Supporting Materials

1. Strain rate sensitivity (SRS) and activation volume
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When we have two loading rates, i.e. 
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, can be given in the following equations. 
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To cancel out k, Eq (3) minus Eq (4), we obtain, 
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To find out the maximal SRS, we use     
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To find out the minimal SRS, we use      
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Thus, the measured SRS ranges within 0.02~0.06.

The activation volume (v*) of plastic deformation is inherently related to the strain rate sensitivityS1 by


[image: image21.wmf]m

T

k

v

×

×

×

=

s

  

3

*

                                             (6)

Here k is the Boltzmann constant (1.38×10-23 m2 kg s-2k-1), T is absolute temperature, and 
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 and m are respectively applied stress and SRS.

Here we take σ=864 MPa and m=0.06 to calculate the activation volume of plastic deformation at dynamic loading
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=0.135 nm3 =2~3 b3 (︱b︱=0.38 nm for plane spacing in Figure 4 of our manuscript).
The activation volume under quasi-static loading is calculated as follows:      
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=356 MPa (we take the maximum compressive strength under quasi-static loading) and m=0.02 (we take m=0.02 in order to roughly estimate the maximum activation volume). 

2. Evaluation of fracture energy dissipation for dynamic/quasi-static compression. 

For the quasi-statically compressed sample, the original sample geometry is 2mm x 2mm x 4mm. Upon fracture, the sample was roughly split into two parts with two fracture surfaces. The two fracture surface areas were estimated to be the total of 16mm2(2mm x 4mm x 2). 

For the dynamic case, the pristine geometry is 3mm x 3mm x 3mm. The average fragment size is approximately 0.154mm. Here we treat each fragment as an ideal cube. Thus, the created surface area can be estimated to be the total of 
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Fig. S1. Schematic illustration of dynamic compression process, for simplicity, each irregular-shaped fragment is treated as an idea cube.
Here we introduce k (J/mm2) as the fracture energy and assume it to be a constant. When we consider the volume effect (sample geometry), we can further obtain the fracture energy dissipation per unit volume, as follows.
For the quasi-static case, the fracture energy dissipation per unit volume is 16mm2 k/2mm x 2mm x 4mm=1 J/mm3.

For the dynamic one, the fracture energy dissipation per unit volume is 998mm2 k/3mm x 3mm x 3mm=37 J/mm3. Thus, the ratio of energy dissipations of dynamic fracture to that of the quasi-static fracture is 37.

3. Fractograph observation of dynamic compression nacre along cross section
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Fig. S2. Fractography observation in the dynamically-compressed nacre along cross section. (a) The fragment size distribution is typically in the range of submillimeter. (b) The fracture surface viewed from c-axis shows that crack propagates, to a large extent, along the biopolymer interface. (c) Microscopic observation on the cross section confirms the interface-dominated crack failure. (d) A close-up examination shows that the aragonite platelets remain comparatively intact.

4. Schematic illustrations of crack propagation when loading from c-axis and cross section, respectively. 
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Fig. S3. Effect of loading direction on the potential crack path. (a) When loading along nacre’s c-axis, the geometrically staggered aragonite platelets posts a critical crack extension resistance. (b) Comparatively, the biopolymer interface favors the crack propagation (stress release) while loading direction is along nacre’s cross section. 
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