
 
 

APPENDIX I. CALCULATIONS OF ELASTIC PARAMETERS 

          On the basis of the Hooke’s law, the stress 𝜎𝑖𝑗 is proportional to the elastic strain 𝜀𝑘𝑙 by 

𝜎𝑖𝑗 = ∑ 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙𝑘𝑙 , where 𝑖, 𝑗, 𝑘 and 𝑙 are indies running from 1 to 3. The elastic constants 

𝐶𝑖𝑗𝑘𝑙 form a fourth-order tensor, which, in general, can be arranged in a 6  6 matrix with 

maximum 21 independent elements.127, 128 The number of independent elastic constants can be 

reduced by crystal symmetry. For instance, there are only three independent parameters (𝐶11, 

𝐶12, and 𝐶44) for cubic crystal, and five independent parameters (𝐶11, 𝐶12, 𝐶13, 𝐶33, and 𝐶44) 

for hexagonal crystal. For ab initio calculated elastic constants, one of available approaches is 

based on the energy-strain relations. Here, the elastic constants of cubic and hexagonal lattices 

obtained from equation of state and structural deformation are briefly introduced. 

A. Single-crystal elastic constants 

          The adiabatic elastic constants are the second order derivatives of the internal energy 𝐸 

with respect to the strain tensor ℯ. At volume 𝑉, the elastic constants are obtained by straining 

the lattice and evaluating the total energy changes due to the strain as a function of its 

magnitude. Since the total energy depends on the volume much more strongly than on the 

strain, one may choose the applied strains to be volume conserving (except for the bulk 

modulus). The energy change upon strain can be written as 

𝐸(ℯ1, ℯ2, … , ℯ6) = 𝐸(0) +
1

2
𝑉 ∑ 𝐶𝑖𝑗ℯ𝑖ℯ𝑗𝑖,𝑗=1 + 𝒪(ℯ3),                          (1.1) 

where 𝐸(0) is the energy of undistorted lattice, and 𝒪(ℯ3) represents the terms proportional 

to ℯ𝑘 with 𝑘 ≥ 3. The strain matrix as follows 
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          Mathematically, isochoric strain corresponds to a strain matrix with 𝑑𝑒𝑡(𝐷 + 𝐼) = 1, 

where 𝐼 is the 3  3 identity matrix. As a consequence, the distortion matrix can be formulated 

as function of single parameter, and results in a particular combination of the elastic 

constants.55 

          In a cubic lattice, two of the independent elastic constants can be derived from the bulk 

modulus 𝐵 = (𝐶11 + 2𝐶12) 3⁄  and the tetragonal shear modulus 𝐶′ = (𝐶11 − 𝐶12) 2⁄ . Usually,  

𝐵 corresponds to isotropic lattice expansion and can be obtained from the equation of state 

fitted to the ab initio total energies calculated for a series of different volumes. 𝐶′ and 𝐶44 can 

be determined from the volume-conserving orthorhombic and monoclinic deformations 
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which lead to the energy change Δ𝐸(𝛿o) = 2𝑉𝐶
′𝛿o
2 + 𝒪(𝛿o

4)  and Δ𝐸(𝛿m) = 2𝑉𝐶44𝛿m
2 +

𝒪(𝛿m
4 ), where 𝒪 stands for the neglected terms.55 

          In a hexagonal lattice, the bulk modulus can be calculated from the equation of state as 

𝐵 = 𝐶2 𝐶𝑆⁄ , where 𝐶2 ≡ 𝐶33(𝐶11 + 𝐶12) − 2𝐶13
2  and 𝐶S ≡ 𝐶11 + 𝐶12 − 4𝐶13 + 2𝐶33 .129 The 

volume dependent hexagonal axial ratio (𝑐 𝑎⁄ )0(𝑉) is related to the difference in the linear 

compressibilities along the 𝑎 and 𝑐 axes, viz., 𝑅 = −𝑑ln(𝑐 𝑎⁄ )0(𝑉) 𝑑ln𝑉⁄ , which in terms of 

hexagonal elastic constants becomes 𝑅 = (𝐶13 + 𝐶33 − 𝐶11 − 𝐶12) 𝐶S⁄ . In general, 𝐶S  gives 

the second order energy variation with 𝑐 𝑎⁄  around the equilibrium value. 𝐶S and 𝐶44 can be 

obtained from the isochoric and monoclinic deformations 
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which lead to the energy change Δ𝐸(𝛿h) = 𝑉𝐶S𝛿ℎ
2 + 𝒪(𝛿ℎ

