Supplementary Material

Wurtzite materials in alloys of rocksalt compounds

Yanbing Han^{1,2}, Samantha L. Millican³, Jun Liu¹, Sage R. Bauers¹, Sebastian Siol¹⁺, Stephan Lany¹, Mowafak Al-Jassim¹, Charles B. Musgrave^{3,1}, Aaron M. Holder^{3,1}, Andriy Zakutayev^{1*}

¹Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
²School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China
³Department of Chemical and Biological Engineering, University of Colorado, Boulder,
Colorado 80309, USA

* Corresponding author: andriy.zakutayev@nrel.gov (Andriy Zakutayev);

+Current address: Empa – Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland

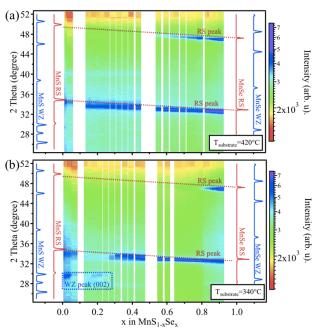


Figure S1. XRD maps of $MnS_{1-x}Se_x$ alloys as a function of x at (a) 420 °C and (b) 340 °C. Compared to alloys at the lower temperature 280 °C in the main text, the alloys show Rocksalt (RS) crystal structure in the whole composition at both higher temperatures here, with Wurtzite (WZ) phase appears from x=0.3 at 340 °C.

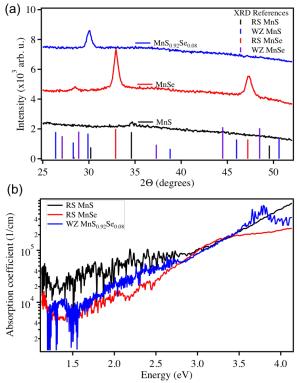


Figure S2 (a) XRD patterns and (b) optical absorption spectra of $MnS_{1-x}Se_x$ thin films deposited at 280C.

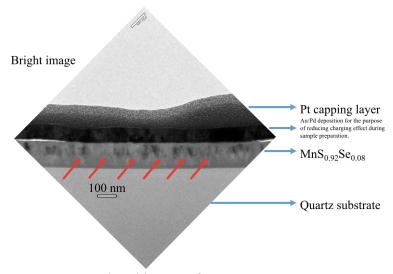


Figure S3 TEM sectional image of MnS_{0.92}Se_{0.08} grown at 280 °C.

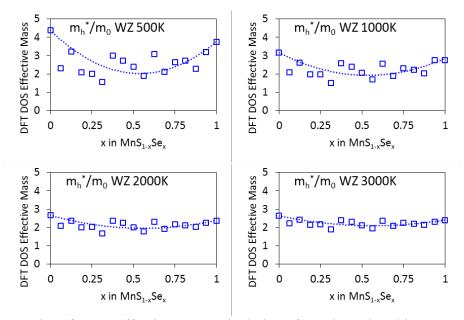


Figure S4 Density of states effective mass calculations for valence band in WZ polymorph of $MnS_{1-x}Se_x$ alloys at different energy integration interval, corresponding to effective temperatures in the 500-3000K range.