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Appendix A. Proofs of theorems and equations

The model under limiting case. Considering the limiting case is reasonable in mutual aid platform because
most mutual aid plans require at least one million participants. Some top mutual platforms have over 100

million participants (See table 1).

Table 1: Number of participants in mutual aid platforms

Platform Number of participants (million)
Xianghubao 104.7
Waterdrop Mutual Aid 103.1
Qingsong Mutual Aid 80.0
e Mutual Aid 3.4
Kangai Gongshe 2.6

The variance of the percentage of population suffering the illness is %, which is a relatively
small number compared to a percentage p. Thus, it is sufficient to consider the continuous model as the
limiting case. Therefore, equations in the model can be viewed as the limiting case as well. As discussed
above, we consider that our model in under the limiting case. Thus, %, which is the percentage of
participants who join the plan, is also under the limiting case. Recall that m; is the total mass of type-i
potential participants. If we restrict Y .- ; m; = 1, m; can be regarded as the proportion of type-i potential
participants among all participants. Suppose N; r is the population of type-i potential participants and
Nr is the population of all potential participants. We further assume that N;/N; 7 = l;/m;, which means
the percentages of participants who join the plan among all type-i participants are the same under both
limiting case and non-limiting case. We further have

—m; asall N; — oo. (1)
Np

*Corresponding author. Tel.: +86 20 84110516; fax: +86 20 84114823. E-mail addresses: zengy36@mail.sysu.edu.cn.



Thus, the equation

Z(Ni —n;)S; = Z n;l;
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Dividing both sides of the equation by Np and taking the limit we have

Zmz% (1—pi)s; = Z mz‘%pﬂz‘,

ieN ’ ieN v

which yields
Z Li(1—pi)si= Z lipil;.
ieEN ieN
Therefore, we can consider our continuous model as the limiting case and expressions such as (1 —p;)s;

and [;p;I; are used in our model. Our results are based on such modeling framework. ]

The generalization of the model. Our model is also valid under the limiting case when loss amounts and
benefit amounts are random variables rather than constants. Now we suppose that X; are random
variables for all 7. Then X ;=1I; are also random variables. Let I; ; be the random loss of j-th participant
in the group-i. If we further assume that I;; are iid with finite second moment for all j = 1,...,n; .

Then the total payment amount from type-i becomes Z;Zl I; ; which is a compound rv with

E | I;| = E[n]E[L] = NipE[I]
=1 ]

n;
Var ZIi,j = N;jp;Var(I;) + Nip;(1 — pr)E[I;)* < Nip;E[I7).
j=1
Furthermore,
1 & 1 & E[1?]
E I;| =E[L, Var | <25 L0, N o .
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By Chebyshev’s inequality, we have
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Therefore, in one risk group case, we still have

n;
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Similar argument can also be applied to the cases with multiple risk groups. Therefore, our model is valid

under the limiting case when loss amounts are either constants or random variables. O

The limit s; of S;. Note that S; is a function of random variables r;, which is the random percentage of

participants suffering the illness, given by the following equation

Wi Y ien Uil
Y jen il = rwy’

S; = Vie N.

Moreover, we have r; = ]7\’,—;, where m; is the random number of illed participants, as illustrated in the
T
Appendix. When the number of participants N; goes infinity, r; = ﬁz converges to p; almost surely for

all i. That is '
Pr( lim r,=p | = 1.
(o)

We can also note that s; is a function of p;, which is expressed as

w; Y ien lipil;
> jen il = pj)w;

8; = , VieWN.

