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1 Network structure

In this section, we introduce a risk transfer network structure that allows participants to

restrict risk sharing to a community of individuals with whom they are connected. Sharing

mortality credits among all participants to the pool allows for maximum risk diversification.

However, for members of a small community, when one participant dies, it can be preferred

that his or her contribution remains in the community rather than being scattered within

the entire pool.

We assume that participants’ accumulated assets are identical across the pool, that is,

ai = a for some a > 0.

1.1 The mortality risk transfer network framework

We introduce a mortality risk transfer network to account for the links existing between

some of the participants within the pool and explain how mortality credits can be shared

among the sub-pool of participants who are connected with him or her.

The participants’ undirected graph is denoted by G = (V,E) where the set of nodes is

V = {1, ..., n} and the set of edges between participants is E ⊆ P2(V ) where P2(V ) is the

unordered subsets of V of size 2. The subset of participants who are directly connected with

participant i is given by C (i) = {j ∈ V : (i, j) ∈ E}. The cardinal of C (i) is referred to as

the degree of node i on the graph G = (V,E) and is denoted by deg (i). This is the number of

participants who are connected with participant i. We associate weights {αii, αij : j ∈ C (i)}
to participant i and to his or her connected peers such that

αii > 0, αij > 0 for j ∈ C (i) and αii +
∑
j∈C(i)

αij = 1.

Participant i’s initial contribution to the fund c is then split into 1+deg (i) parts of respective

amounts αiic and αjic for j ∈ C (i).

The mortality risk transfer network is composed of several overlapping sub-pools: one

for each participant. Participant i’s sub-pool gathers participants belonging to C (i). In

this sub-pool, participant i brings capital αiic while participant j, for j ∈ C (i), brings αjic.

With this construction, the mortality credit αijXi, for j ∈ C (i), is attached to participant

j’s sub-pool while the mortality credit αiiXi is attached to participant i’s sub-pool. The

aggregate mortality credit for participant i’s sub-pool is then given by

S(i) = αiiXi +
∑
j∈C(i)

αjiXj.
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The amount received ex post by participant i from his or her sub-pool and the amount

received ex post by participant j, j ∈ C (i), from participant i’s sub-pool are respectively

given by

hii(S
(i)) = E

[
αiiXi

∣∣S(i)
]

and hij(S
(i)) = E

[
αjiXj

∣∣S(i)
]
.

The ex-post aggregate amount received by participant i is therefore given by

hi(X) = hii(S
(i)) +

∑
j∈C(i)

hji(S
(j)),

where X = (X1, . . . , Xn).

The amounts h1(X), . . . , hn(X) satisfy
∑n

i=1 hi(X) =
∑n

j=1Xj, meaning that the entire

resources are pooled within the whole group (see Appendix A for a proof). Compared to

the survivor fund mechanism described in Section 2 of the paper, the network structure

limits the benefits of mortality credits to a reduced number of well-identified participants.

Moreover, the mortality risk transfer network is still fair and does not transfer money from

some participants to other ones on average (ex ante) since

E[hi(X)] = E

[
hii(S

(i)) +
∑
j∈C(i)

hji(S
(j))

]
= αiiE [Xi] +

∑
j∈C(i)

αijE [Xi]

= E [Xi] .

Remark 1.1. Notice that the structure of the pool presented in Section 2 of the paper is a

particular case of the network structure proposed here: it corresponds to the case where the

graph is complete/fully-connected (i.e. participants are connected to all other participants

by a path of length 1), and weights are uniform, i.e. αij = 1/n for all i = 1, . . . , n and

j = 1, . . . , n.

1.2 Large-pool approximations for Erdős–Rényi graphs

In order to assess the diversification benefits, let us consider the case of the Erdős–Rényi

models where each edge has a fixed probability p of being present or absent, independently

of the other edges. Let G (n, p) be an Erdős–Rényi random graph with n nodes/participants

and probability p. Because the existence of each edge is a Bernoulli random variable with

parameter p, the degree of a given node is a Binomial random variable with parameters n−1

and p. The average degree is thus E [deg (i)] = (n− 1) p. Analysis of probabilistic properties
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of large Erdős–Rényi graphs is performed as n approaches ∞ when the probability p is a

function of n, henceforth denoted as pn.

We are interested in the connectivity property, that is, whether it is possible to connect

all participants (possibly with a path of length larger than 1). It turns out that there exists a

threshold function for pn above which an Erdős–Rényi graph is connected and below which it

is not connected with high probability. Precisely, the following result can be found in Chapter

3 of Bollobas (2001). Let λ > 0 and pn = λ log n/n. Then G(n, p) is connected with high

probability for λ > 1 and disconnected with high probability for λ < 1. Hence tn = log n/n

is a threshold function for the connectivity property. Note that if pn = λ log n/n, then the

average degree for participant i satisfies E [deg (i)] ∼ λ lnn for large n. It tends to ∞ but at

a slow rate. If

pn =
1

n
(log n+ k log log n+ y) ,

where k ∈ {2, 3, . . .} and y ∈ R, then the minimal degree over the graph is almost surely

bounded below, since

lim
n→∞

P

[
min

i=1,...n
deg (i) = k

]
= 1− e−e−y/k! and lim

n→∞
P

[
min

i=1,...n
deg (i) = k − 1

]
= e−e−y/k!.

See Theorem 3.5 in Bollobas (2001).

