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Appendix A: Expressions for the Distance of a Point to an LOP

This appendix provides expressions for the distance to LOPi from each point (x, y) on a coordinate
grid. In eq. (2) of the main text, this distance is represented by ri(x, y). Which of the following
expressions is most convenient depends on how the LOPs are represented mathematically, which
in turn may depend on the type of observation they represent. Cartesian coordinates are assumed
(flat-Earth approximation). See Fig. A1.

1. LOPs of the form y = mx+ b, where m is the slope of the LOP, i.e., the tangent of its angle
with the x axis, and b is the y-intercept. The distance of (x, y) to the closest point on LOPi is

ri(x, y) =
|mix− y + bi|√

1 +m2
i

(A1)

where mi and bi are the values of m and b particular to LOPi. If the magnitude of the slope
m is large enough that the LOP is effectively parallel to the y-axis over the span of the grid,
crossing the x-axis at c, we have simply that ri(x, y) = |x− c|.

2. LOPs of the form q = g + hd, where q, g, and d are vectors in the x-y plane: q represents
the coordinates of any arbitrary point on the LOP, g represents the coordinates of a known
point on the LOP, d represents the direction of the LOP (a unit vector), and h is a (signed)
scalar whose absolute value is the distance of q from g. The direction d = (cos θ, sin θ) or
(− cos θ,− sin θ), where θ is the angle the LOP makes with the x-axis, measured counter-
clockwise. Then the minimum distance of a point (x, y) to LOPi is

ri(x, y) = |d1i(g2i − y)− d2i(g1i − x)| (A2)

where d1i and d2i are the two components of the vector d for LOPi, and g1i and g2i are the
two components of the vector g for the same LOP.

3. LOPs of the form a = x sinZ + y cosZ, where a is the minimum distance between the LOP
and the origin, and Z is the azimuth of that minimum, measured at the origin clockwise from
the y-axis. Then the distance of (x, y) to LOPi is just

ri(x, y) = ai − x sinZi − y cosZi (A3)
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where ai and Zi are the values of a and Z for LOPi.

The distance formulas above for forms 1 and 2 can be obtained from expressions in Hummel (1965)
and other texts. Form 3 applied to celestial LOPs has been used by DeWit (1974) and HMNAO
(2015) in developments for a least-squares solution for a fix, which is now Procedure 11 in the back
of the Nautical Almanac.
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Figure A1 Variables used to describe an LOP defined by an observation of
(a) a celestial object’s angular altitude, or (b) the bearing of a landmark. The
azimuthal angles are related as follows: θ = 180◦ − Z = 270◦ −B;Z = B − 90◦.

The remaining piece involves translating measured parameters (“observables”) to one of the
above LOP representations. For a reduced celestial observation yielding an intercept a (observed
minus computed altitude) at star azimuth Z, form 3 can be used directly. For form 1, m = − tanZ
and b = a secZ. For form 2, d = (cosZ,− sinZ) and g = (a sinZ, a cosZ).

For a bearing-line observation of a landmark at (xl, yl) measured at true bearing B, for form 1,
m = cotB and b = yl−mxl. For form 2, d = (sinB, cosB) and g = (xl, yl). For form 3, Z = B−90◦

and a = yl sinB−xl cosB. The landmark’s coordinates for this purpose are xl = 60(λl−λo) cosφo
and yl = 60(φl − φo), where λl and λo are the longitudes of the landmark and the origin (at the
estimated position of the observer), respectively, φl and φo are the latitudes of the two points, and
the factor 60 converts from degrees to nautical miles.1 The landmark does not have to lie within
the grid used for evaluating the probability values, although if it is far outside the grid, spherical
trigonometry formulas may have to be used.

1See footnote 2 of the main text. The use of 60 nautical miles per degree is an approximation that can result in
≤ 0.5% errors (up to 100 m over 10 nmi) in the grid coordinates of the landmark. This is greater than the errors due
to the “flat Earth” approximation for 10 nmi square grids at |φ0| < 70◦.
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Appendix B: LOP Triangle Probabilities for Observations with
Different Uncertainties

This appendix considers the total probability that the observer’s true position is within the triangle
formed by three LOPs defined by observations of different uncertainties. The main text considers
the simpler problem where the observations have equal uncertainty.

According to standard statistical theory, if the observations, labeled i = 1, 2, and 3, have dif-
ferent uncertainties σi, then in determining a fix by least squares (or equivalent means), each
observation should be assigned a weight wi proportional to 1/σ2i . No change is required in the
scheme for computing the probability density function described in this paper, because the 1/σ2i
factor is already included in eqs. (1) and (2).

The general computational strategy was described in the main text; a large number of test cases
were generated in a Monte-Carlo scheme, each with three LOPs defined by synthetic observations.
The errors in the positions of the LOPs were randomly taken from three normal distributions,
characterized by standard deviations of σLOP(1), σLOP(2), and σLOP(3). For each test case, a 101×101
grid of probabilities was generated using eq. (2) of the main text, representing the area surrounding
the observer’s estimated position, and the total probability within the LOP triangle computed. A
test run consisting of 100 of these randomly generated test cases therefore generated 100 computed
probabilities that the observer’s true position is within the LOP triangle. An independent weighted
least-squares solution for the fix location was also computed for each test case.

