = vn,α(i, j + 1)− vn,α(i+ 1, j + 1) ≤ vn,α(i+ 1, j + 1)− vn,α(i+ 2, j + 1) = E[Ψ′ |C2]

where we have used the induction hypothesis on inequality (12). If Process 4 rejects instead, then

E[Ψ |C2] = vn,α(i, j + 1)− vn,α(i+ 1, j + 1)

≤ vn,α(i+ 1, j + 1) +RL − vn,α(i+ 1, j + 1) +RHA −RHB

= E[Ψ′ |C2] +RHA −RHB,

where the inequality follows by combining both statements of Lemma 4.2.

Case (Event C3): The four processes transition to states (i, j), (i, j), (i + 1, j), and (i + 1, j).
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Coupling occurs, and it follows that E[Θ |C3] = E[Θ′ |C3] = 0.

Case 4 (Event C4): The four processes transition to states (i, j), (i + 1, j), (i, j), and (i + 1, j).

Coupling occurs, and we have E[∆ |C4] = E[∆′ |C4].

Case 5 (Event C5): The four processes transition to states (i − 1, j), (i, j), (i, j), and (i, j + 1),

respectively, and the induction hypothesis applies.

Case 6 (Event C6): The four processes transition to states (i, j − 1), (i+ 1, j − 1), (i+ 1, j − 1),

and (i+ 1, j), respectively, and the induction hypothesi s applies.

Case 7 (Event C7): No process changes state, and the induction hypothesis applies.

It remains to show that E[Ψ |B1] ≤ E[Ψ′ |B1] and E[Ψ |B2] ≤ E[Ψ′ |B2] when i = NA and j+2 = NB.

Once again, these inequalities may not hold in general, and so we again show that E[Ψ |B1 ∪B2] ≤

E[Ψ′ |B1 ∪B2]. Reasoning similar to that used in the inductive proof of inequality (13) yields

E[Ψ |B1 ∪B2] =
λH

λH + λL

[
vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) +RHA −RHB

]
+

λL
λH + λL

[
vn,α(i, j + 1)− vn,α(i+ 1, j + 1)

]
≤ λH
λH + λL

[
vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) +RHA −RHB

]
+

λL
λH + λL

[
vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) +RHA −RHB

]
≤ λH
λH + λL

[
RHB +RHA −RHB

]
+

λL
λH + λL

[
RL +RHA −RHB

]
=

λH
λH + λL

[
vn,α(i+ 1, j + 1) +RHB − vn,α(i+ 1, j + 1)

]
+

λL
λH + λL

[
vn,α(i+ 1, j + 1) +RL − vn,α(i+ 1, j + 1)

]
+RHA −RHB

= E[Ψ′ |B1 ∪B2] +RHA −RHB,

where the first inequality follows by Lemma 4.2, and the second by Lemma E.1.
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