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1 Additional material for Section 4.3

1.1 3-step valuation using quantile hedging valuation

The previous susbsections consider 3-step valuations where the standard deviation principle is used
for the valuation of diversifiable claims. In this subsection, we directly use a quantile hedging ap-
proach for the residual claim, without using the conditional standard deviation principle; see Example
6. For simplicity, we put i = 1. This also makes the results comparable with the valuation based on
a conditional standard deviation principle. The function l is given by l(x) = p

1−px+ + x−, where
x+ = max(x, 0) and x− = max(−x, 0); see Koenker and Bassett (1978). The hedger η is defined
in (4.2) and one can show that the hedger satisfies: VaRp

[
S − θS · Y − ηS−θS ·Y · Y

]
= 0. We use

simulation to find the hedger η. Figure 1 shows the liability after we take into account the quantile
hedging strategy η is used to cover the residual part of the claim. Only in a few situations this liability
is strictly positive, which implies that in the majority of the situations, the amount available to the
insurer is sufficient to cover the realization of the claim.

1.2 Comparison between the valuations

Table 1 shows the values of the different 3-step hedge-based valuations considered in this example,
for different portfolio sizes. If the portfolio size increases, the value of the liability decreases because
the claim is more diversified. The valuation described in Section 4.3.3 uses a risk measure (the VaR
in this particular case) for the valuation of the systematic part, whereas the valuation described in
Section 4.3.4 uses a pricing measure (the Esscher transform). Therefore, the values obtained using
the Esscher transform are smaller than the values determined using the VaR. The last column of Table
1 contains the values of the claim when a quantile hedging approach is used for the residual part of
the claim.
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The quantile hedger with 100 policyholder

Liability after quantile hedging 
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(a) na = 100

The quantile hedger with 500 policyholder
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(b) na = 500

The quantile hedger with 1000 policyholder
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(c) na = 1000

The quantile hedger with 10000 policyholder

Liability after quantile hedging 

D
en

si
ty

−0.3 −0.2 −0.1 0.0

0
5

10
15

20

(d) na = 10000

Figure 1: Histogram of the liability S given by (4.13) when a quantile hedger is used to determine the value of the
residual part.

Table 1: The valuation of the hybrid claim in (4.14) using different approaches of the systematic valuation.

Number of policyholders na Conditional standard deviation Quantile hedging

VaR Esscher transform

100 0.387 0.319 0.33
500 0.360 0.305 0.310

1000 0.354 0.302 0.305
10000 0.343 0.296 0.298
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2 Numerical results for Section 5.2

We determine numerical values for the claim S given by (5.13), which represents the per-policy
liability of a unit-linked portfolio. The parameter values used to obtain the numerical values are
summarized in Table 2. Table 3 shows the numerical values for the claim S for different portfolio
sizes and different valuations. Columns 2, 3 and 4 are valuations based on the modified standard
deviation principle introduced in Example 5, for different choices of ρs. More precisely, in columns
2 and 3, we use the valuation ρEsscher which was derived in (5.19). By changing the parameter θs, we
consider different specifications for the Esscher transform. The fourth column assumes the valuation
ρs is based on the VaR; see also Section 5.1.2. The last column is the hedge-based valuation ρHB

which was derived in Section 5.2.3. The hedge-based valuation leads to the lowest values, whereas
the valuation using the VaR leads to the largest values. Increasing the portfolio size leads to lower
values for the claim.

The hedge-based valuation determines the hedgeable part by using the mean-variance hedger. The
residual part of the claim is valuated using the standard deviation principle. This valuation does not
distinguish between the systematic and the diversifiable risks. Indeed, only the distribution function
of S − Hh

S is used to determine the value of the residual part. The 3-step hedge-based valuation
considers the conditional distribution of S−Hh

S , given the systematic risk Z. By putting more weight
on the ‘bad’ scenarios, we increase the value of the claim. This effect is illustrated in Figure 2, where
we determine the histogram for the residual part S − Hh

S , given a value for the random variance
Z. In the left panel, we have that Z = −0.1, which corresponds with a bad scenario where more
policyholders than expected survive, leading to an underhedging of the claim S using the mean-
variance hedge. The right panel considers the case where Z = −0.9, which corresponds with a good
longevity scenario. Note, for example, that E

[
S −Hh

S

]
= 0, whereas E

[
S −Hh

S | Z = −0.1
]

= 0.4
and E

[
S −Hh

S | Z = −0.1
]

= −0.3.