We recall the continuous mapping theorem. Let {X,} and X be random variables and g be a con-

tinuous function with Pr(X € Dgy) = 0, where D, is the set of discontinuity points. The continuous

mapping theorem states that if X,, =% X then g(X,) %2 g(X). Consider the function g;(z1,...,2,) =
wi > jen bitils

> jen bl = zj)w;

theorem, we have S; = s; that is

We have S; = g;(r1,...,r,) and s; = gi(p1,...,pn). By the continuous mapping

Pr< lim S; = s,-> = 1.
VN;—o00

O]

Proof of Equation (6). We assume that w; is the weight factor of the type-i participants’ payments. Thus,
we have g
W
L= Vi jeN.
Sj wj

Then, we let S; = %Sl and plug it into Equation (5) and obtain

w1 Y ien Uil

S = .
> jen li(l = rj)w;




Similarly, for all i € N, we have
Wi Y ien il
djen il —rj)w;

Si =

Proof of (9). Under the equivalence principle, p;I; = (1 — p;)si, @ = 1,2. Under the uniform distribution,
F~Y(1—¢q) = (1 — q¢)v. Then, Equation (1) can be reduced to

pilia+p=(1-1)v, i1=1,2.

This reduction yields

I I
ll,lzl—w, l1,2=1—w-
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Proof of Equations (10). Note that s; = s = pililitpa Lol We consider two cases. In the first case,

(I=p1)l+(1—p2)lz"
(1 —p2)sa(l + a) + B — paly < v. In this case, not all type-2 participants participate in the plan. Thus,

Equation (1) still holds. From Equation (1), we have

p1lily + palaly

(1 —p1)li + (1 = p2)l
prlily + palals

(1 —p1)lh + (1 —p2)l

(1-=p)(1+a) ; +B8—pili =(1-1h)v,

(I-p2)(1+a) R (1 —1)7.

After simplification, we have

(1—p1)*+ (1 —pp)?
(1-p1)
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(1—p2) 1—p I—pm
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Let
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and
02:“:}f’”(plf(ua)—iii(@—5+p21)>(p11(1+a)+@—ﬁ+p11—1:5;(@—ﬂ+p21))~

If b% < 4ajcy or b% < 4agey, Equation (2) does not have real roots, indicating that population equilibrium
cannot be reached. Thus, suppose that b? > 4ajc; and b3 > 4ascy. By solving the above equations and

omitting the negative roots, we obtain

_ —b1+\/b%—4a101 Iy — —by + / %—4&262
aq ’ '
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In the second case, (1 — p2)sa(l + a) + 8 — p2lo > 0. In this case, all type-2 participants participate in

the plan, i.e., o9 = 1. Then, we have

(1 =p1)oli® + (1 = p1)(prlec = B+ B) + (1 = p2) o)l +
(I—pi)p2f(l+a)— (1 —p2)(0+pil—p)=0.

Let
az = (1 —p1)v,
bs = (1—p1)(p1la— v+ B)+ (1 — p2)v
and
c3=(1—p)p2l(1+a)— (1 —p2)(0+pil—P).
We obtain
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Proof of Theorem 1. According to problem (P1), we write the corresponding Lagrangian function £ as

o, B A pm) =Y ailipili+ Y Bili+ Y Nici + > i,

ieN ieN ieN ieN

where A and p are KKT multipliers with A = (A\y,...,A,) and g = (p1,...,p4,). According to the

stationary condition, we calculate the derivatives of £ with respect to «;, 8; and have

oL al; ol; B .
Do lipil; + Qipiji@ + 51@ +A =0, VieN, (3)
oL ol; ol;
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From the complimentary slackness conditions, we have
)\’iai = 0) /'Lzﬂz =0, Vi € Nv (5)

and
Xi>0, pu; >0, VieN.

