
Supplementary Materials for ‘Selective bivariate

copula models using image recognition’, published

in ASTIN Bulletin

Andreas Tsanakas and Rui Zhu

Bayes Business School, City, University of London

A Details of PCA, LDA and SVM

PCA To find the principal component (PC) subspace, we can apply the reduced singular value

decomposition (SVD) on the column-centred XM :

(XM )c = UDVT , (A.1)

where (XM )c ∈ RN×4096 is the column-centred XM derived by extracting column means from

XM , U ∈ RN×r and V ∈ R4096×r contain left and right singular vectors, D ∈ Rr×r is a diagonal

matrix with singular values d1 ⩾ d2 ⩾ . . . ⩾ dr ⩾ 0. The first q (q ⩽ r) columns in V, i.e. the

first few PCs, are selected to construct the PC subspace.

LDA LDA finds the discriminative subspace by solving the following optimisation problem:

max
W

det(WTSBW)

det(WTSWW)
, (A.2)

with SW =
K∑

k=1

∑
i in class k

(xi − µk)(xi − µk)
T and SB =

K∑
k=1

Nk(µk − µ)(µk − µ)T . Here K is

the number of classes, W ∈ R153×(K−1) contains the bases of the linear discriminant subspace,

xi ∈ R153×1 denotes each sample in X, µk ∈ R153×1 is the class mean of the k-th class and µ ∈

R153×1 is the overall mean of X. As the optimisation problem (A.2) involves class information,

W summarises the discriminative information between classes.
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SVM SVM aims to find a separating hyperplane f(x) = ϕ(xP
i )

Tw + b for classification by

maximising the margin M between two classes:

max
w,b

M (A.3)

s.t. mi(ϕ(x
P
i )

Tw + b) ⩾M(1− ψi) ∀i,

ψi ⩾ 0 ∀i,
N∑
i=1

ψi ⩽ C,

whereM = 1/||w||2 is the shortest distance from the training sample to the classification bound-

ary, w and b defines the separating hyperplane, ϕ(·) is a function that projects xP
i to a reproduc-

ing kernel Hilbert space, ψi is the slack variable that allows violations of the training observations

to the margins, and C is a predefined positive integer that controls the trade-off between the

goodness-of-fit of the training set to the classifier and the generalisation ability of the classifier

on unseen data. The solutions w∗ and b∗ are then used to classify a test observation x: if

f(x) = ϕ(x)Tw∗ + b∗ is positive, then x belongs to the positive class; otherwise, x belongs to

the negative class.

B Sensitivity analyses

B.1 Robustness tests for the image recognition approach of Section 3

Here we summarise the results of two robustness checks, seeking to evaluate the extent to

which classification performance is impacted by potentially arbitrary decisions in the design of

our copula selection process.

First, in order to generate heatmaps, a choice of marginal distribution is necessary. (As

we are only investigating dependence effects, this choice does not reflect any assumption re-

garding the marginal distributions of the actual data one may be modelling; in a sense, it is a

hyperparameter choice). So far, all heatmap images are generated from bivariate samples with

Normal margins. Here, we additionally consider Cauchy, Laplace and Uniform margins. For

the R = 20, 000 bivariate copula samples we generated with n = 250 and τ = 0.5, we produce

heatmaps using each of those additional margins by slightly modifying the process described in

Section 3.1. Subsequently, we extract features and train a SVM to classify those heatmaps in the

case of each margin, following the same process and experiment settings as in Section 3.3. The

results are summarised in Figure B.1. Clearly, the Normal and Laplace margins have very similar

medians and interquartile ranges, indicating that classification performance is similar for those

two marginal choices. The Cauchy and Uniform margins show worse classification accuracies,
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with medians lower than those of Normal and Laplace margins by around 1.5%. This shows that

the choice of margin has a noticeable effect on the final results and that the choice of a Normal

margin proved to be a beneficial one.
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Figure B.1: The classification accuracies for different margins with n = 250 and τ = 0.5.

Figure B.2: Classification accuracies for different dimensions of the PC and LD subspaces to
classify copula samples with n = 250 and τ = 0.5.

