Online Appendix for “NEIGHBOURING PREDICTION
FOR MORTALITY’ ASTIN Bulletin, forthcoming

Online Appendices

A TIllustration of Convolution Operation
A.1 Convolution

The convolution operation is a fundamental building block in CNN model. Generally
speaking, a convolution operation is a mathematical operation (denoted as x) on two func-

tions (e.g., z(+) and k(-)) that produces a new function, s(-), as follows:

s(t) = (k:*x)(t):/m(t—z)k(z)dz, (A.1)

where the function z(-) is the input function; k(-) is called the kernel; and the output function
is often referred to as the feature map. For the purpose of application in CNN with 2D input

data, a 2D discrete convolution is used:

s(tity) = (kxx)(ti,te) = Y a(ty — 21,ts — 22)k(21, 2). (A.2)

21,2
The implementation of the actual convolution operation extracts patches from the input
feature map with the kernel, producing an output feature map. This involves sliding the
kernel over the input, taking the dot product between the kernel and the respective patch of
the input image and finally producing the output, as illustrated in Figure [A.T] which shows
a convolution operation of 5 x 5 input feature map and a 3 x 3 kernel. The upper figure

shows the convolution process, and the lower figure shows the detailed calculation results of

1

the output figure map. The kernel slides over the input, stopping at each possible location
with the same size of the kernel. For example, when the kernel stops at the blue area in
the input feature map, using the top-left corner and bottom-right corner to represent the
area as bdiz, the corresponding output feature map is calculated with the dot product is

bdiz o K = bixy + baxa + b3zs + 11 + coyo + c3ys + d121 + dazo + d3zs.

A.2 Padding

Note that in the example in Figure using a a 3 x 3 kernel, a 5 x 5 input feature map
has a feature map with size 3 x 3, which is a shrinking output. In general, with a n x n input
feature map and a k x k kernel, the output feature map has a size of (n—k+1)x(n—k+1). It’s
desirable to have an output feature map with the same size so that we do not lose information
carried in every layer. Padding helps to deal with the shrinking problem. Padding consists
of adding an additional border on each side of the input feature map. Zero-padding is the
most commonly used padding operation, where zeros are assigned to all the added border,
which is illustrated in Figure We can see that after applying padding, the output
feature map of the convolution operator with a 3 x 3 kernel has the same size of 5 as the
original input feature map. In general, the size of the output feature map with a p-column
padding, that is, adding p column on each side of the border of the input feature map, is

n+2p—k+1)x (n+2p—k+1).

A.3 Stride

Stride provides an other factor to control the output size, and hence, effectively down-
sample the input feature maps when needed. Previously we have introduced the convolution
operation with the kernel window sliding one tile in each movement so that the centre tile
of the convolution windows are contiguous. In fact, the length of each movement is also a
parameter to control the convolution, called stride. The previous two examples have a stride
of 1, i.e., s = 1. Strided convolutions are convolution operations with strides higher than 1.
Figure provides a strided convolution example with s = 2. The output feature map of
the convolution operator with a 3 x 3 kernel has a size of 2 x 2. In general, the size of the

output feature map with stride s is (%H +1) x (%p*k +1).

ol

- T

N

N 7

L N

ol

&
\) bd13 oK
bd13 = b1x1 + bzXZ + b3x3

+ Y1+ CY2 +C3Y3
+ d121 + dzZz + d3Z3

aciz3 o K acyy o K aczs o K

= a1Xq + aAzXy
+ az X3 + b13’1
+ byy, + b3ys
+ C1Z1 + CrZy

+ C323

= ayXq + azx,
+ AyX3 + bel
+ b3y, + bsys
+ CyrZq + C3Z,
+ €423

= azXq in Ay Xy
AF as X3 aF b3y1
+ byyz + bsy3
Sin C3Z1 s CuZy

ar CsZ3

bd13 oK
= b1x1 ol b2x2
+ b3x3 + 1y
+ Y2 +C3y3
F d]_Zl + dzZz
Sl d323

bdy, o K
= ble + b3x2
s b4X3 + V1
T3y + Y3
ar dzZl ar d3Z2
s d4Z3

bd35 oK
= b3x1 ar b4x2
+ b5X3 ar C3yY1
+ €4y + C5Y3
+ d3z, +dyz,
+ d5Z3

céqz ° K
= C1Xq + Cr Xy
s C3X3 AF d13’1
+dzy; +dsys
Sin €124 + €yZy
+ e3z3

Céyy © K
= CyXq1 + C3Xy
+ Cyx3 +dyy
+ d3y, +dsys
+ €y7Z1 + €3Zy
+ eyz3

cezs o K
= C3X1 + CgXy
+ C5X3 == d3y1
+ dyys + dsys
+ €374 + €477
+ €s5Z3

Figure A.1. An illustration of the convolution operation of 5 x 5 input feature
map and a 3 x 3 kernel. The upper figure shows the convolution process, and the lower
figure shows the detailed calculation results of the output figure map. The kernel slides over
the input, stopping at each possible location with the same size of the kernel. For example,
when the kernel stops at the blue area in the input feature map, using the top-left corner
and bottom-right corner to represent the area as bd;3, the corresponding output feature map
is calculated with the dot product is bdi3 0 K = bix1 4 boxs + bsxs + c1y1 + coys + c3ys +
di1z1 + doze + d3z3.

