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1 Options valuation in the Heston model

In Section 4 of the article, butterfly option prices computed with the LSMC and LLSMC
are compared to these obtained with a discrete Fourier transform (DFT). We briefly review
the procedure to calculate prices by DFT.

The next proposition states that the characteristic function of the stock log-return ad-
mits a closed-form expression.

Proposition 1.1. The characteristic function of In(Ss/So) |Ft under the risk neutral Q,
for s >t with w € C, is given by the following expression

EQ (e(S:/50) | F) = <§t) exp (A(w, t,8) + B(w,t, $)V;) . (1)
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The functions A(w,t,s) and B(w,t,s) in Equation (1) are given by
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For a proof, we refer the reader to Hainaut (2022), chapter 3, p. 65. European call
or put options do not have analytical expressions. In order to evaluate these options,
we calculate numerically the probability density function of the log-return, In (S7/So) | Fi,
by a discrete Fourier transform (DFT). The characteristic function of a random variable,
denoted by Yy r(iw) = E® (e“"ln(ST/SO) | ) for w € R, is also the inverse Fourier transform
of its probability density function (pdf):
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Therefore, we can retrieve the pdf by computing numerically its Fourier transform as stated
in the next proposition.



Proposition 1.2. Let M be the number of steps used in the DFT and A, 2]3[7"’” be this

step of discretization. Let us denote A, = MQ—Zu and

wm = (m—1)A,,

form = 1..M. Let Ty 7(w) = EQ (e“’ln(ST/SO) ].7-}) be mgf of In(St/So). The values of
frr(+) the pdf of In(St/So) | Fe at points up = —4 A, + (k — 1)A, are approached by the

sum.

flug) = <Z om Yo (iwm) (—1)™ 1,—i35 (m—1)(k— 1)) (5)

where 0, = %1{m:1} + L1y

This result is proven by discretizing the integral (4). The value of a European option
of maturity 7" and payoff H(St) is then approached by the following sum

E2 (eI H(Sy)|R) = Z F (wg) H(Soe"™) . (6)

2 Analytical valuation of a participating pure endowment

In Section 5 of the article, LSMC and LLSMC prices of participating pure endowments
are compared to analytical ones, obtained with Proposition 5.1 and 5.2 of the paper. We
provide below intermediate developments required to prove these propositions.

The next proposition allows us to infer the expressions of 7,(t) and 7,(t) matching the
initial term structures of interest and mortality rates.

Proposition 2.1. At time 0 <t < T, the value of the discount bond of maturity T is equal
to

PULT) = exp <—rtB,,w(t,T)— /t ) (1) du> 1)
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The survival probability up to time T, is given by
T
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The pure endowment, 7 Ey, admits the following expression:

0.2 T
TEt = 1{7’215} exp (—TtBHT (t,T) /Lw_i_tB,{H (t T) 27‘ / B,W (’U,, T)QdU) X (9)
t

exp <— /tT r(u) (1 - e*”T(T*“)> du — /tT ~z (1) (1 - e*”“(T*“)) du> X

exp (ww /t ! 04(u) By, (u, T) By, (u, T)du + % /t ! (02 (1) By, (u, T))* du> :



Sketch of the proof. We can show by direct differentation that interest and mortality
rates are equal to
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The integrals of interest and mortality rates are obtained by direct integration
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From Equation (7), we deduce that the function ~,(u) must satisfy the next relation to
match the initial yield curve of zero-coupon bond:

T
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Deriving twice this expression leads to the following useful reformulation of ~,.(T'):
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where —0p In P(0,T) is the instantaneous forward rate. For a given initial mortality curve
TPz, We show in a similar manner that the function ~,(u) satisfies the relation
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Equations (14) and (15) allows us to rewrite bond prices, survival probabilities and en-
dowments as function of initial term structures of mortality and interest rates. Analytical
expressions are provided in Proposition 5.1 the proof is summarized below.