Table 2: Parameter values for the unit linked contract. The distribution for the stock returns are given by (5.15) and the
distribution for the systematic longevity risk is given by (5.18).

Contract

Premium of the policyholder P 0.663743
Maturity T 15
Internal rate of return v 0.009
Bonus share α 0.4019

Distributions

Mean of the stock return µf 0.06
Vol of the stock return σf 0.2
Mean of the longevity risk µs -0.5
Vol of the longevity risk σs 0.2

Valuation

Systematic valuation θs -0.95
Actuarial valuation β 0.3
Risk free rate r 0
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Table 3: The valuation of a portfolio with unit-linked contracts using different approaches of the systematic valuation.
The second and third column contain the values when an Esscher transform is used a systematic valuation, with different
values for the parameter θs. The third column uses the Value-at-Risk to determine the systematic value of the claim. The
last column is the hedge-based valuation using a standard deviation principle.

Number of Esscher transform VaR Hedge-Based

policyholders θs = −0.95 θs = −0.1

5 0.729 0.709 0.988 0.694
10 0.717 0.696 0.971 0.679

100 0.696 0. 674 0.947 0.661
1000 0.689 0.667 0.939 0.659

10000 0.687 0.665 0.936 0.659
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Figure 2: The histogram of the conditional distribution of the residual part S−Hh
S if Z = −0.1 (left)

and Z = −0.9 (right).
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3 The additive 3-step valuation

Example 1 (The hedgeable part in a complete financial market) Consider the probability space (Ω,P)
with the universe Ω defined as follows: Ω = {(ω1,i, ω2,j) | i, j = 1, 2} .We have that: P [(ω1,i, ω2,j)] =
1
4
, for i, j = 1, 2. The financial outcomes are denoted by ωf1 and ωf2 and ωfi = {(ω1,i, ω2,j) | j = 1, 2} .

We assume a stock is traded with time-T value given by Y1 and Y1

[
ωf1

]
= 50 and Y1

[
ωf2

]
= 100.

One can then verify that E [Y1] = 75 and Var [Y1] = 252. The event ωa1 corresponds with the sur-
vival of the policyholder to time T . We have that ωaj = {(ω1,i, ω2,j) | i = 1, 2} . Define the random
variable X1 which takes value one in case the policyholder survives to time T and zero otherwise:
X1 [ωa1 ] = 1 and X1 [ωa2 ] = 0.One can then verify that P [X1 = 1] = 1/2 and, moreover, the random
variables X1 and Y1 are independent. We also assume that r = 0, hence Y0 = 1.

We consider the following claim S:

S = X1 × (Y1 − 50)+ . (3.1)

Then the claim S has the same structure as (6.6). To keep the setting as simple as possible and since
our focus is here on the hedgeable part of the claim and not the diversifiable part, we assume for this
example that na = 1, however, one can generalize the example and include na > 1. We can then
define the ‘hedgeable’ part given by (6.7), which we denote by Dh. We have that

Dh
[
ωf1

]
= 0 and Dh

[
ωf2

]
=

50

2
. (3.2)

Note that hedging a call option with strike 50 and maturity T in this market model, requires to buy
one unit of the stock (i.e. the delta is 1) and put the amount -50 in the risk-free bank account. The
survival probability is 1/2 and therefore, the hedgeable part Dh replicates 1/2 call option.

The mean-variance hedger θS is given as follows θS =
(

1
2
, −50

2

)
. The hedgeable part Hh

S defined in
(6.1) using the mean-variance hedger is then given by

Hh
S

[
ωf1

]
= 0 and Hh

S

[
ωf2

]
=

50

2
. (3.3)

Comparing (3.2) and (3.3) we conclude that Hh
S = Dh. The hedgeable part (6.6) defined in Deelstra

et al. (2020) is indeed hedgeable and corresponds with the hedgeable part defined in this paper in
(6.1) when the mean-variance hedger is used.