Figure A.2. An illustration of the convolution operation with padding. Zero-padding
for the convolution operation of 5 x 5 input feature map and a 3 x 3 kernel. After applying
padding, the output feature map of the convolution operator with a 3 x 3 kernel has the

same size of 5 as the original input feature map.

Figure A.3. An illustration of the convolution stride. Convolution stride 5 x 5 input
feature map and a 3 x 3 kernel. The output feature map of the convolution operator with a

e~

a | ap | as | as | as

by | by | bs | by | bs

a ||| co | cs

dy | dy | ds | do | ds

er | e | es | en | es
-g:ff==::::::__

=
-
=

-
-~
~

3 x 3 kernel has a size of 2 x 2.

[S LTS/

™S
>
™~
RN
\\
N
™
™~
\\
I

[LSS

\ \
Vap | az | az |\ az | G4 | Gs
1 \
1 1
b \
1 b, | bs \ by | by | bs
- \
\ \
Cl\\ Cy C3 i C3 Cy Cg
1 \
\\ \ \‘ \
\ \ \
) \)
\ \ \ \
€1 |NC | & [\ [8| C|Cs
1 A 1 A
B W
\ \
dj‘. d\‘z d3 \‘ dg“ d4_ d5
“ ‘\ ‘\
\
€1 €2 | €3 \e3 | ey | es
Y
P \
\ \
\\ 1 ‘\ 1
\-- ‘
e ———=Fvr—
________ A === Y
——————— \ X1 X X3
\‘ Y
\
\ \
~—— RN R RE]S
~~~~~ \ -
Theell TTeAg \
“~~~~~ 1 Zf‘ .‘ZZ~~ Z3 ‘\‘




B Neighbouring Mortality Model Details

Listing [I] and Listing [2] as follows summarize details of CNN structures of Pure Model
and Hybrid Model, respectively. In the empirical results of this paper, we set the epochs to
be 200 and learning rate to be the default of 0.001. We use cross-validation to tune other
tuning parameters. In particular, patience of early stopping is tuned from the interval of
[5,50] with an increment size of 5. We also tried using other complexity constraints such
as regulation methods (A € (0.00001,0.0001)) or dropout method (dropout rate € (0,0.2)),

and we find similar results.

1 # neibourhood mortality images input

2 images_input <— layer_input(shape = c(x14+x2+1, s, 1), name = 'images')

3 encoded_images <— layer_conv_2d(images_input, filters = 8,

4 kernel_size = ¢(3,3), padding = "same”, activation = "relu’) %%

5 layer_max_pooling_2d (pool_size = ¢(2,2)) %% layer_conv_2d(filters = 16,
6 kernel_size = ¢(3,3), padding = "same", activation = 'relu’) %%

7 layer_max_pooling_2d(pool_size = c(2,2)) %% layer_conv_2d(filters = 16,
8 kernel_size = ¢(3,3), padding = "same”, activation = "relu’) %%

9 layer_flatten () %% layer_dense(units = 16, activation = 'relu’) %%

10 layer_dense (units = 1)

11 model <— keras_model(inputs = images_input, outputs = encoded_images)

Listing 1. Pure neighbouring mortality model with CNN



© 00 N O Ut ke W N =

N N R N R S e T e T e T e T e T o S = S S
N = O © o O Ut e W Ny = O

# neibourhood mortality images input

images_input <— layer_input(shape = c(x14x2+1, s, 1), name = 'images ')
encoded_images <— layer_conv_2d(images_input, filters = 8,
kernel_size = ¢(3,3), padding = "same", activation = 'relu’) %%

layer_max_pooling_2d(pool_size = ¢(2,2)) %% layer_conv_2d(filters = 16,
kernel_size = ¢(3,3), padding = "same”, activation = "relu’) %%

layer_max_pooling_2d(pool_size = ¢(2,2)) %% layer_conv_2d(filters = 16,

kernel_size = ¢(3,3), padding = "same", activation = 'relu’) %%
layer_flatten () %% layer_dense(units = 16, activation = 'relu’') %%
layer_dense (units = 1)

# observable factors features input

features_input <— layer_input(shape = dim(d, name = 'features ')
encoded_features <— layer_dense(features_input, units = 4,
activation = 'relu’') %% layer_dense(units = 1)

# concatenate

concatenated <— layer_concatenate(list (encoded_images, encoded_features))

# output
con_output <— concatenated %% layer_dense(units = 1)

model <— keras_model(list(images_input, features_input), con_output)

Listing 2. Hybrid neighbouring mortality model with CNN



	Illustration of Convolution Operation
	Convolution
	Padding
	Stride

	Neighbouring Mortality Model Details