Proposition 5.1 : sketch of the proof By direct integration of Equations (14) and
(15), we obtain that
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and
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Combining these expressions with these of Proposition 2.1.
end

The next result presents the dynamics of the discount bond and endowment under the
pricing measure. This is a direct consequence of the Itd’s lemma applied to Proposition
2.1.

Corollary 2.2. Under the risk neutral measure Q, the dynamics of the zero-coupon bond
and of the pure endowment at time t < T are given by

dP(t,T) = r,P(t,T)dt — P(t,T)By, (t,T)o, (eMth@) +ede§3)) :
drEy = 7By (ry + pose) dt — 7E0rene By, (£, T)dW,? (16)
—1E; (B, (8, T)04(t) + 0rery B (,T)) AW 1 B 154y .

As EQ (dl{th}) = —z4¢dt, we check that the pure endowment has a return equal to
the risk free rate: EQ (drE;) = rEyrydt. In order to obtain a closed form expression of
the saving contract, we perform a change of measure using as Radon-Nykodym derivative:

d—]F — EQ (ﬂL’r ) _ e fOT(TSJFHers)dS
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(17)
From Equations (11), this change of measure is rewritten as follows:
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We recognize a Doleans-Dade exponential and then under the measure [, Wt(Q)F and Wt(S)F

defined by

{th@)IF = dW” + ovep By, (1, T)dt (18)

AW = aW® + 0,6y, (t, T)dt + 0,(t) By, (t, T)dt
are Brownian motions. The dynamic of the stock indice is modified as follows under F,
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If we remember that e%s + E%T =+ e%# = 1, applying the Itd’s lemma to In.S; leads to the



following expression for the stock indice under F:
t o2 t
Sy = Spexp </0 rudu — ?St — asegu/o UI(U)BHM(U,T)dU> (20)
t
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0
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Taking advantage the log-normality of St under the F-measure, we deduce the closed-form
expression of Proposition 5.2 for call options embedded in the participating pure endow-

ment.

Proposition 5.2, sketch of the proof.

As Sp = %, we focus on on the dynamics of d%. From the Ité’s lemma, we
have that
1 T By, (t,T)%c? By, (t,T) 9
A = — dt+ Tt 22 o (e dW P 4 e WD)
PuT)  PED Py R o\ e
The dynamic of % is therefore equal to
d S = S [B.., (t,T)%02 + By, (t,T) (0:056r€5r + 07056 p€5,,) ] dt
P(t,T) Pt,T) "7 r e s
St (1) St 2)
d T T T‘BH t,T d
+P(t,T)USESS W, +P(t,T) (0s€sr + €rp0 N )) dW,
St 3
+P(t, T (0s€sy + €rpor By, (t,T)) th( ).

Using again the Itd’s lemma, we find dIn <%) under Q and from Equation (18), obtain

the differential under F:
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By direct integration, we reformulate St as follows:
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Equation (21) emphasizes that ln% ~ N (ur,vr) is log-normal with a mean and

variance given by equation (28) in the paper. Using standard calculations, we can show
that if ®(.) is the cdf of a N(0,1) and

. In (575 ) — ks
2 = VR )

di = ds — R

then the expected postive diffence between St and C7 under the forward measure is given
by

St f

E ((Sr —C), |F) = P, T) T D (—dy) — O (—dy) . (22)

This last result allows us to infer Equation (29) in the paper.

end

3 Interest rate assumptions

In Sub-section 5.2 of the article, we model the initial yield curve with the Nelson-Siegel
(NS) model. In this framework, initial instantaneous forward rates are provided by the
following function:

£0,8) := -0, m P(0,2) = b + (bg’{)) + bﬁ?t) exp (_cg’%) .

Parameters {bg, b1o,b11,c1} are estimated by minimizing the quadratic spread between
market and model zero-coupon yields:

P00 = e |3 12 () (1 () )
il

We fit the NS model to the yield curve of Belgian state bonds observed on the 23" of
November 22 and obtain estimates reported in Table 1.