Second, the dimensions of the PC and LD subspaces can affect the final classification perfor-

mance, because they determine the amount of information to be included in the low-dimensional

subspaces. Setting the dimensions to small numbers may result in low classification accuracies

because of the loss of vital information for classification, while setting them to large numbers
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close to the original feature dimensions fails to achieve dimension reduction. In Figure B.2, we

show the surface curve of the classification accuracies for different dimensions of the PC and

LD subspaces to classify copula samples with n = 250 and τ = 0.5. Five dimensions of the PC

subspace are tested, {10,50,70,100,150}, while three dimensions of the LD subspace are tested,

{3,4,5}. As expected, when the dimensions of the subspaces are low, e.g. the dimension of the

PC subspace is 10 and that of the LD subspace is 3 or 4, the classification accuracies are just

around 71%. However, when the dimension of the PC subspace is higher than 50 and that of

the LD subspace is set to the maximum number of five, we can observe the highest classification

accuracies of more than 73%. These results demonstrate that our choices of 150-dimensional PC

subspace and 5-dimensional LD subspace are sensible.

B.2 The impact of the statistical and image features on the classifica-

tion performance

In the image recognition approach, the statistical and image features are combined to pro-

vide a more complete description of copula samples. Here we produce results for more covariate

combinations, in order to give a fuller picture on the relative contributions of statistical and im-

age features to prediction accuracy. Specifically, we aim to explore the impact of the statistical

features and image features on the classification performance separately. The training and test

sets with n ∈ [100, 250] of Section 4.2.2 are used here.

The following three settings are experimented. First, only three statistics, Kendall’s rank

correlation, skewness and arachnitude, are extracted from the training set to train the SVM

classifier. No image features are used. The dimension reduction process of LDA is ignored in

this case, because the dataset is only three-dimensional. Second, we add four additional statistics

to the first setting, such that we have in total seven statistics, providing a fuller description of the

copula samples. Specifically, we use the empirical tail probabilities 1
n

∑n
i=1 1Ai

, where Ai is one

of {ui ⩽ 0.05, vi ⩽ 0.05}, {ui ⩽ 0.25, vi ⩽ 0.25}, {ui ⩾ 0.75, vi ⩾ 0.75} or {ui ⩾ 0.95, vi ⩾ 0.95}.

Third, only the high-dimensional AlexNet image features are extracted from the training set and

fed to PCA and LDA for dimension reduction. Thus no statistical features are used. The image

features are used to train the SVM classifier.

Table B.1: Test classification accuracies of the three settings.

Three statistics Seven statistics Image features only
n ∈ [100, 250] 0.5113 0.5367 0.5793

From Table B.1, we can observe that involving more statistics can improve the classifica-

tion performance, compared to the baseline case of using three statistics. However, using image
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features only produces clearly higher accuracy compared to using statistical features only. Com-

paring with Table 1, we further note that using image features only (accuracy: 0.5793) still

dominates AIC (accuracy: 0.5688). Furthermore, the classification accuracies in Table B.1 are

all lower than those of the image recognition approach of Table 1, which combines image and

statistical features. Taken together, these results demonstrate that image features contribute

important information that is not captured by statistical features and that a combination of

statistical and image features is best for selecting a copula model.

B.3 Sensitivity analysis of the image recognition algorithm of Section

4.2.2

We adapt the scenario weighting and reverse sensitivity framework developed by Pesenti et

al. (2019), in the context of stress testing simulation models and implemented in the R package

SWIM (Pesenti et al., 2021). This framework is well suited to situations where it is cumbersome

or computationally expensive to repeatedly evaluate the prediction function on new observations.

We apply the sensitivity analysis on the test set, with xt ∈ R153 the feature vector of the tth

sampling instance, for t = 1, . . . , S, where S = 10, 000. Furthermore, for each testing instance

we also consider the vector yt ∈ R6, where yt,l represents the number of votes obtained by the

lth copula model as part of the majority voting procedure described in Section 3.2. Then, for

each model l = 1, . . . , 6 we calculate a vector of weights in RS , such that, under re-weighting

the sample y1,l, . . . , yS,l, the average number of votes for this model increases by 1. The vector

of weights is selected by minimising the Kullback-Leibler divergence; specifically we solve the

problem: 

minw∈RS
1
S

∑S
t=1 wt log(wt) s. t.

wt > 0, t = 1, . . . , S

1
S

∑S
t=1 wt = 1

1
S

∑S
t=1 wtyt,l =

1
S

∑S
t=1 yt,l + 1.

The solution w∗ ∈ RS (derived originally by Csiszár (1975)) applies a higher weight to those

testing instances that drive the increase in the average vote for model l. Subsequently a sensitivity

index for the ith feature can be defined as the normalised increase in the average of xt,j , t =

1, . . . , S, j = 1, . . . , 153, over instances, arising from weighting by w∗.