3)  and Δ𝐸(𝛿m) = 2𝑉𝐶44𝛿m
2 +

𝒪(𝛿m
4 ). The elastic constant 𝐶66 = (𝐶11 − 𝐶12) 2⁄  can be obtained from the orthorhombic 

strain as shown in Eq. 1.3, leading to a change in total energy Δ𝐸(𝛿o) = 2𝑉𝐶66𝛿𝑜
2 + 𝒪(𝛿𝑜

4).55 

          The mechanical stability condition implies that the energy change Δ𝐸 ~ 𝑉𝐶𝑖𝑗ℯ𝑖ℯ𝑗 upon 

any small deformation is positive, which can be formulated in terms of elastic constants.128 

For a cubic lattice the stability conditions are 𝐶11 > 0, 𝐶44 > 0, 𝐶11 − 𝐶12 > 0  and 𝐶11 +

2𝐶12 > 0 . The stability criteria for hexagonal crystal requires that 𝐶11 > |𝐶12| , 𝐶44 > 0 , 

𝐶11𝐶33 > 𝐶13
2  and 𝐶33(𝐶11 + 𝐶12) > 2𝐶13

2 . 

B. Polycrystalline elastic moduli 

          Using the single-crystal elastic constants, one can estimate the related properties of 

polycrystalline alloys. Two approximations are widely used to calculate the elastic modulus: a 

uniform strain for Voigt method and a uniform stress for Reuss method.128 For cubic crystals, 

𝐵V =
𝐶11+2𝐶12

3
and 𝐵R = 𝐵𝑉,                                                  (1.5) 

𝐺V =
(𝐶11−𝐶12+3𝐶44)

5
and 𝐺R =
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4𝐶44+3(𝐶11−𝐶12)
,                               (1.6) 

where 𝐵V (𝐺V) and 𝐵𝑅 (𝐺𝑅) are the Voigt and Reuss bounds for the bulk (shear) modulus, 

respectively. For hexagonal crystals, 

𝐵V =
2(𝐶11+𝐶12)+4𝐶13+𝐶33

9
and 𝐵R =
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,                                         (1.7) 
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.                           (1.8) 

          The Voigt and Reuss bounds can be used to characterize the polycrystalline solids 

formed by randomly oriented anisotropic single-crystal grains. In these quasi-isotopic 

materials, one can measure the Voigt-Ruess anisotropy by the relation 𝐴VR =



 
 

(𝐺V − 𝐺R) (𝐺V + 𝐺R)⁄ . For isotropic crystal 𝐴VR is zero, and for anisotropic crystal it is a 

single-valued measure of the elastic anisotropy, and it gives a relative magnitude of the actual 

elastic anisotropy. Additionally, based on the Hill method,130 the arithmetic average for the 

bulk and shear modulus can be estimated form the Voigt and Reuss bounds, e.g., as 𝐵 =

(𝐵V + 𝐵R) 2⁄  and 𝐺 = (𝐺V + 𝐺R) 2⁄ . 

          The Young’s modulus 𝑌 and Poisson ratio 𝜐 can be derived from the bulk modulus 𝐵 

and shear modulus 𝐺 by the relations 

𝑌 =
9𝐵𝐺

(3𝐵+𝐺)
and 𝜐 =

3𝐵−2𝐺

2(3𝐵+𝐺)
,                                             (1.9) 

          The Debye temperature obtained from elastic modulus is close to that determined form 

specific heat measurements at cryogenic conditions. One of the standard methods to calculate 

the Debye temperature 𝜃D is from the average sound velocity 𝑣m according to 

𝜃D =
ℎ

𝑘B
[
3𝑛

4𝜋
(
𝑁A𝜌

𝑀
)]
1 3⁄

𝑣m,                                                (1.10) 

where ℎ  is the Planck’s constant, 𝑘B  is the Boltzmann constant, 𝑁A  is the Avogadro 

number, 𝑛 is the number of atoms in the unit cell, 𝜌 is the density, 𝑀 is the molecular weight, 

and 𝑣m is expressed as 

𝑣m = [
1

3
(
1

𝑣L
3 +

2

𝑣T
3)]

−1 3⁄

,                                                 (1.11) 

where 𝑣L and 𝑣T are the longitudinal and transverse sound velocities, respectively, which can 

be obtained from the polycrystalline elastic moduli and density, viz., 𝑣L = √(𝐵 + 4𝐺 3⁄ ) 𝜌⁄  

and 𝑣T = √𝐺 𝜌⁄ . 