Parameter | Value
b\ 0.0308
b7 -0.0008
B0 ] -0.0212
Y 0.6594

Table 1: Nelson-Siegel parameters, Belgian state bonds, 23/11/22.

4 Mortality rate assumptions

In Sub-section 5.2 of the article, the volatility of mortality rates is fitted by least square
minimization of spreads between o,(.) and empirical deviations of variations of mortality

rates by cohort (ages between 20 and 90 years from 1950 to 2020). If Méy) is the observed

mortality rates at age x during the calendar year y, we denote by Au%’) = ,ug(gy) — u‘,(ry__ll)



and by 5, the standard deviation of A,uf(ny) for y=1950 to 2020. The « and [ are obtained
by minimizing the sum

90
2
a, 3 = arg min Z (Sm — aeﬂx) .

=20

On the other hand, the initial curve of survival probabilities is described by a Makeham’s

model, i.e.
e = oxp / o (a9 440 (e s

= exp(—at) exp <_lrl:(cﬂ(j‘) ((C(u)>z+t B (C(M)>m>> |

where o) p#) () ¢ Rt These parameters and the reversion speed k, are obtained by
least square minimization of spreads between prospective and model survival probabilities.
Prospective survival probabilities are computed with a Lee-Carter model fitted to Belgian
mortality rates from 1950 to 2020 for 0 to 105 years, male population. Model ;p, are
computed with Equation (25) for 2z = 20 years old. Estimated parameters are provided in
Table 2.

Parameters
al | 1.006349¢-03 | s, | 0.83925
b | 2.790903e-07 | o | 8.5277e-7
Ky 0.83925 B | 0.11094

Table 2: Mortality parameters, Belgian male mortality rates, year 2020.

5 LSMC and LLSMC, 100 000 simulations

Tables 3 and 4 compare goodness of fit statistics and runtimes of the LSMC and LLSMC,
computed with 10 000 and 10 000 simulations, in the case study developped in Section 4.

d, | R* | /MSE(V) [ VMSE | df. | Time (sec).
10 000 simulations
2 | 0.0397 0.36 2.10 6 1.95
3 | 0.0451 0.57 2.10 10 1.65
4 | 0.0499 1.07 2.09 15 1.39
5 | 0.0522 2.39 2.09 21 2.00
6 | 0.0536 1.93 2.09 28 1.71
100 000 simulations
2 | 0.0408 0.40 2.12 6 13.39
3 | 0.0463 0.58 2.11 10 13.47
4 | 0.0514 1.12 2.11 15 13.03
5 | 0.0531 1.24 2.10 21 13.77
6 | 0.0543 1.33 2.10 28 12.32

Table 3: R%, MSE and MSE(V) of regressions of ¥; on X in the LSMC model. d.f. is the
number of parameters.



K|dy|d,| R* | \/MSE(V) | VMSE | df. | RZ | Time (sec).
10 000 simulations
312 | 3 [0.0526 0.19 2.09 42 | 0.95 4.66
21 21| 3 10.0525 0.20 2.09 26 | 0.87 4.48
51 2| 3 |0.0527 0.20 2.10 74 | 0.98 5.14
6 | 2 | 4 |0.0524 0.20 2.10 120 | 0.99 5.99
2| 2 2 | 0.0521 0.21 2.09 18 | 0.87 5.75
31 2| 2 ]0.0524 0.21 2.09 30 1 0.95 4.28
4 | 2 2 | 0.0525 0.21 2.09 42 | 0.98 4.40
51 2| 2 [0.0525 0.21 2.10 o4 | 0.98 5.05
51 2 | 4 ]0.0627 0.21 2.10 99 1 0.99 4.87
6 | 2 | 2 |0.0525 0.22 2.10 66 | 0.99 5.50
100 000 simulations
3 11| 3 [0.0106 0.85 2.14 36 | 0.95 4.31
3 1 2 | 0.0102 0.87 2.14 24 | 0.95 4.35
4 |1 | 4 |0.0082 0.88 2.15 69 | 0.98 4.61
51 1] 3 [0.0078 0.90 2.15 62 | 0.98 4.36
4 11 2 ]0.0073 0.93 2.14 33 | 0.98 4.56
6 | 1| 2 |0.0074 0.93 2.14 51 | 0.99 4.53
5 1] 2 (0.0073 0.95 2.14 42 | 0.98 4.39
6 | 1| 3 |0.0074 0.95 2.15 75 | 0.99 4.57
4 11 3 |0.0072 0.97 2.14 49 | 0.98 4.53
6 | 1| 4 |0.0079 1.16 2.15 105 | 0.99 3.29