In the first set of runs it was assumed that the σi values to be used in eq. (2) and for the
observational weights in the least-squares fits were the same as the known standard deviations of
the error distributions of the LOP positions, σLOP(i), which were input values for each run. The
results of these runs are given in Table B1, col. 3, and the numbers listed there are similar to those
shown in the same column in Table 1 in the main text.

Table B1. Probabilities of Observer Inside LOP Triangle
for 3 LOPs of Different Uncertainties

Avg. probability (%) Avg. probability (%) No. actually inside
Run σLOP(i) with σi = σLOP(i) with σi = f × σLOP(i) out of 100

1 0.8, 1.0, 1.2 25.1 ± 20.3 33.8 ± 0.8 30

2 1.3, 0.7, 0.9 27.1 ± 22.4 34.4 ± 1.0 24

3 1.1, 1.1, 0.8 26.3 ± 25.7 33.9 ± 0.7 23

4 0.8, 0.6, 0.9 25.5 ± 20.4 33.7 ± 0.7 21

5 0.7, 1.2, 0.6 28.1 ± 19.7 34.7 ± 1.1 26

6 0.9, 0.8, 0.6 23.0 ± 24.4 33.8 ± 0.7 20

7 1.1, 1.6, 1.4 23.9 ± 20.9 33.9 ± 0.9 29

8 1.3, 0.8, 1.0 23.2 ± 21.9 34.0 ± 0.8 24

9 1.4, 1.6, 0.9 26.4 ± 23.7 34.2 ± 0.8 25

10 1.1, 1.4, 0.8 24.8 ± 21.6 34.4 ± 0.9 23

Avg. of all runs 25.3 34.1 24.5

Each run is 100 random test cases

In the second set of runs, it was assumed that the σi values to be used in eq. (2) and for the
observational weights were not well known in an absolute sense but that their ratios should be
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preserved, which also preserves the relative weights. In these runs, the σi values were normalized
based on the variance of the residuals (variance of the fit), that is, the average value of the square
of the distances between the fix (= the point of maximum probability) and the LOPs, each distance
appropriately weighted. The variance of the residuals, v, is computed according to the formula

v =

1

N − p

N∑
i=1

{
1

σ2i

[
ri(xf , yf)

]2}
1

N

N∑
i=1

1

σ2i

(B1)

from Bevington & Robinson (2003), where N is the number of observations (here, N = 3) p is the
number of parameters to be determined (here, p = 2, for the coordinates of the fix); and N−p = ν is
the number of degrees of freedom in the problem. The quantity ri(xf , yf) is a residual, the distance
of LOPi from the fix at (xf , yf). Note that this expression is insensitive to changes in the σi values
as long as their ratios are preserved and the same set of LOPs is used. If wavg = (1/N)

∑
(1/σ2i )

is the average weight, then in each test case in this second set of runs, the normalization condition
was

v · wavg = 1 (B2)

and, if not satisfied, then each uncertainty σi was multiplied by f =
√
v · wavg to make it so. The

software then re-evaluated eq. (2) for the entire grid using the normalized σi values. Multiplication
by a constant maintains the ratios of the σi and wi values and, as previously noted, does not affect
the value of v. The above condition can also be expressed as

1

N − p

N∑
i=1

{
1

σ2i

[
ri(xf , yf)

]2}
= χ2

ν = 1 (B3)

where χ2
ν is the chi-squared per degree of freedom. The condition χ2

ν = 1 should hold if the problem
has been properly modeled and the σi values are consistent with the distribution of residuals.

The results for the set of runs with the σi values normalized, in each case, by the factor f are
given in Table B1, col. 4. Again, these results are similar to those in the same column of Table 1
in the main text, and are higher than the probabilities reported in col. 3. Cautions expressed
in the main text regarding the use of RMSE values for computing probabilities apply equally
to the normalized σi values used to produce the probabilities listed in col. 4 here. That is, the
normalization, based on the variance of the post-fit residuals, tends to inflate the probabilities
unrealistically for problems where N is small.

The least-squares fits were unaffected by the change in the σi. The least-squares software uses
weights relative to the average weight, wavg, as per Bevington & Robinson (2003), so that the
computed formal errors of xf and yf are not affected by changes in the magnitudes of the σi as
long as the ratios remain the same.

As noted in the main text, for each test case, the software used for these tests can determine
whether the observer’s hypothetical position is actually within the LOP triangle. For each run of
100 cases, the number of observer positions inside the triangles is listed in Table B1, col. 5. These
numbers, considered to be a percentage, are comparable to those listed in col. 3.

For observations that all have the same unknown uncertainty σ, the formula for variance reduces
to v =

∑
[ri(xf , yf)]2/(N − p), the square root of which is the root mean squared error (RMSE)
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referred to in the main text. For these cases, wavg = 1/σ2, so the above normalization condition
becomes RMSE2/σ2 = 1, that is, σ = RMSE. This was the value used in eq. (2) for the second
set of computational test runs described in Sec. 4.1 of the main text. Therefore, χ2

ν = 1 describes
these cases also.
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