 
 

APPENDIX II. ASSESSING THE EXCHANGE-CORRELATION FUNCTIONAL 

          To learn about the impact of exchange-correlation approximation on the elastic 

properties of multi-component alloys, in the EMTO-CPA calculations, the exchange-

correlation effects treated within GGA in the form of PBE58 and PBE for solid (PBEsol)131 are 

considered here. Figure 9 shows the theoretical single-crystal elastic constants of the 

equiatomic CrMoW, CrMoWMn, CrMoWNi, and CrMoWNiFe in the bcc and fcc structures, 

respectively.132 As one can see, PBEsol gives larger elastic constants than PBE for all 

considered alloys. In the case of the bcc CrMoW, for example, the PBEsol predicted 𝐶11, 𝐶12, 

and 𝐶44 are 504.4 GPa, 144.6 GPa, 133.6 GPa, respectively, which are ~7.7%, ~6.8%, and 

~8.7 % larger than the PBE values. One possible reason is that the PBEsol produce smaller 

equilibrium volume when compared to the PBE data for the present alloys.132 The somewhat 

large scattering in the elastic constants from PBEsol and PBE are still acceptable, especially if 

one consider the trends of the late 3d elements alloying additions. 

          Based on the PBEsol and PBE results, all bcc lattices are found to fulfill the mechanical 

stability criteria. The tetragonal shear modulus 𝐶′ of CrMoW decreases with the increase of 

the late 3d elements, while the cubic shear modulus 𝐶44 almost has no changes. On the other 

hand, the fcc phase is mechanically unstable. For instance, 𝐶44 < 0 , 𝐶11 − 𝐶12 < 0  for 

CrMoW, and 𝐶44 < 0 for CrMoWMn, CrMoWNi, and CrMoWNiFe. Thus, the bcc phase is 

predicted to be more stable than the fcc phase for all alloys considered here. 

          The bulk modulus, shear modulus, and Young’s modulus given by PBEsol and PBE are 

shown in Fig. 10, together with the average values obtained from the rule of mixture based on 

the corresponding experimental data of the alloy components.83, 132 To further examine the 

distribution of the calculated properties with respect to the average values, the changes of the 

corresponding properties in percentage are also presented. In the case of Young’s modulus, 



 
 

for example, PBEsol (PBE) gives ~ 17.7 (8.6) % for CrMoW, ~ 16.5 (2.7) % for CrMoWMn, 

~ 1.5 (-7.9) % for CrMoWNi, and ~ -0.3 (-10.0) % for CrMoWNiFe. One notices that the 

relative difference between PBEsol and PBE does not change significantly, i.e., the two 

schemes differ on the average by ~ 10 % for the polycrystalline elastic moduli of the present 

alloys. Figure 10 shows the Young’s modulus along different crystallographic directions for 

CrMoW. The PBEsol (PBE) values are 440 (408) GPa, 343 (316) GPa, and 363 (335) GPa 

along the <001>, <111>, and <110> directions, respectively. The corresponding data of pure 

bcc Cr, Mo and W metals that obtained from the single-crystal elastic constants are shown for 

comparison.126 In general, these data are close to each other, and further experimental work is 

required to make comparison with the present values. 
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FIG. 9. Theoretical single-crystal elastic constants (𝐶11, 𝐶12, and 𝐶44) of CrMoW, CrMoWMn, CrMoWNi, and 

CrMoWNiFe in the bcc and fcc structures, respectively. Results are shown for two exchange-correlation 

functional (PBEsol and PBE). Data taken from Ref. 132. 
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FIG. 10. Theoretical polycrystalline elastic moduli (𝐵 , 𝐺 , and 𝑌) of CrMoW, CrMoWMn, CrMoWNi, and 

CrMoWNiFe in the bcc structure. Results are shown for two exchange-correlation functional (PBEsol and PBE). 

The “average” values are obtained from the rule of mixture based on the corresponding experimental data of the 

alloy components. The “difference” values indicates the change of the calculated properties with respected to the 

corresponding “average” properties. Theoretical Young’s modulus of CrMoW are shown as a function of 

direction, including the three main cubic directions. The corresponding data of pure bcc Cr, Mo, and W metals 

are plotted for comparison. Data taken from Refs. 126 and 132. 