Let us now assume that pn = λ log n/n with λ > 0 and that the weights within each

sub-pool are uniform, i.e. for i = 1, ..., n,

αii = αij =
1

1 + deg (i)
, j ∈ C (i) .

For i = 1, . . . , n, define

σ̄2
n,i =

a2

1 + deg (i)

qxi
(1− qxi

) +
∑
j∈C(i)

qxj

(
1− qxj

) .

We can then state the following result.

Proposition 1.2. Assume that the sequence (qxl
) associated to participant i’s sub-pool and

to sub-pools of all participants belonging to C (i) is contained in a closed subinterval of (0, 1).

Assume moreover that limn→∞ σ̄2
n,i = σ2 > 0, and that, for j ∈ C (i), limn→∞ σ̄2

n,j = σ2.

Then, as n → ∞,√
λ log n

σ

qxi
(1− qxi

)a2
(
hi(X)− qxi

a
) L→ Normal (0, 1) .
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The proof of Proposition 1.2 is given in Appendix B. Proposition 1.2 shows that the risk

diversification intensity is proportional to the square root of the average size of the sub-pool

for each participant.
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Appendix

A Full allocation for the network structure

In order to establish that the identity
∑n

i=1 hi(X) =
∑n

j=1 Xj holds true, let us write

n∑
i=1

hi(X) =
n∑

i=1

hii(S
(i)) +

n∑
i=1

∑
j∈C(i)

hji(S
(j))

=
n∑

i=1

E
[
αiiXi

∣∣S(i)
]
+

n∑
i=1

∑
j∈C(i)

E
[
αijXi

∣∣S(j)
]

=
n∑

i=1

E
[
αiiXi

∣∣S(i)
]
+
∑

(i,j)∈E

E
[
αijXi

∣∣S(j)
]

=
n∑

i=1

E
[
αiiXi

∣∣S(i)
]
+
∑

(i,j)∈E

E
[
αjiXj

∣∣S(i)
]

=
n∑

i=1

E
[
αiiXi

∣∣S(i)
]
+

n∑
i=1

∑
j∈C(i)

E
[
αjiXj

∣∣S(i)
]

=
n∑

i=1

E

αiiXi +
∑
j∈C(i)

αjiXj

∣∣S(i)


=

n∑
i=1

S(i) =
n∑

i=1

αiiXi +
∑
j∈C(i)

αjiXj


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=
n∑

i=1

αiiXi +
n∑

i=1

∑
j∈C(i)

αjiXj =
n∑

i=1

αiiXi +
n∑

i=1

∑
j∈C(i)

αijXi

=
n∑

i=1

Xi

αii +
∑
j∈C(i)

αij

 =
n∑

j=1

Xj.

B Proof of Proposition 1.2

Defining

a′i,n =
λ log n

1 + deg (i)
a

X ′
i,n = (1− Ii)a

′
i,n =

λ log n

1 + deg (i)
Xi

S(i)′ = X ′
i,n +

∑
j∈C(i)

X ′
j,n = λ log nS(i)

we have that

hii(S
(i)) =

1

λ log n
E
[
X ′

i

∣∣S(i)′ ]
and it follows from the proof of Theorem 2.1 in Strasser (2012) that, for large n, and j ∈ C (i),

hij(S
(i)) =

1

λ log n

(
qxj

a′j,n +
1√

1 + deg (i)

qxj
(1− qxj

)a′2j,n

σ(i)
n

Z(i)
n +OP

(
(log n)−1

))

where

Z(i)
n =

√
(1 + deg (i))

(
S(i)′ − p(i)n

σ(i)
n

)

p(i)n =
1

1 + deg (i)

qxi
a′i,n +

∑
j∈C(i)

qxj
a′j,n


(
σ(i)
n

)2
=

1

1 + deg (i)

qxi
(1− qxi

)
(
a′i,n
)2

+
∑
j∈C(i)

qxj

(
1− qxj

) (
a′j,n
)2 .

Therefore participant i’s contribution to the global pool satisfies

hi(X)

= hii(S
(i)) +

∑
j∈C(i)

hji(S
(j))
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= qxi
ai,n + qxi

(1− qxi
)
(
a′i,n
)2 Z

(i)
n√

1 + deg (i)σ(i)
n

+
∑
j∈C(i)

Z
(j)
n√

1 + deg (j)σ(j)
n

+OP

(
(log n)−1

)
.

We deduce that

√
λ log n

qxi
(1− qxi

) a2
(hi(X)− qxi

a)

=

(
λ log n

1 + deg (i)

)2
√

1 + deg (i)

λ log n

1√
1 + deg (i)

√ λ log n

1 + deg (i)

Z
(i)
n

σ(i)
n

+
∑
j∈C(i)

√
λ log n

1 + deg (j)

Z
(j)
n

σ(j)
n


+OP

(
(log n)−1/2

)
.

The random variables Z
(i)
n /σ(i)

n may asymptotically be considered as independent because,

for any ε > 0,

lim
n→∞

P

Card

 ⋃
j,l∈C(i),j ̸=l

(C (j) ∩ C (l))

 / log n > ε

 = 0.

Since
1 + deg (i)

λ log n

P→ 1, σ(i)
n

P→ σ, Z(i)
n

L→ Normal (0, 1) ,

we deduce the result from the Lindeberg-Feller central-limit theorem.
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