Under the fair risk exchange scheme, we have p;I; = (1 — p;)s;. The expression for /; can be rewritten as
li = mi[1 — Fi(cupil; + Bi)].
Thus,

al;
80[1'

o
o

where F! is the first-order derivative of F;. Plugging into Equations (3) and (4) yields

= —mip; i Fj (qipil; + Bi) —miFj (qipil; + Bi) VieN,
lipil; — mipi i (cipil; + Bi) Fy (cipili + i) + Ai =0, Vie N (6)

and
mi(cipil; + Bi) Fi (qipili + Bi) + i+ s = 0, Vi€ N. (7)

Case (i): If a; > 0 and B3; > 0, we have \; = u; = 0. Both equations (6) and (7) generate

mi(cipil; + Bi) F} (cupil; + Bi) +1; = 0. (8)



Note that a;pil; + f; = F, ! (1 - T%) and

)

il (aipii + Bi)

Thus, from Equation (8), we have

F! <1 — li> + lidFi_l (1 ~ ’iT) =0. (9)

my; dli

Thus, the optimal participant population [;* can be determined by

Pl <1 - l) + li*dFi_l (1-) —0 (10)

v m; dlZ*

, and the optimal commission rate ] and subscription 3 are provided by

* * — l;*
aipl; + B = F! (1 - 7;) : (11)

i
Case (ii): If a; = 0 and §; > 0, then \; > 0 and p; = 0. From Equations (6) and (7), we have

)\.
. BT (A M
miBiF} (B;) + 1 ol (12)

and
—miBiF (Bi) +1i = 0 (13)

By comparing Equations (12) and (13), we have \; = 0. Note that Equation (8) degenerates to Equation
(13) when a; = 0. Thus, Equation (10) still applies in this case, and Equation (11) is rewritten as

Br=F1 (1 — l) . (14)

m;

Case (iii): If o > 0 and 3; = 0, we can still have \; = 0 and p; = 0 by following similar steps as in case

(ii). Therefore, we can have

P (1- k)
af = — ™M/ (15)



Proof of Proposition 1. If ¢ = j, the derivative of s; with respect to [; is given by

Osi _ w.pifi(zie/\/ Li(1 = pi)wi) — (1 = pi)wi(D_en livili)
0l; ’ (D ien li(1 = pi)w;)?

Let gf; > 0, and we have
pil; Z Li(1 = pi)w; — (1 — pi)w; Z Lipil; > 0,
iEN iEN

which yields
pil; L Wi dienlivili N
(I=pi) = Dien li(l —pi)w; "

If ¢ # j, the derivative of s; with respect to [; is given by

0si _ PiliQien li(h — pi)wi) — (1 = pj)w;(Fien livili)
ol (Cien li(l = pi)w:)? ’

for i # j.

Let gls? > 0, and we have
J

pily Y (1= pi)w; — (1= pjw; > Lipil; >0,
ieN ieN
which yields
pil; S Wi 2ien livili N
(1—pj) Zie./\/' Li(1 = pi)w; !

Proof of Proposition 2. We consider the following function:
_ l;
Gi(ai,ﬁi,l) = (1 —pi)(l + ai)wi Z ljpjfj — (Fz 1 <1 — Z> — B +piIi> Z lj(l _pj)wj =0.
JEN JEN
Calculating the derivative of G; with respect to «a; yields
oG;

e (1 —pi)w; Z Lip;I; > 0.
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Calculating the derivative of G; with respect to ; gives

= 1;(1 - pj)w; > 0.
851 =

Calculating the derivative of G; with respect to [; yields

%CZZ = (1 —p;)(1 + ))wipiI; — (F (1 — ?;) Bi + pi Z) (1 —p)w; — F~ ( ) Zl

! JEN

= (1= p)(1 + e)wi(pil; — (1 — p;)si) — F; (1 - 7’2) Z Li(1 = pj)w;
vGeN

Note that Fi_1 is an increasing function; thus, Ffl (1 — 7%) is a decreasing function of ;. Therefore, we

/
have F;l (1 - anz) < 0, which leads to 86?? > 0, and we have

ol 0Gijoa: ol 0G0,
Bos ~ aGgan ~ 0 55 = g e <

Calculating the derivative of G; with respect to l; (j # ) yields

==+ ety - (£ (1= 1) bt ) (= ey

myg

G,
al,

= (1—p) (1 + ci)wi(pjL; — (1 — pj)sy).