The results of this analysis are shown in Figure B.3, which plots the sensitivity of the

majority vote for each of the models in M to the first 10 principal components of the heatmap

images, as well as the statistical features τ̂ (tau) ζ̂ (skew), ξ̂ (arach). It can be seen that the

sensitivity to skewness ζ̂ is important for radially symmetric models (with a negative effect)
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Figure B.3: Sensitivity of majority vote for each copula model, to different features.
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and for the Pareto and Joe models (with a positive effect), consistently with the properties of

these copulas. Beyond that, the main role in telling apart the different models is played by the

image principal components; e.g. we can note the quite different patterns of PC1-PC10, for the

3 radially symmetric models on the left of the plot. On the other hand, for the Joe and Pareto

models, which cannot be easily distinguished by the classifier, the PC patterns are rather similar.
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C Algorithms

Algorithm 1: Algorithm for generating the image dataset, with given fixed n, τ (Section
3.1).

i← 0;
while i < R do

Choose randomly copula family C(m), m ∈M;
if m is the t copula then

Choose randomly degrees of freedom ν from {3, 4, . . . , 10};
Work out parameters θ from (τ, ν);

else
Work out parameter θ from τ ;

end

Simulate n pairs of observations from (U, V ) ∼ C(m)(·; θ);
Transform simulated observations to pseudo-observations (uj , vj)j=1,...,n;

From (uj , vj)j=1,...,n calculate sample statistics τ̂ , ζ̂, ξ̂;
if τ̂ ⩾ 0 then

if ζ̂ ⩾ 0 then
KeepData← TRUE

else
if m ∈Ms then

Rotate pseudo-observations, uj ← 1− uj , vj ← 1− vj , j = 1, . . . , n;

ζ̂ ← −ζ̂;
KeepData← TRUE;

else
KeepData← FALSE;

end

end

else
KeepData← FALSE

end
if KeepData =TRUE then

i← i+ 1;

Calculate AIC(l) from (uj , vj)j=1,...,n, for each l ∈M ;

Save τ̂ , ζ̂, ξ̂, AIC(l);
Transform pseudo-observations to normal xj ← Φ−1(uj), yj ← Φ−1(vj), j = 1, . . . , n;
Estimate joint density of (xj , yj). Create heatmap and save image;

end

end
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Algorithm 2: Algorithm for generating the test set, with variable n, τ and model
rotations (Section 4.1).

i← 0;
while i < S do

Choose randomly m ∈M, n ∈ [n1, n2], τ ∈ [τ1, τ2];
if m is the t copula then

Choose randomly degrees of freedom ν from {3, 4, . . . , 10};
Work out parameters θ from (τ, ν);

else
Work out parameter θ from τ ;

end
Choose randomly r ∈ {0, 90, 180, 270};
if r ∈ {0, 180} then

τr ← τ ;
else

τr ← −τ ;
end

Simulate n pairs of observations from (U, V ) ∼ C(mr)(·; θ);
Transform simulated observations to pseudo-observations (uj , vj)j=1,...,n;

Calculate AIC(l), l ∈M′;

Save m, r, τr, (uj , vj)j=1,...,n, and AIC(l), l ∈M′;
i← i+ 1;

end
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Algorithm 3: Algorithm for generating heatmap images from the test set, with variable
fixed n, τ and model rotations. (First step of Section 4.2.2.)

i← 0;
while i < S do

Read pseudo-observations (uj , vj)j=1,...,n, underlying model with (m, r) such that mr ∈M′,
and rank correlation τr, from the ith instance of the test set;

Calculate τ̂ from (uj , vj)j=1,...,n;
Initialise the degree to which data will be rotated, s← 0;
if τ̂ < 0 then

s← s+ 90;
vj ← 1− vj , j = 1, . . . , n;
τ̂s ← −τ̂ ;

end

Calculate ζ̂ from (uj , vj)j=1,...,n;

if ζ̂ < 0 then
s← s+ 180;
uj ← 1− uj , vj ← 1− vj , j = 1, . . . , n;

ζ̂s ← −ζ̂;
end
Estimate the copula rotation r̂ ← 360− s;

Calculate from (uj , vj)j=1,...,n, ξ̂s and AIC
(l)
s for each l ∈M;

Save τ̂s, ζ̂s, ξ̂s, AIC
(l)
s ;

Transform pseudo-observations to normal xj ← Φ−1(uj), yj ← Φ−1(vj), j = 1, . . . , n;
Estimate joint density of (xj , yj). Create heatmap and save image;
if m ∈Ms then

if sign(τ̂) = sign(τr) then
FirstStep← TRUE

else
FirstStep← FALSE

end

end
if m ∈Ma then

if r̂ = r then
FirstStep← TRUE

else
FirstStep← FALSE

end

end
i← i+ 1;

end
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