Appendix: Derivation for Linear Graded with Offset Permeability Profile
Let us first define the profiles for permeability and flux density when a linear permeability with an offset is desired.
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We then apply these profiles to the local loss form of magnetizing power loss function.
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After simplifying and reducing function for local power loss, we are left with a nontrivial integral. However, this integral is similar to the form of the special function, the Chebyshev integral. The following steps demonstrate the algebraic manipulations necessary for the proper form. The first simplification is to ensure that, r, the variable of integration, is only in the numerator.
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Next, the two exponentials must have the same base with the second exponential base being in the form of 
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 representing the variable of integration.
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Then by extracting a 
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from within the integrand, a form that is similar to the desired Chebyshev integral is found. 
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Simple substitution, allows the transformation to the desired form to complete. Let 
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. This leaves only design constants the desired form for the integral with a known solution, as shown below.
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We can then use the solution to the Chebyshev integral, which has a solution using the incomplete beta function. This can be used to find a solution to the equation for local magnetizing power loss.
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The definite integral, representing the magnetizing loss for a core of finite dimensions, utilizes the above solution and is shown above in equation (29).
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