Table 4: R?, MSE, MSE(V) and R}, for the LLSMC model. d.f. is the number of

parameters.

Tables 5 and 6 compare goodness of fit statistics and runtimes of the LSMC and
LLSMC, computed with 10 000 and 10 000 simulations, in the case study of Section 5.

ldy| R* | J/MSE(V) | VMSE | VEMSE | df. | Time (sec.) |

10 000 simulations
2 10.3815 1.98 11.48 1.14 10 12.83
3 | 0.3874 2.09 11.35 0.97 20 11.58
4 | 0.3864 2.14 11.29 0.96 35 11.42
5 | 0.3875 2.90 11.40 0.80 56 11.56
6 | 0.3955 3.93 11.25 0.91 84 11.58
100 000 simulations
2 | 0.3779 2.03 11.43 1.35 10 321.14
3 10.3822 1.81 11.37 0.96 20 547.36
4 10.3795 1.63 11.41 0.90 35 493.71
5 | 0.3878 0.80 11.33 0.63 56 557.72
6 | 0.3885 0.77 11.35 0.42 84 613.17

Table 5: R%, MSE, MSE(V) of regressions of ¥; on X; in the LSMC model. vVEMSE is
the MSE valued with analytical prices. d.f. is the number of parameters.



Kld |dy| R* [ MSE(V)|VMSE | VEMSE | df. | R? | Time (sec.)
10 000 simulations
513 [2]03952] 065 1128 [ 047 [130[0.97 76.44
413 [3]039%2] 069 1128 [ 041 [140[0.96 | 46.72
313203952 076 1125 [ 037 [ 70 [0.93] 7114
413 [2]039%2] 077 1126 | 041 [100[0.95[ 59.80
52 2[03918]  0.79 1129 | 0.70 [ 90 [ 097 [  68.32
513 [3]039%53] 081 1131 | 047 [180 097 [ 68.00
2 3 [2]03946| o084 1123 [ 037 [ 40 [0.88| 7297
513 [ 1]03949] 086 1126 | 049 [100 097 [ 78.56
412 [3]0392] 087 1130 | 0.71 [110[0.96 [ 5533
4]2[2]03923] 088 1127 | 071 [ 70 [0.95[ 6857
100 000 simulations
513 [27]03868] 031 1136 [ 029 [130[0.97] 972.62
4133 [0386]| 032 1136 [ 031 [ 140 [ 0.96 | 1028.79
313 [2]0388] 040 1136 [ 028 [ 70 [0.93| 819.64
41320386 033 1136 | 033 [ 100096 | 854.90
52 2]03842] 056 1138 | 0.78 [ 90 [0.97 [ 808.62
513 [3]03868] 035 1136 | 027 [180[0.97 [ 985.53
2 3] 2[0385] 089 1136 | 035 | 40 [0.89 [ 836.63
53 [ 10384 081 1136 | 041 [ 100 [0.97 [ 969.00
412303844 059 1138 [ 075 [110[0.96 | 1095.46
412 [2] 0384 0.63 1138 | 081 | 70 [0.96 [ 799.51

Table 6: R?, MSE, MSE(V) and R} for the LLSMC model. vMSE, exact is the MSE
valued with analytical prices. d.f. is the number of parameters.