Example 2 (The hedgeable part in an incomplete financial market) In this example we repeat the
previous example, but we now consider a financial market which is incomplete. More concrete, we de-
fine the universe as follows: Ω = {(ω1,i, ω2,j) | i = 1, 2, 3 and j = 1, 2} .We have that: P [(ω1,i, ω2,j)] =
1
6
, for i = 1, 2, 3 and j = 1, 2. The time-T stock price is denoted by Y1 and we now have 3 possible

outcomes for the stock price: ωfi = {(ω1,i, ω2,j) | j = 1, 2} .We assume that Y1

[
ωf1

]
= 0, Y1

[
ωf2

]
=

50 and Y1

[
ωf3

]
= 100.One verify that P [Y1 = x] = 1/3 for x = 0, 50, 100. Moreover, we have that

E [Y1] = 50 and Var [Y1] = 502× 2/3. The random variable X1 is defined similarly as in the previous
example and gives the value 1 in case the policyholder survives to time T and zero otherwise. We
have that E[X1] = 1/2. The hybrid claim S is defined by (3.1).
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The ‘hedgeable’ part (6.7) defined in Deelstra et al. (2020) is again denoted by Dh and we have that

Dh
[
ωf1

]
= Dh

[
ωf2

]
= 0 and Dh

[
ωf3

]
= 50. (3.4)

Note that this results in 3 equations which cannot be solved if we can only invest in the stock Y1

and the risk-free bank account. We conclude that the ‘hedgeable’ part Dh cannot be replicated by
traded assets. Therefore, the valuation of the ‘hedgeable’ part is not solely based on traded prices and
requires a choice of the risk neutral probability measure.

The mean-variance hedger θS for the claim S is given by θS =
(
−25

6
, 1

4

)
. The hedgeable part Hh

S

defined in (6.1) when using the mean-variance hedger is then given by

Hh
S

[
ωf1

]
= −25

6
, Hh

S

[
ωf2

]
=

25

3
and Hh

S

[
ωf3

]
= 25× 5

6
. (3.5)

Observing Expressions (3.4) and (3.5), we conclude that the hedgeable part of a product claim used
in Deelstra et al. (2020) differs from the hedgeable part Hh

S we use in this paper. Moreover, the
hedgeable part Hh

S can, by construction, be replicated using traded assets, whereas the claim Dh is
not replicable.

4 Appendix: Details on the numerical example in Section 2

4.1 The financial risks

We assume that the stock Y1 follows a geometric Brownian motion:

dY1 = P
(
µfdt+ σfdW f

)
,

where
{
W f (t)| t ∈ [0, T ]

}
is a Brownian motion. Then:

Y1 = P e
(
µf− 1

2(σf)
2
)
T+σf

√
TΦ−1(U)

,

where Φ is the distribution function of a standard normal distribution. We have that

e−rTEQ
[
Sf
]

= e−rT + α
(
PΦ(dv)− P (1 + i)T e−rTΦ(d2)

)
, (4.1)

where

d1 =

(
r + 1

2

(
σf
)2
)
T − log(1 + v)T

σf
√
T

, and d2 = d1 − σf
√
T .

4.2 Force of mortality

We assume that the force of mortality of the remaining lifetime of the policyholders is a stochastic
process. The force of mortality at time t is denoted by λt and follows an Ornstein-Uhlenbeck process:

dλ = µλdt+ σλdW s, (4.2)
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where {W s(t)| t ∈ [0, T ]} is a Brownian motion independent from the Brownian motion W f . Define
the random variable Z as follows: Z = e−

∫ T
0 λsds. One can prove that Z has a normal distribution:

Z
d
= N

(
µs, (σs)2) , where

−µs = λ0ζ

(σs)2 =
σ2
λ

µ2
λ

(µλ
2
ζ2 − ζ + T

)
ζ =

eµλT − 1

µλ
.

References
Deelstra, G., Devolder, P., Gnameho, K. and Hieber, P. (2020), ‘Valuation of hybrid financial and

actuarial products in life insurance by a novel three-step method’, ASTIN Bulletin 50(3), 709–742.

Koenker, R. and Bassett, G. (1978), ‘Regression quantiles’, Econometrica 46(1), 33–50.
URL: http://www.jstor.org/stable/1913643

7


	Additional material for Section 4.3
	3-step valuation using quantile hedging valuation
	Comparison between the valuations

	Numerical results for Section 5.2
	The additive 3-step valuation
	Appendix: Details on the numerical example in Section 2 
	The financial risks
	Force of mortality