If (pﬂ ") > s;, we have all > 0, which leads to

Olj - 8GZ/8041 81] . 8Gl/852

=——"r " <
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If (fjp y < 8, we have 811 < 0, which leads to
ol 9Gi/da ol 9Gi/9p;
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Proof of Corollary 1. Calculating derivatives of both sides of Equation (19) with respect to p; and I,

respectively, yields

_ L;* - L*
ooi () o (k)
8pi pg[i ’ 8[,; pl'IZ-2 .




Note that F~! (1 — 57171) > 0 since F~! is a distribution function. Thus, we have

* *
9ai _y, 99,
Op; oI;

Calculating derivatives of both sides of Equation (20) with respect to p; and I;, respectively, yields

%:0 aﬁi:

0.
api ’ (‘91}
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Proof of Theorem 2. From Equation (21), we have
I I
l1:m1<1—w>, l2:m2<1—w>. (16)
Uy U2

Plugging them into Equation (22) yields

212 212 I I
L=— (m1p1 1 + 1m2p 2) oz2—2 <m1p1 ! + 1map2 2> Olﬁ— (T’_h + Tn2> 52+(m1p1[1+m2p212)a—|—(m1+m2)5.

U1 () U1 Vg U1 Vg

Calculating the derivative of £ with respect to « and setting it to 0 yields

oL _ _9 <m1p%112 n "’”21)%[22) o—9 (m1p1f1 n mapals

= = I Iy) =0. 17
Oo U1 ) 01 ) > B+ (mupily + mapalz) (a7

Calculating the derivative of £ with respect to 5 and setting it to 0 yields

I I
oL 2<m1p1 L Maps 2>a2<m1+77_12

%5 o % w T, ) B+ (m1 +mg) = 0. (18)

If (171 — 772)(])1[1 —pgfg) > 0 and (plfl/f)l —pg[g/@g)(plfl —pQIQ) > 0, by Solving Equations (17) and (18),

we have L ~ ~
1 01— « _ 1pi1vy — palovy

C2pily — pols’ 2 pih—paly
If (01 — D2)(p111 — p2d2) < 0 or (p111/v1 — pala/V2)(p1d1 — p2l2) < 0 (p1ly # pa2l2), the optimal solution is
on the boundary. We consider two cases: a = 0 or = 0. We find that the revenue reaches its maximum

*

when o« = 0 and have the optimal solution

V12 M1+ mo

* *
ot =0, p*= — —.
’ 2 m1Ug + MaU1
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If p1 11 = pols, we plug it into Equation (17) and have

V10
ool + B = 1V2 M1+ mg

2 mqUy + moty .

If (01 — v2)(p1Lh — p2l2) > 0 and (p111/01 — pola/02)(p1l1 — p2l2) > 0, plugging Equation (26) into
Equation (16) yields

mo
1 9 2 2

Otherwise, plugging Equation (28) into Equation (16) yields

z*1=ml<1+m2(“1_”2)>, Z*FW(HWM)_

2 m1Us + Mo¥1 2 miU2 + Mo

If (01 —02)(p111 —p2l2) > 0 and (p111 /01 —pala/V2)(p1l1 —p2la) > 0, plugging Equation (29) into Equation
(22) yields - -
mivq mov9
4 4
Otherwise, plugging Equation (30) into Equation (22) yields

%pt,l =

- 2
V109 (M1 +ma)
4 mqvy + motq '

‘/;wpt, 2 =
We have

- - == 2

v miv1 movo V1V2 (m1 + Tng)
opt,1 — Vopt,Q = - — —
4 4 4 mqvy + moty

_lm%l_}l’ﬁg + m1m277% + mlmgz_)% + m%l_}lﬁg — m%l_il’t_)g — 2Mm1mot1Ug — m%@lﬁg

4 mivs + Mot
S 2
_mymg (U1 + T2)
4  mqvy + moty

> 0.
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